首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method for analyzing the distribution of constituent disaccharide units within the chain near the linkage region of chondroitin sulfate has been developed. The method consists of (a) chemical modification of the reducing terminal residue in the polysaccharide by a 2-(2,4-dinitrophenylamino)ethylamino (DNP-AEA) group, (b) controlled fragmentation of the DNP-AEA-labeled polysaccharide with chondroitinase AC-I, followed by separation of the digestion products into the DNP-AEA-labeled fragments and unlabeled fragments on octyl-Sepharose CL-4B gel, (c) fractionation of the DNP-AEA-labeled fragments into fractions having different chain-lengths on Sephadex G-100 (superfine), and (d) determination of the disaccharide unit composition of the de-dinitropheylated products (AEA-labeled fragments) by the method combining chondroitinase AC-II treatment with HPLC analysis. A preparation of shark cartilage chondroitin sulfate C, which had been characterized well with regard to molecular species (Mr 48,000; average number of repeating disaccharide units (dpav) 93-94; consisting of chondroitin 6-sulfated 66.8%, 4-sulfated 22.5%, disulfated (D type) 10.3%, and nonsulfated units 0.4%), was analyzed by the above method. On the basis of the data obtained, distribution features of the disaccharide units within the chain near the linkage region of the polysaccharide (dpav 27) were estimated. It was, however, difficult to propose a final primary sequence of the polysaccharide chain, although there was a definite trend towards an enrichment of 4-sulfated and nonsulfated disaccharide residues in the area close to the linkage region (dpav 3-9 or 11). This was apparent together with an enrichment of 6-sulfated and disulfated disaccharide residues in the area distant from the linkage region (dpav 11 or 13-27).  相似文献   

2.
A method for analyzing the distribution of D-glucuronic acid units within the chain and near the linkage region of dermatan sulfate has been developed. The method consists of a chemical modification of the reducing terminal residue in the polysaccharide by reductive amination with excess 1,2-diaminoethane in the presence of sodium cyanoborohydride, desulfative fragmentation of the polysaccharide, labeled with 2-aminoethylamino (AEA) groups, in hot dimethyl sulfoxide containing 10% of water followed by 2,4-dinitrophenylation of the 2-aminoethylamino group, separation of the 2-(2,4-dinitrophenylamino)ethylamino labeled dermatan fragments from nonlabeled fragments on Octyl-Sepharose CL-4B gel, and determination of the uronic acid composition of the labeled fragments having various chain-length. A preparation of pig-skin dermatan sulfate (Mr 21,000, ratio of GlcA to total uronic acid, 93:500) showed an average distribution pattern of D-glucuronic acid residues near the linkage region of one N-acetylchondrosine unit in the disaccharide sequence 1-5(6) linked to the Xyl----Gal----Gal----GlcA residue, a cluster of 6-8 N-acetyldermosine units in the sequence 6(7)-12(13), and four separate N-acetylchondrosine units between the sequence adjacent to the N-acetyldermosine cluster and the sequence 23 or higher.  相似文献   

3.
Chondroitin sulfate (CS) is considered as a possible candidate for the treatment of joint defect. This study is to evaluate the efficacy of intra-articular injection of CS carried by hydrogel in the treatment of chondral defects in adult rabbit models. Inclusion of CS (0–50 μg/ml) in in vitro chondrocyte culture exerts a dose-dependent increase in cell proliferation. To select for optimal carrier for in vivo study, the release kinetic of CS embedded in five types of hydrogel was studied using fluorescence technique and their biocompatibilities in vivo were investigated by injecting the CS-hydrogel into rabbit knees. α-CD-EG 4400 hydrogel was chosen as the carrier based on progressively released CS from the hydrogel, with 80% released by in one week while the remaining 20% was retained for 30 days. In vivo studies showed high biocompatibility of CS-hydrogel. To evaluate the efficacy of CS in the treatment of cartilage injury, chondral defects were created in femoral medial condyle (punch diameter 2.7 mm) or trochlea (punch diameter 3.5 mm) of the rabbits without damaging subchondral bone. CS (100 mg/ml) in 0.5 ml α-CD-EG 4400 hydrogel was then injected into the knee joint. Hydrogel and saline served as controls. On day 50 the chondral defect in the saline group showed no signs of healing and defect treated with hydrogel alone was covered with a thin and slightly irregular layer of fibrous tissue. The CS-hydrogel group showed a thicker layer composed of both hyaline and fibrocartilage. The modulus of elasticity was the highest in the CS-hydrogel group and lowest in the group injected with saline only. Our results suggest that intra-articular delivery of CS by α-CD-EG 4400 improved the biomechanical and histological properties of the repaired cartilage. It may be an effective treatment for cartilage injury. Paper presented at ICRS and OARSI.  相似文献   

4.
Subendothelial retention of lipoproteins by proteoglycans (PGs) is the initiating event in atherosclerosis. The elongation of chondroitin sulfate (CS) chains is associated with increased low-density lipoprotein (LDL) binding and progression of atherosclerosis. Recently, it has been shown that 2 Golgi enzymes, chondroitin 4-O-sulfotransferase-1 (C4ST-1) and chondroitin N-acetylgalactosaminyltransferase-2 (ChGn-2), play a critical role in CS chain elongation. However, the roles of C4ST-1 and ChGn-2 during the progression of atherosclerosis are not known. The aim of this study was to analyze the expression of C4ST-1 and ChGn-2 in atherosclerotic lesions in vivo and determine whether their expression correlated with CS chain elongation.Low-density lipoprotein receptor knockout (LDLr KO) mice were fed a western diet for 2, 4, and 8 weeks to stimulate development of atherosclerosis. The binding of LDL and CS PG in this mouse model was confirmed by chondroitinase ABC (ChABC) digestion and apolipoprotein B (apo B) staining. Gel filtration analysis revealed that the CS chains began to elongate as early as 2 weeks after beginning a western diet and continued as the atherosclerosis progressed. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) showed that the mRNA levels of C4ST-1 and ChGn-2 increased after 8 weeks of this diet. In contrast, the mRNA levels of their homologs, C4ST-2 and ChGn-1, were unchanged. In addition, immunohistochemical analysis demonstrated that the expression of C4ST-1 and ChGn-2 appeared to have similar site-specific patterns and coincided with biglycan expression at the aortic root.Our results suggested that C4ST-1 and ChGn-2 may be involved in the elongation of CS chains in the arterial wall during the progression of atherosclerosis. Therefore, modulating their expression and activity might be a novel therapeutic strategy for atherosclerosis.  相似文献   

5.
Keloid is a fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. The keloid matrix contains excess collagen and glycosaminoglycans (GAGs), but lacks elastic fiber. However, the roles of these matrix components in the pathogenesis of keloid are largely unknown. Here, we show that elastin and DANCE (also known as fibulin-5), a protein required for elastic fiber formation, are not deposited in the extracellular matrix of keloids, due to excess accumulation of chondoitin sulfate (CS), although the expression of elastin and DANCE is not affected. Amount of CS accumulated in the keloid legion was 6.9-fold higher than in normal skin. Fibrillin-1, a scaffold protein for elastic fiber assembly, was abnormally distributed in the keloid matrix. Addition of purified CS to keloid fibroblast culture resulted in abnormal deposition of fibrillin-1, concomitant with significantly decreased accumulation of elastin and DANCE in the extracellular matrix. We propose that CS plays a crucial role in the development of keloid lesions through inhibition of elastic fiber assembly.  相似文献   

6.
The chondroitin sulfate-rich region was cleaved from cartilage proteoglycans of experimental osteoarthritic canine joints to establish whether changes in this region of the molecule contribute to the well-documented increase in the chondroitin sulfate to keratan sulfate ratio in osteoarthritis. Experimental osteoarthritis was induced in eight dogs by severance of the right anterior cruciate ligament, the left joint serving as a control. Proteoglycans were extracted from the femoral cartilage of both joints, isolated as A1 fractions by associative density gradient centrifugation and cleaved with hydroxylamine. The chondroitin sulfate-rich region was isolated by either gel chromatography or dissociative density gradient centrifugation. The chondroitin sulfate-rich region from the proteoglycans of the experimental osteoarthritic joints was slightly larger in hydrodynamic size and had both a higher uronate/protein weight ratio and galactosamine/glucosamine molar ratio than the corresponding control. We conclude that the chondroitin sulfate-rich region of proteoglycans in articular cartilage of experimental osteoarthritic joints is larger and has more chondroitin sulfate than that of proteoglycans of normal cartilage.  相似文献   

7.
Versican is a chondroitin sulfate proteoglycan belonging to the lectican family. Versican has two glycosaminoglycan attachment regions, named the GAGα and GAGβ domains, which are both regulated by alternative splicing and yield four protein isoforms. We have investigated the expression and localization of versican in the developing and adult brain by using anti-versican GAGα and GAGβ antibodies. Western analysis revealed that GAGα-reactive isoform was dominant in the adult brain. Immunohistochemical study demonstrated that GAGα immunoreactivity was detectable from neonatal periods to adulthood, whereas GAGβ immunoreactivity completely disappeared within 3 weeks of birth. In the adult brain, GAGα immunoreactivity was seen in the white matter regions and was also localized in the gray matter including somata and dendrites of cortical and hippocampal pyramidal neurons and cerebellar Purkinje cells. In contrast, GAGα immunoreactivity was not localized on parvalbumin-positive interneurons and cerebellar stellate cells. Furthermore, GAGα immunoreactivity was not co-localized with perineuronal net markers such as Wisteria floribunda agglutinin lectin and phosphacan. Thus, versican was localized on large projection neurons rather than small interneurons. To confirm the binding mechanism of versican to neurons, hyaluronan and chondroitin sulfates were enzymatically removed from brain sections before the immunolabeling of versican. These treatments had no effect on the labeling pattern of versican, suggesting that other versican-interactive molecules are involved in the binding of versican to neurons. This study was supported by a Grant-in-Aid for Scientific Research on Priority Areas “Advanced Brain Science Project” from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.  相似文献   

8.
The structures of chondroitin sulfate A from whale cartilage and chondroitin sulfate C from shark cartilage have been examined with the aid of the chondroitinases AC and C from Flavobacterium heparinum. The analyses of the products formed from the chondroitin sulfates by the action of the chondroitinases have shown that three types of oligosaccharides compose the structure of chondroitin sulfate A, namely, a dodeca-, hexa- and a tetra-saccharide, containing five, two and one 4-sulfated disaccharides per 6-sulfated disaccharide residue, respectively. The polymer contains an average of 3 mol of each oligosaccharide per mol of chondroitin sulfate A. Each mol of chondroitin sulfate C contains an average of 5 mol of 4-sulfated disaccharide units. A tetra-saccharide containing one 4-sulfated disaccharide and one 6-sulfated disaccharide was isolated from this mucopolysaccharide by the action of the chondroitinase C, indicating that the 4-sulfated disaccharides are not linked together in one specific region but spaced in the molecule.  相似文献   

9.
Neuroglycan C (NGC), a brain-specific transmembrane proteoglycan, is thought to bear not only chondroitin sulfate but also N- and O-linked oligosaccharides on its core protein. In this study, we isolated and purified NGC from rat brains at various developmental stages by immunoaffinity column chromatography or by immunoprecipitation, and examined the structural characters of its carbohydrate moiety. The chondroitin sulfate disaccharide composition of NGC at postnatal day 10 was significantly different from those of two secreted chondroitin sulfate proteoglycans, neurocan and phosphacan, purified from the brain at the same developmental stage; higher levels of 4-sulfate unit and E unit, a disulfated disaccharide unit, and a lower level of 6-sulfate unit. The levels of both 6-sulfate and E units decreased with a compensatory increase of 4-sulfate unit with postnatal development of the brain. Lectin-blot analysis of the NGC core glycoprotein prepared by chondroitinase digestion confirmed that NGC actually bore both N- and O-linked carbohydrates, and also revealed that lectin-species reactive with NGC did not always recognize other brain-specific proteoglycans, neurocan and phosphacan, and vice versa, even though they were isolated from the brain at the same stage. The reactivity of NGC with lectins and with the HNK-1 antibody markedly changed as the brain matured. These findings indicate that the structure of the carbohydrate moiety of NGC is developmentally regulated, and differs from those of neurocan and phosphacan. The developmentally-regulated structural change of the carbohydrates on NGC may be partly implicated in the modulation of neuronal cell recognition during brain development. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.

Background

Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions.

Scope of review

Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo.

Major conclusions

Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes.

General significance

Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.  相似文献   

11.

Background

Previously, we identified two missense mutations in the chondroitin N-acetylgalactosaminyltransferase-1 gene in patients with neuropathy. These mutations are associated with a profound decrease in chondroitin N-acetylgalactosaminyltransferase-1 enzyme activity. Here, we describe a patient with neuropathy who is heterozygous for a chondroitin synthase-1 mutation. Chondroitin synthase-1 has two glycosyltransferase activities: it acts as a GlcUA and a GalNAc transferase and is responsible for adding repeated disaccharide units to growing chondroitin sulfate chains.

Methods

Recombinant wild-type chondroitin synthase-1 enzyme and the F362S mutant were expressed. These enzymes and cells expressing them were then characterized.

Results

The mutant chondroitin synthase-1 protein retained approximately 50% of each glycosyltransferase activity relative to the wild-type chondroitin synthase-1 protein. Furthermore, unlike chondroitin polymerase comprised of wild-type chondroitin synthase-1 protein, the non-reducing terminal 4-O-sulfation of GalNAc residues synthesized by chondroitin N-acetylgalactosaminyltransferase-1 did not facilitate the elongation of chondroitin sulfate chains when chondroitin polymerase that consists of the mutant chondroitin synthase-1 protein was used as the enzyme source.

Conclusions

The chondroitin synthase-1 F362S mutation in a patient with neuropathy resulted in a decrease in chondroitin polymerization activity and the mutant protein was defective in regulating the number of chondroitin sulfate chains via chondroitin N-acetylgalactosaminyltransferase-1. Thus, the progression of peripheral neuropathies may result from defects in these regulatory systems.

General significance

The elongation of chondroitin sulfate chains may be tightly regulated by the cooperative expression of chondroitin synthase-1 and chondroitin N-acetylgalactosaminyltransferase-1 in peripheral neurons and peripheral neuropathies may result from synthesis of abnormally truncated chondroitin sulfate chains.  相似文献   

12.
The ion content of compartments within cortical cells of mature roots of the halophyte Suaeda maritima grown at 200 mol·m-3 NaCl has been studied by X-ray microanalysis of freeze-substituted thin sections. Sodium and Cl were found in the vacuoles at about four-times the concentration in the cytoplasm or cell walls, whereas K was more concentrated in the cell walls and cytoplasm than in vacuoles. The vacuolar Na concentration was 12- to 13-times higher than that of K. The Na concentration of cell walls of cortical cells was about 95 mol·m-3 of analysed volume. The cytoplasmic K concentration within the mature cortical cells was estimated to be 55 mol·m-3 of analysed volume.  相似文献   

13.
14.
Cathepsin K is the major collagenolytic enzyme produced by bone-resorbing osteoclasts. We showed earlier that the unique triple-helical collagen-degrading activity of cathepsin K depends on the formation of complexes with bone-or cartilage-resident glycosaminoglycans, such as chondroitin 4-sulfate (C4-S). Here, we describe the crystal structure of a 1:n complex of cathepsin K:C4-S inhibited by E64 at a resolution of 1.8 Å. The overall structure reveals an unusual “beads-on-a-string”-like organization. Multiple cathepsin K molecules bind specifically to a single cosine curve-shaped strand of C4-S with each cathepsin K molecule interacting with three disaccharide residues of C4-S. One of the more important sets of interactions comes from a single turn of helix close to the N terminus of the proteinase containing a basic amino acid triplet (Arg8-Lys9-Lys10) that forms multiple hydrogen bonds either to the caboxylate or to the 4-sulfate groups of C4-S. Altogether, the binding sites with C4-S are located in the R-domain of cathepsin K and are distant from its active site. This explains why the general proteolytic activity of cathepsin K is not affected by the binding of chondroitin sulfate. Biochemical analyses of cathepsin K and C4-S mixtures support the presence of a 1:n complex in solution; a dissociation constant, Kd, of about 10 nM was determined for the interaction between cathepsin K and C4-S.  相似文献   

15.
The ultrastructural organization of connective tissue microfibrils was studied in the mouse eye and also by means of in vitro experiments for reconstituting microfibrils. In the posterior chamber of the eye of the C57BL/6J mouse, 3 nm-wide ribbon-like double-tracked structures were present and were periodically associated on either side with 3.5 nm-wide particulate structures identified as pentosomes, the subunits of amyloid P component (AP). At certain sites, such composite structures were observed in various stages of helical winding, and in these helices, pentosomes were preferentially localized internally. In helices in the final stages of winding, the resulting rods appeared increasingly similar to those of microfibrils. In experiments in vitro, incubation of chondroitin sulfate proteoglycan (CSPG) in TRIS buffer, pH 7.4, at 35°C for 1 h produced random aggregates of 3 nm-wide double-tracked structures similar to those observed in the eye. Co-incubation of CSPG and AP resulted in the formation of rod-like structures arranged parallel to one another in approximately 50 nm-thick sheet-like layers. These rods were ultrastructurally similar to microfibrils and were made up of helically wound, 3 nm-wide double-tracked structures containing pentosomes within their core. The results of in vivo as well as in vitro experiments suggest the possibility that the connective tissue microfibril is composed of helically wound, CSPG-containing, 3 nm-wide double-tracked structures periodically associated with pentosomes which, as the helix becomes progressively tighter, fit with one another at the core of the helix to form successive 8.5 nm-wide disks of AP segments.  相似文献   

16.
Previously, we studied an association of two IL28B gene single nucleotide polymorphisms (SNPs) and three IL10 gene SNPs with predisposition to tick-borne encephalitis in a Russian population. In this study, a possible involvement of these SNPs in the development of predisposition to chronic hepatitis C (caused by structurally similar, related virus from the Flaviviridae family) was investigated in the same population. Only the IL10 promoter rs1800872 SNP was associated with predisposition to chronic hepatitis C. This SNP seems to be a common genetic marker of predisposition to two diseases caused by hepatitis C and tick-borne encephalitis viruses in Russian population.  相似文献   

17.
The subcellular localization of the ω-hydroxylase of Saccharomycopsis lipolytica was assessed by the analytical fractionation technique, originally described by de Duve C., Pressman, B.C., Gianetto, R., Wattiaux, R. and Appelmans, F., and hitherto little, if at all, applied to yeast. Protoplasts were separated in six fractions by differential centrifugation. Some of these fractions were further fractioned by density gradient centrifugation. The distribution of ω-hydroxylase and 15 other constituents chosen as possible markers of its subcellular membranes has been established. ω-Hydroxylase resulted in being bound to a membrane that containes also cytochrome P-450 and NADPH-cytochrome c reductase. This membrane clearly differs from five other subcellular entities. (1) Mitochondria were characterized by particulate malate dehydrogenase, particulate Antimycin A-insensitive NADH-cytochrome c reductase, oligomycin-sensitive and K+-stimulated ATPase pH 9. (2) Most if not all of the catalase and urate oxidase is peroxisomal. (3) Free ribosomes account for most RNA. (4) Nucleoside diphosphatase is for the first time reported in a yeast and appears to belong to an homogeneous population of small membranes. (5) The soluble compartment contains magnesium pyrophosphatase, alkaline phosphatase, 5′-nucleotidase and part of the NADH-cytochrome c reductase. Latent arylesterase and ATPase pH7 have an unspecific distribution. Alkaline phosphodiesterase I has not been detected.  相似文献   

18.
A collection of circularly permuted catalytic chains of aspartate transcarbamoylase (ATCase) has been generated by random circular permutation of the pyrB gene. From the library of ATCases containing permuted polypeptide chains, we have chosen for further investigation nine ATCase variants whose catalytic chains have termini located within or close to an alpha helix. All of the variants fold and assemble into dodecameric holoenzymes with similar sedimentation coefficients and slightly reduced thermal stabilities. Those variants disrupted within three different helical regions in the wild-type structure show no detectable enzyme activity and no apparent binding of the bisubstrate analog N:-phosphonacetyl-L-aspartate. In contrast, two variants whose termini are just within or adjacent to other alpha helices are catalytically active and allosteric. As expected, helical disruptions are more destabilizing than loop disruptions. Nonetheless, some catalytic chains lacking continuity within helical regions can assemble into stable holoenzymes comprising six catalytic and six regulatory chains. For seven of the variants, continuity within the helices in the catalytic chains is important for enzyme activity but not necessary for proper folding, assembly, and stability of the holoenzyme.  相似文献   

19.
The polymers chondroitin sulphate and dermatan sulphate have been fragmented by an anhydrous hydrazine/nitrous acid procedure. The resulting disaccharides from the polymer repeat sequences were reduced with NaBH4 and purified by ion exchange chromatography. Whereas enzymatic depolymerisation leads to the loss of the distinction between glucuronic and iduronic acids of CS and DS in the resultant disaccharides, nitrous acid depolymerisation retains these structures. Complete 1H and 13C NMR data have been derived for the major components which were shown to have the structures: GlcA-(β1→3)-anTal6S-ol (I) and l-IdoA-(α1→3)-anTal4S-ol (II), where anTal-ol represents (2,5)anhydro-d-talitol and 6S/4S represent O-ester sulphate groups at C-6/C-4 sites.  相似文献   

20.
Qin WX  Wan F  Sun FY  Zhang PP  Han LW  Huang Y  Jiang HQ  Zhao XT  He M  Ye Y  Cong WM  Wu MC  Zhang LS  Yang NW  Gu JR 《Cell research》2001,11(3):209-216
INTRODUCTIONLoss of heterozygosity (LOH) at chromosoma1loci associated with tumor suppressor genes has beenimplicated in the genesis of many types of humanmalignancies. On the basis of frequent LOH in tu-mors, coupled with linkage analysis in some heredi-tary cancer syndromes, a number of tumor suppres-sor genes, such as RB[l], DCC[2], NF2[3], VHLI4],MTh1[5], DML/OM1[6], and PrsN/rmC1[7l have been successively isolated.It has beell reported that LOH occurred at l7p invarious ty…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号