首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
APETALA1 and SEPALLATA3 interact to promote flower development   总被引:21,自引:0,他引:21  
In Arabidopsis, the closely related APETALA1 (AP1) and CAULIFLOWER (CAL) MADS-box genes share overlapping roles in promoting flower meristem identity. Later in flower development, the AP1 gene is required for normal development of sepals and petals. Studies of MADS-domain proteins in diverse species have shown that they often function as heterodimers or in larger ternary complexes, suggesting that additional proteins may interact with AP1 and CAL during flower development. To identify proteins that may interact with AP1 and CAL, we used the yeast two-hybrid assay. Among the five MADS-box genes identified in this screen, the SEPALLATA3 (SEP3) gene was chosen for further study. Mutations in the SEP3 gene, as well as SEP3 antisense plants that have a reduction in SEP3 RNA, display phenotypes that closely resemble intermediate alleles of AP1. Furthermore, the early flowering phenotype of plants constitutively expressing AP1 is significantly enhanced by constitutive SEP3 expression. Taken together, these studies suggest that SEP3 interacts with AP1 to promote normal flower development.  相似文献   

3.
The transition from vegetative to reproductive phases during Arabidopsis development is the result of a complex interaction of environmental and endogenous factors. One of the key regulators of this transition is LEAFY (LFY), whose threshold levels of activity are proposed to mediate the initiation of flowers. The closely related APETALA1 (AP1) and CAULIFLOWER (CAL) meristem identity genes are also important for flower initiation, in part because of their roles in upregulating LFY expression. We have found that mutations in the FRUITFULL (FUL) MADS-box gene, when combined with mutations in AP1 and CAL, lead to a dramatic non-flowering phenotype in which plants continuously elaborate leafy shoots in place of flowers. We demonstrate that this phenotype is caused both by the lack of LFY upregulation and by the ectopic expression of the TERMINAL FLOWER1 (TFL1) gene. Our results suggest that the FUL, AP1 and CAL genes act redundantly to control inflorescence architecture by affecting the domains of LFY and TFL1 expression as well as the relative levels of their activities.  相似文献   

4.
5.
6.
Interaction study of MADS-domain proteins in tomato   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
In Arabidopsis, different combinations of ABC organ identity proteins interact in the presence of SEPALLATA (SEP) proteins to regulate floral organ differentiation. Ectopic expression of SEP3 in combination with class A and B or B and C genes is sufficient to homeotically convert vegetative leaves into petal-like organs and bracts into stamen-like structures, respectively. Recently, it has been shown that the three MADS-box genes SEEDSTICK (STK), SHATTERPROOF1 (SHP1) and SHP2 act redundantly to control ovule identity. Protein interaction assays performed in yeast in combination with genetic studies demonstrated that these MADS-box factors only interact in the presence of SEP proteins to form complexes that determine ovule differentiation. Here, we address the question whether the ectopic co-expression of ovule identity proteins is sufficient to induce the homeotic conversion of vegetative leaves into carpel-like structures bearing ovules. We present the phenotypic characterization of Arabidopsis plants that ectopically express ovule identity factors under the regulation of the ethanol inducible gene expression system. These experiments indicate that the ectopic co-expression of SEP3 and SHP1 and/or STK is probably not sufficient to homeotically transform vegetative tissues into carpels with ovules. However, comparing the phenotypes obtained by ectopic expression of STK and/or SHP1 with or without SEP3 shows that co-expression of factors that are able to form complexes in yeast cause more extreme homeotic transformations, confirming the functional role of these complexes in vivo.  相似文献   

10.
Members of the AP1/SQUA subfamily of plant MADS-box genes play broad roles in the regulation of reproductive meristems, the specification of sepal and petal identities, and the development of leaves and fruits. It has been shown that AP1/SQUA-like genes are angiosperm-specific, and have experienced several major duplication events. However, the evolutionary history of this subfamily is still uncertain. Here, we report the isolation of 14 new AP1/SQUA-like genes from seven early-diverging eudicots and the identification of 11 previously uncharacterized ESTs and genomic sequences from public databases. Sequence comparisons of these and other published sequences reveal a conserved C-terminal region, the FUL motif, in addition to the known euAP1/paleoAP1 motif, in AP1/SQUA-like proteins. Phylogenetic analyses further suggest that there are three major lineages (euAP1, euFUL, and AGL79) in core eudicots, likely resulting from two close duplication events that predated the divergence of core eudicots. Among the three lineages, euFUL is structurally very similar to FUL-like genes from early-diverging eudicots and basal angiosperms, whereas euAP1 might have originally been generated through a 1-bp deletion in the exon 8 of an ancestral euFUL- or FUL-like gene. Because euFUL- and FUL-like genes usually have broad expression patterns, we speculate that AP1/SQUA-like genes initially had broad functions. Based on these observations, the evolutionary fates of duplicate genes and the contributions of the frameshift mutation and alternative splicing to functional diversity are discussed.  相似文献   

11.
Duplicated APETALA1/FRUITFULL (AP1/FUL) genes show distinct but overlapping patterns of expression within rice (Oryza sativa) and within ryegrass (Lolium temulentum), suggesting discrete functional roles in the transition to flowering, specification of spikelet meristem identity, and specification of floral organ identity. In this study, we analyzed the expression of the AP1/FUL paralogues FUL1 and FUL2 across phylogenetically disparate grasses to test hypotheses of gene function. In combination with other studies, our data support similar roles for both genes in spikelet meristem identity, a general role for FUL1 in floral organ identity, and a more specific role for FUL2 in outer floral whorl identity. In contrast to Arabidopsis AP1/FUL genes, expression of FUL1 and FUL2 is consistent with an early role in the transition to flowering. In general, FUL1 has a wider expression pattern in all spikelet organs than FUL2, but both genes are expressed in all spikelet organs in some cereals. FUL1 and FUL2 appear to have multiple redundant functions in early inflorescence development. We hypothesize that sub-functionalization of FUL2 and interaction of FUL2 with LHS1 could specify lemma and palea identity in the grass floret.  相似文献   

12.
MADS-box genes are crucial regulators of floral development, yet how their functions have evolved to control different aspects of floral patterning is unclear. To understand the extent to which MADS-box gene functions are conserved or have diversified in different angiosperm lineages, we have exploited the capability for functional analyses in a new model system, Papaver somniferum (opium poppy). P. somniferum is a member of the order Ranunculales, and so represents a clade that is evolutionarily distant from those containing traditional model systems such as Arabidopsis, Petunia, maize or rice. We have identified and characterized the roles of several candidate MADS-box genes in petal specification in poppy. In Arabidopsis, the APETALA3 (AP3) MADS-box gene is required for both petal and stamen identity specification. By contrast, we show that the AP3 lineage has undergone gene duplication and subfunctionalization in poppy, with one gene copy required for petal development and the other responsible for stamen development. These differences in gene function are due to differences both in expression patterns and co-factor interactions. Furthermore, the genetic hierarchy controlling petal development in poppy has diverged as compared with that of Arabidopsis. As these are the first functional analyses of AP3 genes in this evolutionarily divergent clade, our results provide new information on the similarities and differences in petal developmental programs across angiosperms. Based on these observations, we discuss a model for how the petal developmental program has evolved.  相似文献   

13.
14.
与花球发生相关的BoCAL和BoAP1互作因子的筛选   总被引:1,自引:0,他引:1  
CAL(CAULIFLOWER)基因与AP1(APETALA1)基因都是控制花分生组织发育的基因,二者都属于MADS-box转录因子编码基因,在拟南芥中,它们同时突变时会使花分生组织保持花序分生组织的无限分生特性,大量增生分生组织结构,形成花球表型。而花椰菜(Brasscia oleracea L.var.botrytis)中BobCAL基因单突变就能形成花球,显然两个物种中CAL的功能可能不同。为了研究芸苔属植物中CAL和AP1同源蛋白的功能,尤其是在花球形成方面的调控作用,我们利用酵母双杂交方法对拟南芥中结球甘蓝(B.oleracea vat capitata L.)BoCAL的互作因子进行了筛选。与BoCAL互作较强的四类蛋白,分别涉及蛋白质的磷酸化和去磷酸化、蛋白质的修饰、蛋白质的结合位点等,它们分别与转录调控途径及信号转导途径有着密切的联系,这些因子的获得为BoCAL作用机制研究提供了线索。我们同时检测了部分BoCAL的互作因子和BoAP1之间的互作关系以及部分已知的MADS盒转录因子分别与BoCAL和BoAP1的互作,结果表明BoCAL特异性地与SnRKβ2互作,BoCAL、BoAP1和拟南芥中同源蛋白都能与SVP互作,但与拟南芥中同源蛋白不同的是,BoCAL、BoAP1与FLM、SOC1(SUPPRESSOR OF CO OVEREXPRESSION 1)和AGL24(AGAMOUS-LIKE24)作用很弱或不能互作,暗示BoCAL和BoAP1与拟南芥中同源蛋白功能上是不同的。  相似文献   

15.
植物MADS-box基因家族的不同成员在植物生长发育过程中起着非常重要的作用。拟南芥MADS-box 基因FRUITFULL(FUL) 在控制拟南芥开花时间、花分生组织分化、茎生叶形态以及心皮和果实的发育中起到重要作用。其他植物中,FUL的同源基因也在调控花发育,果实发育以及叶片发育等方面各自起到重要作用。本文综述了FUL基因及其同源基因的表达模式和功能,并就其在农作物及果树育种上的潜在应用价值进行了讨论。  相似文献   

16.
17.
The ABC model of flower organ identity is widely recognized as providing a framework for understanding the specification of flower organs in diverse plant species. Recent studies in Arabidopsis thaliana have shown that three closely related MADS-box genes, SEPALLATA1 (SEP1), SEP2 and SEP3, are required to specify petals, stamens, and carpels because these organs are converted into sepals in sep1 sep2 sep3 triple mutants. Additional studies indicate that the SEP proteins form multimeric complexes with the products of the B and C organ identity genes. Here, we characterize the SEP4 gene, which shares extensive sequence similarity to and an overlapping expression pattern with the other SEP genes. Although sep4 single mutants display a phenotype similar to that of wild-type plants, we find that floral organs are converted into leaf-like organs in sep1 sep2 sep3 sep4 quadruple mutants, indicating the involvement of all four SEP genes in the development of sepals. We also find that SEP4 contributes to the development of petals, stamens, and carpels in addition to sepals and that it plays an important role in meristem identity. These and other data demonstrate that the SEP genes play central roles in flower meristem identity and organ identity.  相似文献   

18.
19.
Several MADS box gene lineages involved in flower development have undergone duplications that correlate with the diversification of large groups of flowering plants. In the APETALA1 gene lineage, a major duplication coincides with the origin of the core eudicots, resulting in the euFUL and the euAP1 clades. Arabidopsis FRUITFULL (FUL) and APETALA1 (AP1) function redundantly in specifying floral meristem identity but function independently in sepal and petal identity (AP1) and in proper fruit development and determinacy (FUL). Many of these functions are largely conserved in other core eudicot euAP1 and euFUL genes, but notably, the role of APETALA1 as an "A-function" (sepal and petal identity) gene is thought to be Brassicaceae specific. Understanding how functional divergence of the core eudicot duplicates occurred requires a careful examination of the function of preduplication (FUL-like) genes. Using virus-induced gene silencing, we show that FUL-like genes in opium poppy (Papaver somniferum) and California poppy (Eschscholzia californica) function in axillary meristem growth and in floral meristem and sepal identity and that they also play a key role in fruit development. Interestingly, in opium poppy, these genes also control flowering time and petal identity, suggesting that AP1/FUL homologs might have been independently recruited in petal identity. Because the FUL-like gene functional repertoire encompasses all roles previously described for the core eudicot euAP1 and euFUL genes, we postulate subfunctionalization as the functional outcome after the major AP1/FUL gene lineage duplication event.  相似文献   

20.
阐明花器官发育调控机理具重要的进化、发育和生态学意义。该文以拟南芥(Arabidopsis thaliana)花瓣发育为例, 整合蛋白质互作、亚细胞定位、基因芯片和基因功能注释等数据库, 通过组建蛋白质互作可信预测模型, 获得拟南芥花瓣蛋白质互作网络, 以含有MADS-box结构域蛋白为诱饵在网络中进行一级拓展, 得到含38个蛋白质和67对互作的拓展网络。基于拓展网络, DAVID基因功能注释表明, 多数蛋白质涉及的生物学过程与花发育调控相关; 提取到19个候选四元互作, 涉及ABCDE模型基因之外的8个基因, 其中含MADS-box结构域的AGL16可能是B类基因新成员或其冗余; SEU、LUH、CHR4、CHR11、CHR17和AT3G04960为拟南芥花瓣AP1-AP3-PI-SEP四聚体的候选靶标基因。研究结果为深入解析拟南芥花瓣发育分子调控网络奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号