首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our objective is to define differences in circulating lipoprotein subclasses between intensive versus conventional management of type 1 diabetes during the randomization phase of the Diabetes Control and Complications Trial (DCCT). NMR-determined lipoprotein subclass profiles (NMR-LSPs), which estimate molar subclass concentrations and mean particle diameters, were determined in 1,294 DCCT subjects after a median of 5 years (interquartile range: 4–6 years) of randomization to intensive or conventional diabetes management. In cross-sectional analyses, we compared standard lipids and NMR-LSPs between treatment groups. Standard total, LDL, and HDL cholesterol levels were similar between randomization groups, while triglyceride levels were lower in the intensively treated group. NMR-LSPs showed that intensive therapy was associated with larger LDL diameter (20.7 vs. 20.6 nm, P = 0.01) and lower levels of small LDL (median: 465 vs. 552 nmol/l, P = 0.007), total IDL/LDL (mean: 1,000 vs. 1,053 nmol/l, P = 0.01), and small HDL (mean: 17.3 vs. 18.6 μmol/l, P < 0.0001), the latter accounting for reduced total HDL (mean: 33.8 vs. 34.8 μmol/l, P = 0.01). In conclusion, intensive diabetes therapy was associated with potentially favorable changes in LDL and HDL subclasses in sera. Further research will determine whether these changes contribute to the beneficial effects of intensive diabetes management on vascular complications.  相似文献   

2.
Platelet-activating factor acetylhydrolase (PAF-AH) is transported by lipoproteins in plasma and is thought to possess both anti-inflammatory and anti-oxidative activity. It has been reported that PAF-AH is recovered primarily in small, dense LDL and HDL following ultracentrifugal separation of lipoproteins. In the present studies, we aimed to further define the distribution of PAF-AH among lipoprotein fractions and subfractions, and to determine whether these distributions are affected by the lipoprotein isolation strategy (FPLC versus sequential ultracentrifugation) and LDL particle distribution profile. When lipoproteins were isolated by FPLC, the bulk (~85%) of plasma PAF-AH activity was recovered within LDL-containing fractions, whereas with ultracentrifugation, there was a redistribution to HDL (which contained ~18% of the activity) and the d>1.21 g/ml fraction (which contained ~32%). Notably, re-ultracentrifugation of isolated LDL did not result in any further movement of PAF-AH to higher densities, suggesting the presence of dissociable and nondissociable forms of the enzyme on LDL. Differences were noted in the distribution of PAF-AH activity among LDL subfractions from subjects exhibiting the pattern A (primarily large, buoyant LDL) versus pattern B (primarily small, dense LDL) phenotype. In the latter group, there was a relative depletion of PAF-AH activity in subfractions in the intermediate to dense range (d=1.039–1.047 g/ml) with a corresponding increase in enzyme activity recovered within the d>1.21 g/ml ultracentrifugal fraction. Thus, there appears to be a greater proportion of the dissociable form of PAF-AH in pattern B subjects. In both populations, most of the nondissociable activity was recovered in a minor small, dense LDL subfraction. Based on conjugated dienes as a measure of lipid peroxidation, variations in PAF-AH activity appeared to contribute to variations in oxidative behavior among ultracentrifugally isolated LDL subfractions. The physiologic relevance of PAF-AH dissociability and the minor PAF-AH-enriched oxidation-resistant LDL subpopulation remains to be determined.  相似文献   

3.
Plasma activity of the platelet-activating factor acetylhydrolase (PAF-AH) plays an important role in inflammation and atherosclerotic process in chronic diseases. We aimed to evaluate the levels of PAF-AH activity and their association with the metabolic profile and chronic complications in patients with type 1 diabetes. The study included 118 outpatients (54 males) aged 27.1+/-11.3 years with disease duration of 12.3+/-8.5 years with (n=38) or without (n=80) diabetes complications and 96 control subjects (48 males) matched for age, gender, body mass index and smoking habits. The serum levels of PAF-AH activity were higher in patients either with or without chronic complications (16+/-5.3 and 14+/-5.4 nmol/(min mL), respectively) than in controls (13+/-5.1 nmol/(min mL), P=0.02). In the total population, PAF-AH activity was correlated with age, HDL-cholesterol, total cholesterol and LDL-cholesterol. In patients, PAF-AH activity was correlated with age, HbA1c, uric acid, HDL-cholesterol, cholesterol, LDL-cholesterol, cholesterol/HDL-cholesterol ratio and the LDL-cholesterol/HDL-cholesterol ratio. It is concluded that PAF-AH plasma activity could be a novel candidate for low-grade inflammatory marker in patients with type 1 diabetes.  相似文献   

4.
We reported impaired endothelium-derived relaxation factor/nitric oxide (EDRF/NO) responses and constitutive nitric oxide synthase (cNOS) activity in subcutaneous vessels dissected from patients with essential hypertension (n = 9) compared with normal controls (n = 10). We now test the hypothesis that the patients in this study have increased circulating levels of the cNOS inhibitor, asymmetric dimethylarginine (ADMA), or the lipid peroxidation product of linoleic acid, 13-hydroxyoctadecadienoic acid (HODE), which is a marker of reactive oxygen species. Patients had significantly (P < 0.001) elevated (means +/- SD) plasma levels of ADMA (P(ADMA), 766 +/- 217 vs. 393 +/- 57 nmol/l) and symmetric dimethylarginine (P(SDMA): 644 +/- 140 vs. 399 +/- 70 nmol/l) but similar levels of L-arginine accompanied by significantly (P < 0.015) increased rates of renal ADMA excretion (21 +/- 9 vs. 14 +/- 5 nmol/mumol creatinine) and decreased rates of renal ADMA clearance (18 +/- 3 vs. 28 +/- 5 ml/min). They had significantly increased plasma levels of HODE (P(HODE): 309 +/- 30 vs. 226 +/- 24 nmol/l) and renal HODE excretion (433 +/- 93 vs. 299 +/- 67 nmol/micromol creatinine). For the combined group of normal and hypertensive subjects, the individual values for plasma levels of ADMA and HODE were both significantly (P < 0.001) and inversely correlated with microvascular EDRF/NO and positively correlated with mean blood pressure. In conclusion, elevated levels of ADMA and oxidative stress in a group of hypertensive patients could contribute to the associated microvascular endothelial dysfunction and elevated blood pressure.  相似文献   

5.
Platelet-activating factor (PAF) is a proinflammatory mediator that plays a central role in acute lung injury (ALI). PAF- acetylhydrolases (PAF-AHs) terminate PAF's signals and regulate inflammation. In this study, we describe the kinetics of plasma and bronchoalveolar lavage (BAL) PAF-AH in the early phase of ALI. Six pigs with oleic acid induced ALI and two healthy controls were studied. Plasma and BAL samples were collected every 2h and immunohistochemical analysis of PAF-AH was performed in lung tissues. PAF-AH activity in BAL was increased at the end of the experiment (BAL PAF-AH Time 0=0.001+/-0.001 nmol/ml/min/g vs Time 6=0.031+/-0.018 nmol/ml/min/g, p=0.04) while plasma activity was not altered. We observed increased PAF-AH staining of macrophages and epithelial cells in the lungs of animals with ALI but not in healthy controls. Our data suggest that increases in PAF-AH levels are, in part, a result of alveolar production. PAF-AH may represent a modulatory strategy to counteract the excessive pro-inflammatory effects of PAF and PAF-like lipids in lung inflammation.  相似文献   

6.
The oxidation of low-density lipoprotein (LDL) induces immunogenic epitopes, many of which are due to oxidatively modified phospholipids (oxPL). Lysophosphatidylcholine (lyso-PC) which is generated during LDL oxidation through the hydrolysis of oxPL by LDL-associated PAF-acetylhydrolase (PAF-AH) is also immunogenic. We investigated whether the LDL-associated PAF-AH and the extent of LDL oxidation influence the autoantibody titers against oxidized LDL (oxLDL) in patients with stable angina as well as in apparently healthy volunteers. Three types of copper-oxidized LDL, were prepared at the end of the lag, propagation or decomposition phase (oxLDL(L), oxLDL(P) and oxLDL(D), respectively). Similar types of oxidized LDL were prepared after previous inactivation of endogenous PAF-AH [oxLDL(-)]. All these types of oxLDL as well as malondialdehyde-modified LDL (MDA-LDL) were used as antigens. Antibody titers against the above antigens were measured with an ELISA method in the serum of 65 patients with stable angina and 47 apparently healthy volunteers. Both groups exhibited higher autoantibody titers against each type of oxLDL(-) compared to the respective type of oxLDL (P<0.00001). In both groups autoantibody titers were higher when the oxLDL(P) and oxLDL(D) or oxLDL(-)(P) and oxLDL(-)(D) were used as antigens compared to oxLDL(L) (P<0.04) or to oxLDL(-)(L), respectively (P<0.0001 for all comparisons). Patients had significantly higher titers against all types of oxLDL (enriched in lyso-PC) and oxLDL(-) (enriched in intact oxPL) compared to controls. Autoantibody titers against MDA-LDL did not differ between patients and controls. Multivariate logistic regression analysis showed that among the autoantibody titers measured only those towards oxLDL(P) are associated with a significantly higher risk for coronary artery disease. LDL-associated PAF-AH activity may play an important role in decreasing the overall immunogenicity of oxLDL, whereas the extent of LDL oxidation seems to modulate the epitopes formed on oxLDL. Lyso-PC, a major component of oxLDL(P), could be mainly responsible for the elevated autoantibody titers against oxLDL in patients with stable angina.  相似文献   

7.
Paraoxonase activity is reduced by a pro-atherosclerotic diet in rabbits   总被引:3,自引:0,他引:3  
Serum paraoxonase (PON1) is believed to protect against the development of atherosclerosis because of its ability to retard the oxidation of low-density lipoprotein (LDL) by hydrolysing LDL-associated phospholipid and cholesteryl-ester hydroperoxides. We have examined the relationship between PON1 and atherosclerosis development in transgenic rabbits overexpressing human apolipoprotein (apo) A-I and nontransgenic littermates fed a pro-atherogenic diet. PON1 activity was higher in transgenic (4006.1 +/- 716.7 nmol/min/ml) compared to control (3078.5 +/- 623.3 nmol/min/ml) rabbits (P < 0.01) while high-density lipoprotein (HDL) cholesterol was 1.84 +/- 0.54 mmol/L in transgenic rabbits and 0.57 +/- 0.21 mmol/L in control rabbits (P = 0.0001). After feeding rabbits a high-cholesterol diet for 14 weeks HDL-cholesterol fell by 70% in both transgenic and control rabbits (P < 0.001 compared to week 0) PON1 activity fell by 50% in both groups of rabbits (P < 0. 01 compared to week 0). The amount of thoracic aortic surface area covered by lesions was 29 +/- 16% in the control group and 26 +/- 15% in the transgenic group (P = NS). A pro-atherosclerotic diet reduces PON1 which may exaggerate the effects of the diet on the development of atherosclerosis.  相似文献   

8.
Platelet-activating factor acetylhydrolase (PAF-AH) is a phospholipase A2 associated with lipoproteins that hydrolyzes platelet-activating factor (PAF) and oxidized phospholipids. We have developed an ELISA for PAF-AH that is more sensitive than previous methods, and have quantified HDL-associated and non-HDL-associated PAF-AH in healthy, hyperlipidemic, and diabetic subjects. In healthy subjects, plasma total PAF-AH concentration was positively correlated with PAF-AH activity and with plasma total cholesterol, triacylglycerol, LDL cholesterol and apolipoprotein B (apoB) concentrations (all P < 0.01). HDL-associated PAF-AH concentration was correlated positively with plasma apoA-I and HDL cholesterol. Subjects with hyperlipidemia (n = 73) and diabetes mellitus (n = 87) had higher HDL-associated PAF-AH concentrations than did controls (P < 0.01). Non-HDL-associated PAF-AH concentration was lower in diabetic subjects than in controls (P < 0.01). Both hyperlipidemic and diabetic subjects had lower ratios of PAF-AH to apoB (P < 0.01) and higher ratios of PAF-AH to apoA-I (P < 0.01) than did controls. Our results show that the distribution of PAF-AH mass between HDLs and LDLs is determined partly by the concentrations of the lipoproteins and partly by the mass of enzyme per lipoprotein particle, which is disturbed in hyperlipidemia and diabetes mellitus.  相似文献   

9.
Postprandial lipemia after an oral fat challenge was studied in middle-aged men with visceral obesity. The two groups had similar plasma cholesterol levels, but obese subjects had higher levels of plasma triglyceride and reduced amounts of high-density cholesterol. Fasting plasma insulin was fourfold greater in obese subjects because of concomitant insulin resistance, with a calculated HOMA score of 3.1 +/- 0.6 vs. 0.8 +/- 0.2, respectively. Plasma apolipoprotein B(48) (apoB(48)) and retinyl palmitate (RP) after an oral fat challenge were used to monitor chylomicron metabolism. Compared with lean subjects, the fasting concentration of apoB(48) was more than twofold greater in obese individuals, suggestive of an accumulation of posthydrolyzed particles. After the oral lipid load, the incremental areas under the apoB(48) and RP curves (IAUC) were both significantly greater in obese subjects (apoB(48): 97 +/- 17 vs. 44 +/- 12 microg.ml(-1). h; RP: 3,120 +/- 511 vs. 1,308 +/- 177 U. ml(-1). h, respectively). A delay in the conversion of chylomicrons to remnants probably contributed to postprandial dyslipidemia in viscerally obese subjects. The triglyceride IAUC was 68% greater in obese subjects (4.7 +/- 0.6 vs. 2.8 +/- 0.8 mM. h, P < 0.06). Moreover, peak postprandial triglyceride was delayed by approximately 2 h in obese subjects. The reduction in triglyceride lipolysis in vivo did not appear to reflect changes in hydrolytic enzyme activities. Postheparin plasma lipase rates were found to be similar for lean and obese subjects. In this study, low-density lipoprotein (LDL) receptor expression on monunuclear cells was used as a surrogate marker of hepatic activity. We found that, in obese subjects, the binding of LDL was reduced by one-half compared with lean controls (70.9 +/- 15.07 vs. 38.9 +/- 4.6 ng LDL bound/microg cell protein, P = 0.02). Because the LDL receptor is involved in the removal of proatherogenic chylomicron remnants, we suggest that the hepatic clearance of these particles might be compromised in insulin-resistant obese subjects. Premature and accelerated atherogenesis in viscerally obese, insulin-resistant subjects may in part reflect delayed clearance of postprandial lipoprotein remnants.  相似文献   

10.
The objective of this study was to evaluate the effects of exercise training on plasma removal of a cholesterol-rich nanoemulsion (LDE) that mimics low-density lipoprotein (LDL) lipid structure and binds to LDL receptors. LDE-derived cholesteryl ester plasma kinetics was studied in 24 exercise-trained and 20 sedentary male subjects. LDE labeled with [(14)C]cholesteryl ester was injected intravenously, and plasma samples were collected over a 24-h period to determine radioisotope decay curves. LDL cholesterol concentration was similar in both groups. Fractional clearance rate (FCR) of the nanoemulsion label was greater in the exercise-trained group compared with the sedentary group (0.138 +/- 0.152 and 0.0261 +/- 0.023 h(-1), respectively). A positive correlation was found (r = 0.60, P < 0.01) between FCR and peak O(2) consumption in trained subjects. Circulating oxidized LDL levels were lower in trained subjects compared with the sedentary group (9.0 +/- 2.0 and 16.0 +/- 3.0 mU/l). LDE was also injected into control and LDL receptor gene knockout mice submitted and not submitted to training. Muscle LDE uptake percentage was increased in the trained mice compared with the untrained mice (1.1 +/- 0.8 and 0.2 +/- 0.1, respectively, P < 0.0001) in the control group but not in the knockout animals, indicating that the LDL receptor is involved in the increased uptake elicited by exercise. These results show that exercise training increases LDE plasma removal, which in turn suggests that it also increases LDL receptors or LDL receptor activity.  相似文献   

11.
ApoC-I has several different lipid-regulating functions including, inhibition of receptor-mediated uptake of plasma triglyceride-rich lipoproteins, inhibition of cholesteryl ester transfer activity, and mediation of tissue fatty acid uptake. Since little is known about the rate of production and catabolism of plasma apoC-I in humans, the present study was undertaken to determine the plasma kinetics of VLDL and HDL apoC-I using a primed constant (12 h) intravenous infusion of deuterium-labeled leucine. Data were obtained for 14 subjects: normolipidemics (NL, n = 4), hypertriglyceridemics (HTG, n = 4) and combined hyperlipidemics (CHL, n = 6). Plasma VLDL triglyceride (TG) levels were 0.59 +/- 0.03, 4.32 +/- 0.77 (P < 0.01 vs. NL), and 2.20 +/- 0.39 mmol/l (P < 0.01 vs. NL), and plasma LDL cholesterol (LDL-C) levels were 2.34 +/- 0.22, 2.48 +/- 0.26, and 5.35 +/- 0.48 mmol/l (P < 0.01 vs. NL), respectively. HTG and CHL had significantly (P < 0.05) increased levels of total plasma apoC-I (12.5 +/- 1.2 and 12.4 +/- 1.3 mg/dl, respectively) versus NL (7.9 +/- 0.6 mg/dl), due to significantly (P < 0.01) elevated levels of VLDL apoC-I (5.8 +/- 0.8 and 4.5 +/- 0.8 vs. 0.3 +/- 0.1 mg/dl). HTG and CHL also had increased rates of VLDL apoC-I transport (i.e., production) versus NL: 2.29 +/- 0.34 and 3.04 +/- 0.53 versus 0.24 +/- 0.11 mg/kg.day (P < 0.01), with no significant change in VLDL apoC-I residence times (RT): 1.16 +/- 0.12 versus 0.69 +/- 0.06 versus 0.74 +/- 0.17. Although HDL apoC-I concentrations were not significantly lower in HTG and CHL versus NL, HDL apoC-I rates of transport were inversely related to plasma and VLDL-TG levels (r = -0.63 and -0.62, respectively, P < 0.05). Our results demonstrate that increased levels of plasma and VLDL apoC-I in hypertriglyceridemic subjects (with or without elevated LDL-C levels) are associated with increased levels of plasma VLDL apoC-I production.  相似文献   

12.
Mechanisms responsible for hypertriglyceridemia in Tangier disease were elucidated by an analysis of the plasma post-heparin lipolytic activities and the structural and metabolic properties of very low (VLDL) and low (LDL) density lipoproteins. The levels of lipoprotein lipase activity in six Tangier patients were significantly lower (P less than 0.001) than in 40 control subjects (8.1 +/- 3.3 (+/- S.D.) vs. 14.1 +/- 3.7 units/ml). In contrast, the levels of hepatic triacylglycerol lipase were higher (P less than 0.01) than in normal controls (14.4 +/- 3.9 vs. 9.3 +/- 4.0 units/ml). Because kinetic parameters such as Km or Vmax cannot be obtained with naturally occurring triacylglycerol-rich lipoproteins, the pseudo-first-order rate constant (k1) of triacylglycerol hydrolysis was used to assess the effectiveness of triacylglycerol-rich lipoproteins as substrates for lipoprotein lipase. The k1 values for Tangier VLDL (k1 = 0.017 +/- 0.002 min-1) were significantly lower (P less than 0.001) than the k1 values (0.036 +/- 0.008 min-1) for control VLDL. Both the Tangier and control LDL2 are similar in their resistance to the action of lipoprotein lipase, as shown by their low k1 values (0.002 +/- 0.001 and 0.001 +/- 0.001 min-1, respectively). The major compositional difference between the lipoproteins of Tangier disease and normal subjects was a significant increase in the percent content of apolipoprotein A-II in all lipoprotein particles with d less than 1.063 g/ml, with the greatest increase occurring in VLDL and the lowest in LDL2. These results were interpreted as indicating that, in Tangier disease, there is a lower reactivity of VLDL with lipoprotein lipase which may in part be attributed to the abnormal apolipoprotein composition. This finding, in conjunction with the reduced levels of lipoprotein lipase activity, may explain the hypertriglyceridemia in Tangier disease.  相似文献   

13.
Aim of the present study was to evaluate whether the inhibitory effect of somatostatin on pancreatic B-cell secretion is normal in nondiabetic obese subjects. For this purpose plasma C-peptide concentrations were measured in 10 nondiabetic obese subjects and 10 nonobese healthy controls during a 4-h hyperglycemic (11 mmol/l) glucose clamp. Somatostatin was infused (2.5 nmol/min) during the third hour of the study period in order to inhibit glucose-stimulated B-cell secretion. Fasting C-peptide averaged 0.46 +/- 0.04 nmol/l (mean +/- SEM) in nonobese subjects, and 0.85 +/- 0.08 nmol/l in obese patients (P less than 0.001). In the period 0-120 min the area under the plasma C-peptide curve was significantly higher in obese than in nonobese subjects (292 +/- 23 vs. 230 +/- 17 nmol/l x 120 min, P less than 0.05), however, in the last 20 min of the glucose infusion period without somatostatin (100-120 min) plasma C-peptide was not significantly different in the two groups (2.94 +/- 0.32 nmol/l in nonobese subjects and 3.21 +/- 0.19 nmol/l in obese patients, p = NS). During somatostatin infusion while maintaining hyperglycemia, plasma C-peptide decreased in both groups, and in the period 160-180 min it averaged 0.89 +/- 0.12 nmol/l in control subjects and 0.93 +/- 0.08 nmol/l in obese patients (P = NS), with a percent reduction similar in the two groups (70 +/- 2% in controls and 71 +/- 2% in obese patients). After discontinuing somatostatin infusion, plasma C-peptide increased to concentrations which were higher in obese than in nonobese subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To evaluate factors regulating the concentrations of plasma low density lipoproteins (LDL), apolipoprotein B metabolism was studied in nine Pima Indians (25 +/- 2 yr, 191 +/- 20% ideal wt) with low LDL cholesterol (77 +/- 7 mg/dl) and apoB (60 +/- 4 mg/dl) and in eight age- and weight-matched Caucasians with similar very low density lipoprotein (VLDL) concentrations, but higher LDL (cholesterol = 104 +/- 18; apoB = 82 +/- 10; P less than 0.05). Subjects received autologous 131I-labeled VLDL and 125I-labeled LDL, and specific activities of VLDL-apoB, intermediate density lipoprotein (IDL)-apoB, and LDL-apoB were analyzed using a multicompartmental model. Synthesis of LDL-apoB was similar (1224 +/- 87 mg/d in Pimas vs 1218 +/- 118 mg/d in Caucasians) but in Pimas the fractional catabolic rate (FCR) for LDL-apoB was higher (0.48 +/- 0.02 vs 0.39 +/- 0.04 d-1, P less than 0.05). In the Pimas, a much higher proportion of VLDL-apoB was catabolized without conversion to LDL (47 +/- 3 vs 30 +/- 5%, P less than 0.01). When all subjects were considered together, LDL-apoB concentrations were negatively correlated with both FCR for LDL-apoB (r = -0.79, P less than 0.0001) and the non-LDL pathway (r = -0.43, P less than 0.05). Also, the direct removal (non-LDL) path was correlated with VLDL-apoB production (r = 0.49, P = 0.03), and the direct removal pathway and FCR for LDL-apoB were correlated (r = 0.49, P = 0.03). In conclusion, plasma LDL appear to be regulated by both the catabolism of LDL and the extent of metabolism of VLDL without conversion to LDL; both of these processes may be mediated by the apoB/E receptor, and appear to increase in response to increasing VLDL production.  相似文献   

15.
We recently reported that oxidative stress is involved in the pathogenesis of coronary spasm. We hypothesized that oxidative-stress-related genetic factors and certain polymorphisms in the paraoxonase gene (PON1) and platelet-activating factor acetylhydrolase (PAF-AH) might influence the pathogenesis of coronary spasm. We therefore examined the possible association between the PON1 Q192R or PAF-AH V279F polymorphisms and coronary spasm in 214 patients with coronary spasm and 212 control subjects. Genotypes were determined by polymerase chain reaction/restriction fragment length polymorphism analysis. The incidence of the PON1-192R allele was significantly higher in the coronary spasm group than in the control group (65% vs 53%; P=0.0005). The PAF-AH-279F allele was not associated with coronary spasm (15% vs. 16%; P=0.8781). Multiple logistic regression analysis with forward stepwise selection involving the PON1-192R allele and the environmental risk factors revealed that the most predictive independent risk factor for coronary spasm was the PON1-192R allele (significance=0.0016, OR=2.52), followed by cigarette smoking (significance=0.0007, OR=2.01). We also measured plasma levels of TBARS (thiobarbituric acid-reactive substances) as a marker of oxidative stress. TBARS levels were higher in R/R types than in Q/Q types (2.115+/-0.086 nmol/ml [ n=25] vs 1.676+/-0.102 nmol/ml [ n=11], P<0.01). Thus, there is a significant association between the PON1-192R allele and coronary spasm; the PON1-192R allele may play an important role in the genesis of coronary spasm, probably by attenuating the suppression of oxidative stress.  相似文献   

16.
The purpose of this study was to investigate, with aging, the activity of two enzymes associated to HDL and responsible for its anti-atherogenic activity; paraoxonase (PON1) and platelet-activating factor acetylhydrolase (PAF-AH). Ninety-five subjects aged between 26 and 77 years were recruited for the study. The prevalence of phenotype A, AB, and B in our subjects group was 69.47,21.05 and 9.47% respectively. Plasma as well as HDL paraoxonase activity decreased significantly with aging (r =-0.218, P < 0.039) and (r = -0.280, P < 0.006) respectively. PAF-AH activity was unchanged with aging however, we noted a negative correlation between PAF-AH and PON1 activity in HDL (r = -0.243, P < 0.02) and in LDL vs HDL (r =-0.462, P < 0.001).  相似文献   

17.
Statins decrease triglycerides (TGs) in addition to decreasing low density lipoprotein-cholesterol. Although the mechanism for the latter effect is well understood, it is still unclear how TG decrease is achieved with statin therapy. Because hypertriglyceridemia is common in obese patients with type 2 diabetes mellitus, we studied triglyceride-rich lipoprotein triglyceride (TRL-TG) turnover in 12 such subjects using stable isotopically labeled glycerol. The diabetic subjects were studied after 12 weeks of placebo and after a similar course of therapy with simvastatin (80 mg daily) in a single-blind design. The results were compared with those from six nonobese nondiabetic control subjects. Simvastatin therapy reduced serum TGs by 35% in the diabetic subjects. Compared with the control subjects, TRL-TG secretion was almost 2-fold higher in the diabetic subjects (45.4 +/- 4.9 vs. 24.4 +/- 1.9 micromol/min; P < 0.002) and was unaffected by simvastatin therapy. However, TRL-TG clearance was significantly increased in the diabetic subjects during simvastatin treatment compared with placebo (0.25 +/- 0.03 vs. 0.16 +/- 0.02 pools/h; P < 0.002). This change was accompanied by a 49% increase in preheparin plasma lipase activity (P < 0.03) and a 21% increase in postheparin LPL activity (P < 0.01). Together, these findings provide strong evidence that the effect of statins on serum TGs is related to an increase in LPL activity, resulting in accelerated delipidation of TRL particles. The effect of high-dose simvastatin on triglyceride-rich lipoprotein metabolism in patients with type 2 diabetes mellitus.  相似文献   

18.
The purpose of this study was to determine the relationship between insulin resistance and apoB100 metabolism in African American males. Fifteen subjects, 33 +/- 7.6 years old, were divided into two groups, insulin-resistant (IR) or insulin-sensitive (IS), based on the sum of the plasma insulin concentrations during an oral glucose tolerance test. The IR group (n = 8) differed significantly from the IS group (n = 7) with respect to body mass index (BMI) (30.1 vs 23.1 kg/m2; P = 0.0003), fasting triglycerides, (118 vs 54 mg/dl, P = 0. 013), and total plasma apolipoprotein B100 (80 vs 59 mg/dl, P = 0.014). Significantly elevated apoB100 levels in the IR group were seen in very low density lipoprotein (VLDL) (5.1 vs 3.4 mg/dl, P = 0.045) and intermediate density lipoprotein (IDL) (18 vs 12 mg/dl, P = 0.017) but not in low density lipoprotein (LDL) (57 vs 46 mg/dl, P = 0.19). Total cholesterol, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein A-I, and blood pressure were not significantly different between the two groups. There was a high correlation between the sum of insulins during the oral glucose tolerance test and the BMI (rho = 0.88, P = 0.0001). In five IR and five IS subjects, apoB100 kinetics were determined in the fasting state using a bolus dose of deuteroleucine and multicompartmental modeling. IR subjects had significantly lower fractional catabolic rates (FCR) in the larger VLDL1 (-70%), the smaller VLDL2 (-71%), and the IDL (-53%) fractions. No significant differences in production rates were observed for any lipoprotein class. There was a significant correlation between the sum of insulins and the FCR of the apoB100 of VLDL1 (rho = -0.65, P = 0.05) and of IDL (rho = -0.85, P = 0.004). The correlation coefficient of the sum of insulins and the FCR of VLDL2 was -0.61 with P = 0.067. We conclude that in this population of African American males, IR is correlated with a decreased FCR of apoB100 in VLDL and IDL and elevated plasma levels of apoB and triglycerides (TG). These changes might be explained by decreased clearance of the TG-rich lipoproteins. We postulate that this may reflect decreased lipoprotein and/or hepatic lipase activity related to insulin resistance and its association with obesity.  相似文献   

19.
Optimally effective lipid-lowering agents should not only restore plasma lipids to normal levels but also correct potentially atherogenic alterations in lipoprotein composition and function often present in hyperlipidemic patients. Lovastatin, a competitive inhibitor of cholesterol biosynthesis, clearly lowers plasma cholesterol levels. Its effects on lipoprotein composition and cholesteryl ester transfer (CET), a key step in reverse cholesterol transport, however, are not known. Since abnormalities in CET and lipoprotein composition are present in patients with hypercholesterolemia, we studied these parameters of plasma lipoprotein transport in twelve hypercholesterolemic (HC; Type IIa) subjects (six male, six female) before and 2 months after lovastatin treatment (20 mg qd). Before lovastatin, the free cholesterol (FC)/lecithin (L) ratio in plasma, a new index of cardiovascular risk that reflects lipoprotein surface composition, was abnormally increased (1.18 +/- 0.26 vs controls 0.83 +/- 0.14; P less than 0.001) in very low density lipoproteins (VLDL) and high density lipoprotein-3 (HDL3), and remained so after treatment despite significant declines in whole plasma cholesterol (311.7 +/- 68.2 vs 215.6 +/- 27.2 mg/dl; P less than 0.001), low density lipoprotein (LDL)-cholesterol (206.3 +/- 47.9 vs 146.8 +/- 29.4; P less than 0.001), and apolipoprotein B (149 +/- 30 vs 110 +/- 17; P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Approximately 4% of the Japanese population genetically lack plasma platelet activating factor acetylhydrolase (PAF-AH) and show a higher prevalence of thromboembolic disease, but whether they are susceptible to another PAF-related disease, asthma, remains controversial. To determine the role of plasma PAF-AH in airway physiology, we performed PAF bronchoprovocation tests in 8 plasma PAF-AH-deficient subjects and 16 control subjects. Serial inhalation of PAF (1-1000 microg/ml) concentration-dependently induced acute bronchoconstriction, but there was no significant difference between PAF-AH-deficient and control subjects (11.7 +/- 4.6% vs. 9.6 +/- 2.8% decrease in forced expiratory volume in 1 s). Transient neutropenia after single inhalation of PAF (1000 microg/ml) showed no significant difference between the groups either in its magnitude (72 +/- 11% vs. 65 +/- 9% decrease) or duration (4.1 +/- 1.0 vs. 3.3 +/- 0.8 min). In conclusion, a lack of plasma PAF-AH activity alone does not augment physiological responses to PAF in the airway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号