首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium graminearum is associated with the cereal damping-off complex which reduces germination, seedling stand and yield. Fifty-two bacterial strains and six Trichoderma spp. isolated from the wheat rhizosphere were evaluated for biocontrol of seedling blight of wheat caused by F. graminearum. Their potential as biocontrol agents was tested in vitro and in the greenhouse. Isolates varied in their ability to inhibit the mycelial growth of F. graminearum in agar plate bioassays by 0–79%. This parameter was not related with biocontrol efficacy of in vivo assays. In greenhouse trials, all isolates were initially evaluated for reducing disease on wheat cultivars Klein Centauro (moderately resistant to F. graminearum) and Pro INTA Oasis (susceptible) planted in sterilized soil artificially infested with the pathogen. Among the 25 bacteria and six fungal isolates that exhibited a pronounced suppressive effect, the most efficient 10 for both cultivars were further assayed on eight cultivars (Buck Candil, Buck Catriel, Buck Chambergo, Buck Poncho, Buck Topacio, Klein Cacique, Klein Centauro and Pro INTA Oasis) potted in cultivated–inoculated soil. Three weeks after sowing, plant stand, percentage of diseased emerging seedlings, plant height and dry weight were evaluated. Among the antagonists only Stenotrophomonas maltophilia was significantly better than the control for the average of the eight cultivars for plant stand, height and dry weight. Stenotrophomonas maltophilia also caused a non-significant decrease in the percentage of diseased plants. Three strains of Bacillus cereus and one isolate of Trichoderma harzianum gave also a good control in some cultivars. The ability of these isolates to affect the infection of wheat seedlings by F. graminearum may be of potential value in field trials.  相似文献   

2.
Trichoderma hamatum, T. harzianum andT. koningii were isolated from wheat and rye-grass roots from a field in Western Australia. Frequency of occurrence ofTrichoderma spp. was higher on roots subjected to washing only, for both wheat and rye-grass than the roots which were surface-sterilized with 0.6% or 1.25% NaOCl.Trichoderma spp. were recovered at a higher frequency on PDA amended with lactic acid (pH 4.5) than on PDA alone (pH 5.6) or PDA with streptomycin. In general,Trichoderma spp. were isolated at a higher frequency from roots of wheat than that of rye-grass.T. hamatum occurred at a higher frequency in rye-grass roots than in wheat, whereasT. harzianum was more common in roots of wheat than in rye-grass, especially in seedling and milky ripe stages.T. koningii was recovered at a higher frequency from roots at seedling stage of rye-grass than wheat, the reverse being true at tillering stage.T. koningii was not recovered from roots of either host in any sampling when they were surface sterilized with 1.25% NaOCl.The take-all fungus was isolated from wheat and rye-grass roots more frequently at tillering and stem extension stages than others. It was severely pathogenic to both hosts in sterilized and non-sterilized soil.Addition of lactic acid, HCl or streptomycin to PDA did not affect the growth of theTrichoderma spp. tested, but the growth was slower on Martin's medium than on other media. In generalT. harzianum andT. koningii grow faster thanT. hamatum. The growth of the three species were not different at 20 and 25°C, but at 15°c growing of all species was significantly reduced.Incorporation of lactic acid into PDA prevented the bacterial growth in all treatments. Streptomycin too reduced but to a lesser degree than lactic acid. Surface sterilization with NaOCl decreased the recovery of both bacteria and fungi. T. hamatum andT. koningii reduced the mortality of wheat and rye-grass plants inoculated with the take-all fungus in sterilized and non-sterilized soil, whereT. harzianum did not protect wheat or rye-grass from infection by the take-all fungus.  相似文献   

3.
Fusarium root rot (Fusarium spp.) is one of the most important seedling diseases of coneflower (Echinacea spp.) in Alberta greenhouses. Effects of microbial antagonists (Trichoderma spp.) and fungicides, including difenoconazole, fludioxonil, and a mixture of fludioxonil, metalaxyl and difenoconazole, on the management of this disease, were investigated in Alberta. Twenty Trichoderma isolates demonstrated antagonistic activity to Fusarium in agar plate bioassays, with inhibition rates ranging from 44 to 65%. Some Trichoderma isolates significantly ( p < 0.05) reduced disease incidence and severity on seedlings in greenhouse experiments. An in vitro bioassay indicated that difenoconazole and the mixture equally inhibited the growth of both Fusarium and Trichoderma, but, while fludioxonil strongly inhibited the growth of Fusarium, it had little effect on Trichoderma, according to the dose--response models developed ( p < 0.01, R2= 0.902-0.998). Two Trichoderma isolates, T1 and T13 were applied singly or in combination with a low rate of fludioxonil in greenhouse evaluations. The results suggested that fludioxonil and Trichoderma could be integrated into a disease management program for fusarium root rot in coneflower.  相似文献   

4.
Trichoderma spp. have been used as biocontrol agents to protect plants against foliar diseases in several crops, but information from field assays is scarce. In the present work, experiments were carried out to determine the effect of six isolates of Trichoderma harzianum and one isolate of T. koningii on the incidence and severity of tan spot, caused by Pyrenophora tritici-repentis (anamorph: Drechslera tritici-repentis) under field conditions. Significant differences between years, wheat cultivars and treatments were found. In 2003, two of the isolates assayed (T5, T7) showed the best performance against the disease applied as seed treatments or sprayed onto wheat leaves at different stages. The application of six of the treatments on wheat plants significantly reduced disease severity by 16 to 35% in comparison with the control. Disease control provided by isolate T7 was similar to that provided by the fungicide treatment (56% reduction). This is the first report on the efficacy of Trichoderma spp. against tan spot under field conditions in Argentina.  相似文献   

5.
From among 125 strains of fluorescent and 52 strains of nonfluorescent bacteria initially screened in the laboratory for their antibiosis towards the bacterial wilt pathogen, Pseudomonas solanacearum, strain Pfcp of Pseudomonas fluorescens and strains B33 and B36 of Bacillus spp., were chosen and evaluated further in greenhouse and field tests. Pfcp treated banana (Musa balbisiana), eggplant and tomato plants were protected from wilt upto 50, 61 and 95% in greenhouse and upto 50, 49 and 36% respectively in field. Protection afforded by the Bacillus strains was lower. In bacteria-treated plants which were subsequently inoculated with P. solanacearum plant height and biomass values increased and were close to those of nontreated and noninoculated control plants.  相似文献   

6.
Seedling stand, disease severity and fungal incidence were determined from untreated ‘Wakefield’ soft red winter wheat planted on a Leeper silty clay loam in field tests conducted at the Mississippi Agricultural and Forestry Experiment Station, Plant Science Research Center, Mississippi State University, Starkville, Mississippi during the 1996–97 and 1997–98 growing seasons. Seedling stand was reduced by 40% each year in plots established with untreated seed. Cochliobolus sativus was the most frequently isolated fungus. Fusarium acuminatum, Fusarium equiseti and Fusarium solani were the most prevalent Fusarium spp. Seven other Fusarium spp. and 23 species of other fungal genera were isolated. Pathogenicity tests with three isolates each of C. sativus, Cochliobolus spicifer, F. acuminatum, F. solani, F. equiseti, Fusarium compactum, Embellisia chlamydospora and Microdochium bolleyi were performed in test tube culture and two isolates each of C. sativus, C. spicifer, F. acuminatum, E. chlamydospora and M. bolleyi under greenhouse conditions. In test tubes and in the greenhouse, seedlings infected with isolates of C. sativus developed seedling blight, discoloration and necrosis, primarily in seminal roots and crowns. In the greenhouse, C. sativus induced lesions on the lower leaf sheath and reduced seedling height, seedling emergence, dry and fresh weight of roots and shoots. Isolates of F. acuminatum, F. solani, F. equiseti, F. compactum, E. chlamydospora and M. bolleyi induced slight to moderate orange to light‐brown discoloration of crown and seminal roots in test tubes. Cochliobolus spicifer isolates had the most pre‐emergence activity, inducing black root discoloration and root pruning of wheat seedlings and reducing seedling emergence, root fresh weight and shoot dry weight. In the greenhouse, F. acuminatum reduced seedling height, seedling emergence and root and shoot dry weights. Microdochium bolleyi and E. chlamydospora reduced fresh and dry weight of roots, plant emergence and shoot dry weight. Fusarium acuminatum and C. spicifer reduced the growth rate of wheat seedlings. All fungi evaluated showed increased disease severity compared to the untreated control. The high frequency of isolation of C. sativus from crown and root tissues can be partially explained by the dry, warm conditions during the early stages of wheat seedling development in the Upper Coastal Plain Land Resource Area of Mississippi.  相似文献   

7.
Summary Coating cotton seeds withTrichoderma spp. reduced the incidence of disease caused byR. solani by up to 83% in the greenhouse.T. hamatum was more efficient in disease control at 20°C, whileT. harzianum was superior at 27°C. Disease severity was reduced by 47–60% in two field experiments, showing no statistical difference from treatment with pentachloronitrobenzene.  相似文献   

8.
Several species of the genus Alternaria are involved in leaf spot disease of sunflower, with Alternaria alternata being the dominant species responsible for this disease in Iran and many other sunflower-producing areas, worldwide. The disease causes a progressive destruction of the photosynthetic apparatus, resulting in annual yield loss. The routine disease management strategies are not effective for disease control; hence, alternative measures for disease management are of great interest. In the present study, the efficacy of Trichoderma harzianum T22 and Trichoderma sp. on biological control of the causal agent was evaluated under laboratory conditions. The effect of Trichoderma isolates on dry weight (DW) and radial growth (RG) rate of A. alternata was evaluated using dual culture, volatile and non-volatile cellular metabolites. The results obtained in this study revealed that in both Trichoderma isolates, non-volatile cellular metabolites had the highest inhibitory effect on DW and RG rate of the causal agent. Owing to explicit inhibitory effect of non-volatile cellular metabolites on A. alternata, the inhibitory effects of different concentrations of non-volatile cellular metabolites were evaluated on DW and RG rate of the A. alternata. The obtained results showed that non-autoclaved 75 and 50% concentrations and undiluted (100%) autoclaved non-volatile cellular metabolites from Trichoderma sp. had the highest inhibitory effect on DW and RG rate of the causal agent. The overall results of this study reveal that Trichoderma spp. have excellent efficacy on biological control of A. alternata under laboratory condition; such that, further studies on the potential of Trichoderma spp. in biological control of Alternaria leaf spot disease of sunflower under green house and field conditions are necessary.  相似文献   

9.
Diseases caused in wheat by Bipolaris sorokiniana and Drechslera tritici-repentis have led to considerable yield and production losses. In wheat seeds another isolate has recently been identified, resembling Bipolaris bicolor. The objective of the present trial was to differentiate and identify isolates of these fungi based on electrophoretic analyses and morphology. Esterase electrophoresis enabled the differentiation between Drechslera sp. and Bipolaris sp. isolates. In relation to morphology, conidia from D. tritici-repentis isolates were significantly longer than the isolates of B. sorokiniana. Bipolaris bicolor isolates, on the other hand, presented wider conidia than those of D. tritici-repentis and B. sorokiniana.  相似文献   

10.
The Pythium biocontrol features of 17 Paenibacillus strains, all previously isolated from the rhizosphere, hyphosphere or bulk soil from mycorrhizal and non-mycorrhizal cucumber plants, were examined using a cucumber seedling emergence bioassay. Thirteen strains – four strains of Paenibacillus polymyxa, eight strains of P. macerans and one strain of Paenibacillus sp. – significantly increased the percentage of seedling emergence of seeds inoculated with agar plugs of Pythium aphanidermatum FC42. Overall, the efficacy of Pythium biocontrol did not seem to differ between isolates of Paenibacillus originating from either mycorrhizal or non-mycorrhizal systems. No strains significantly reduced the damping-off incidence caused by the aggressive isolate Pythium sp. B5. Two strains of P. macerans not only reduced the incidence of pre-emergence damping-off by 73%, but they also counteracted the plant growth-depressing effect of P. aphanidermatum FC42, so that 68–82% of the emerged seedlings remained healthy 7 days after sowing. Two strains of P. macerans and one strain of P. polymyxa also significantly increased the percentage of seedling emergence following inoculation with approximately 105 zoospores of P. aphanidermatum FC42. There was no significant difference between the dry weight of three selected bacteria-inoculated and -uninoculated plants in the absence of Pythium; however, the dry weight of bacteria-inoculated plants was significantly higher than that of the uninoculated control plants with bacteria in the presence of P. aphanidermatum FC42.  相似文献   

11.
Prior infection of both wheat and barley plants by BYDV predisposed their ears to infection by Cladosporium spp. and Verticillium spp. Aphids and honeydew increased the incidence of Cladosporium on wheat ears but not on barley. This difference between crops was attributed to the larger number ot aphids on the wheat. In the glasshouse, aphids and honeydew, but not honeydew alone, increased Cladosporium populations.  相似文献   

12.
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is key to facilitate the introgression of different FHB resistance genes into adapted wheat. The objective of this project was to study the FHB resistance QTL on chromosome 6B, quantify the phenotypic variation, and qualitatively map the resistance gene as a Mendelian factor. The FHB resistant parent BW278 (AC Domain*2/Sumai 3) was used as the source of the resistance allele. A large recombinant inbred line (RIL) mapping population was developed from the cross BW278/AC Foremost. The population segregated for three known FHB resistance QTL located on chromosomes 3BSc, 5A, and 6B. Molecular markers on chromosome 6B (WMC104, WMC397, GWM219), 5A (GWM154, GWM304, WMC415), and 3BS (WMC78, GWM566, WMC527) were amplified on approximately 1,440 F2:7 RILs. The marker information was used to select 89 RILs that were fixed homozygous susceptible for the 3BSc and 5A FHB QTLs and were recombinant in the 6B interval. Disease response was evaluated on 89 RILs and parental checks in the greenhouse and field nurseries. Dual floret injection (DFI) was used in greenhouse trials to evaluate disease severity (DS). Macroconidial spray inoculations were used in field nurseries conducted at two locations in southern Manitoba (Carman and Glenlea) over two years 2003 and 2004, to evaluate disease incidence, disease severity, visual rating index, and Fusarium-damaged kernels. The phenotypic distribution for all five-disease infection measurements was bimodal, with lines resembling either the resistant or susceptible checks and parents. All of the four field traits for FHB resistance mapped qualitatively to a coincident position on chromosome 6BS, flanked by GWM133 and GWM644, and is named Fhb2. The greenhouse-DS trait mapped 2 cM distal to Fhb2. Qualitative mapping of Fhb2 in wheat provides tightly linked markers that can reduce linkage drag associated with marker assisted selection of Fhb2 and aid the pyramiding of different resistance loci for wheat improvement.  相似文献   

13.
In order to establish the current scenario of aflatoxigenic fungal infection and aflatoxin contamination in sorghum seeds across India, 58 seed samples were collected from different agro-climatic regions. Among these, 67.2% samples were infected with Aspergillus spp. and 28% were found contaminated with aflatoxins ranging from 0.0 to 130?μg?kg?1. Greenhouse studies revealed no correlation between incidence of Aspergillus flavus and aflatoxin content, and its effect on seed quality parameters. Among the 37 A. flavus strains isolated, six were non-aflatoxigenic when analysed through cultural, TLC and ic-ELISA. Seed treatment with biocontrol agents (antagonistic Rhizobacteria and Trichoderma) suppressed the growth of A. flavus under laboratory and significantly enhanced seed quality variables under greenhouse conditions to a various extent. Field trials with selected biocontrol agents showed that talcum powder formulations of Pseudomonas putida Has-1/c, Bacillus spp. 3/a, Trichoderma asperellum M5 and T. asperellum T2 improved seedling emergence, % nutrient accumulation in plants, increased plant biomass and 1000 seed weight. Seeds harvested from treated plants showed significant increase in seed quality variables under laboratory and greenhouse conditions in comparison with control, but there was no significant difference in A. flavus infection and aflatoxin was completely absent in all treatments.  相似文献   

14.
Antifungal potential of lactic acid bacteria (LAB) such as Lactobacillus sakei KTU05-6, Pediococcus acidilactici KTU05-7 and Pediococcus pentosaceus KTU05-8, KTU05-9 and KTU05-10 was tested on naturally contaminated wheat seeds. LAB influence on fungal growth on kernels, seedling diseases and seed germination was examined by laboratory and field experiments. KTU05-10 was selected and later used for seed treatment as solitary strain and in two- or three-component mixtures with KTU05-7 and KTU05-6. The occurrence of Fusarium spp. on wheat kernels in agar plate assays was decreased by seed treatment with all LAB cultures, and the efficacy of each strain depended on incubation temperature. Inoculation of wheat kernels with strains of solitary KTU05-10 and in mixtures with KTU05-7 and KTU05-6 significantly reduced the incidence of Fusarium spp., Bipolaris sorokiniana and Alternaria spp. LAB influence on seed germination and seedling diseases was observed in laboratory and field experiments, but in most cases, this influence was insignificant.  相似文献   

15.
Six isolates of Trichoderma were screened for antagonism to Armillaria in tea stem sections buried in the soil. The inability of Armillaria to invade Trichoderma-colonized stem sections and the reduction of its viability in the plant materials following invasion of these by Trichoderma were used as indicators of antagonism. Four isolates of the species Trichoderma harzianum significantly (P<0.001) reduced the incidence of the pathogen in the plant materials. Isolate T4 completely eliminated the pathogen from plant materials in sterile soil and also antagonized two different isolates of the pathogen in nonsterile soil. Application of this T. harzianum isolate to the soil as a wheat bran culture significantly (P<0.001) reduced viability of Armillaria in woody blocks of inoculum. Soil amendment with coffee pulp also reduced the inoculum viability but did not affect the incidence of Trichoderma in the blocks of inoculum. We conclude that the direct application of wheat bran-formulated T. harzianum into soil surrounding woody Armillaria inoculum sources can suppress the pathogen. Further, no organic amendment is needed to enhance development of the antagonist in the soil as a pre-requisite to suppressing the pathogen.  相似文献   

16.
A study was conducted in Mississippi from 1995 to 1997 comparing soil rhizosphere fungi isolated from Pioneer 3167 hybrid maize (Zea mays L.) planted on Brooksville silty clay and Memphis silt loam soils. Maize seedlings were collected over four sampling dates from conventional and no-tillage plots. Eleven fungal genera consisting of nineteen species were isolated from these plants; Trichoderma spp. were most frequently isolated, followed by Fusarium spp. The highest disease incidence occurred in tilled plots of the latest planting date on Brooksville silty clay when samples were collected 17 days after planting. Root disease was most severe in 1996 from seedlings planted on the last planting date in tilled plots sampled 17 days after planting. Yields were significantly (P ≤ 0.05) higher on Brooksville silty clay soil than on Memphis silt loam in both 1995 and 1996. Yields were highest from no-tillage plots and from maize planted on the earliest date. There was a significant correlation between incidence of root infection and disease severity. There was no correlation between the incidence of root infection and yield or between disease severity and yield at either location. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Tests of seven rare and endangered native North American Cirsium species and four modern artichoke lines were requested in response to a proposal for introduction of Puccinia carduorum into the United States for biological control of musk thistle (Carduus nutans ssp. leiophyllus). These tests were supplemental to an earlier extensive host-range study that established P. carduorum from musk thistle as host specific, useful for biological control, and suitable for limited field tests in Virginia. Test plants in the current study were evaluated in support of a proposal to use the rust in the western United States, and particularly, in California. None of the test plants in this study had been evaluated in previous assessments and all were either rare, endangered or threatened in California. Tests were conducted in both field and greenhouse settings. Field tests were run for two seasons, and test plants were inoculated by natural spread of the pathogen from source plants inside rings of test plants. Greenhouse tests involved direct inoculation under optimal conditions of dew and temperature (18–20 °C, 16 h) for infection. None of the seven Cirsium species or subspecies tested became infected by P. carduorum, either in field or greenhouse tests, compared to infection of 98% of the individual musk thistle plants (n = 102) from all the studies. Modern artichoke cultivars were tested only by direct inoculation under optimal greenhouse conditions. All artichoke plants (n = 115) either were immune (no macroscopic symptoms, n = 69) or at most, resistant (n = 46); pustules on all but two of the resistant plants were very small (0.30 mm diam). Despite infections on artichokes, P. carduorum could not be maintained on artichokes under optimal greenhouse conditions. These results confirm earlier findings from host-range tests and risk assessments of P. carduorum. This information suggests that rare, threatened, or endangered Cirsium spp. and modern artichoke cultivars are not likely to be adversely affected by the use of P. carduorum for biological control of musk thistle. These data have been reviewed by grower groups and regulatory agencies in a proposal for permission to use the rust for musk thistle control throughout the United States.  相似文献   

18.
The extent of soil microbial diversity in agricultural soils is critical to the maintenance of soil health and quality. The aim of this study was to investigate the influence of land use intensification on soil microbial diversity and thus the level of soil suppressiveness of cucumber Fusarium wilt. We examined three typical microbial populations, Bacillus spp., Pseudomonas spp. and Fuasarium oxysporum, and bacterial functional diversity in soils from three different land use types in China’s Yangtze River Delta, and related those to suppressiveness of cucumber Fusarium wilt. The land use types were a traditional rice wheat (or rape) rotation land, an open field vegetable land, and a polytunnel greenhouse vegetable land that had been transformed from the above two land use types since 1995. Results generated from the field soils showed similar counts for Bacillus spp. (log 5.87–6.01 CFU g−1 dw soil) among the three soils of different land use types, significantly lower counts for Pseudomonas spp. (log 5.44 CFU g−1 dw soil) in the polytunnel greenhouse vegetable land whilst significantly lower counts for Fusarium oxysporum (log 3.21 CFU g−1 dw soil) in the traditional rice wheat (or rape) rotation land. A significant lower dehydrogenase activity (33.56 mg TPF kg−1 dw day−1) was observed in the polytunnel greenhouse vegetable land. Community level physiological profiles (CLPP) of the bacterial communities in soils showed that the average well color development (AWCD) and three functional diversity indices of Shannon index (H′), Simpson index (D) and McIntosh index (U) at 96 h incubation in BIOLOG Eco Micro plates were significantly lower in the polytunnel greenhouse vegetable land than in both the traditional rice wheat (or rape) rotation land and the open field vegetable land. A further greenhouse experiment with the air-dried and sieved soils displayed significantly lower plant growth parameters of 10-old cucumber seedlings as well as significantly lower biomass and total fresh fruit yield at the end of harvesting at day 70 in the polytunnel greenhouse vegetable soil sources. The percentages of Fusarium wilt plant death were greatly increased in the polytunnel greenhouse vegetable plants, irrespective of being inoculated with or without Fusarium oxysporum f. sp. cucumerinum. Our results could provide a better understanding of the effects of land use intensification on soil microbial population and functional diversity as well as the level of soil suppressiveness of cucumber Fusarium wilt.  相似文献   

19.
Summary The antagonistic effect of six Pleurotus spp. strains was studied in confrontation with three strains of Trichoderma spp. Pleurotus strains were cultivated on sterile coffee pulp, with and without a Trichoderma inoculant. Laccase, Mn peroxidase and endoglucanase activities were determined during incubation. Laccase production was also studied by PAGE analysis to detect enzymatic isoforms. Results show that the presence of Trichoderma induced a significant increase in oxidase production by the Pleurotus strains. Nevertheless, Trichoderma was not observed to induce laccase isoforms.  相似文献   

20.
In order to study the species composition of endophytes from wheat healthy plants in Buenos Aires Province (Argentina) and to determine their infection frequencies from leaves, stems, glumes and grains, wheat plants were collected from five cultivars at five growth stages from crop emergence to harvest. A total of 1,750 plant segments (leaves, stems, glumes and grains) were processed from the five wheat cultivars at five growth stages, and 722 isolates of endophytic fungi recovered were identified as 30 fungal genera. Alternaria alternata, Cladosporium herbarum, Epicoccum nigrum, Cryptococcus sp., Rhodotorula rubra, Penicillium sp. and Fusarium graminearum were the fungi that showed the highest colonization frequency (CF%) in all the tissues and organs analysed. The number of taxa isolated was greater in the leaves than those in the other organs analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号