首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In vitro-constructed heteroduplex DNAs with defined mismatches were corrected in Saccharomyces cerevisiae cells with efficiencies that were dependent on the mismatch. Single-nucleotide loops were repaired very efficiently; the base/base mismatches G/T, A/C, G/G, A/G, G/A, A/A, T/T, T/C, and C/T were repaired with a high to intermediate efficiency. The mismatch C/C and a 38-nucleotide loop were corrected with low efficiency. This substrate specificity pattern resembles that found in Escherichia coli and Streptococcus pneumoniae, suggesting an evolutionary relationship of DNA mismatch repair in pro- and eucaryotes. Repair of the listed mismatches was severely impaired in the putative S. cerevisiae DNA mismatch repair mutants pms1 and pms2. Low-efficiency repair also characterized pms3 strains, except that correction of single-nucleotide loops occurred with an efficiency close to that of PMS wild-type strains. A close correlation was found between the repair efficiencies determined in this study and the observed postmeiotic segregation frequencies of alleles with known DNA sequence. This suggests an involvement of DNA mismatch repair in recombination and gene conversion in S. cerevisiae.  相似文献   

3.
G:T mispairs in DNA originate spontaneously via deamination of 5-methylcytosine. Such mispairs are restored to normal G:C pairs by both E. coli K strains and human cells. In this study we have analyzed the repair by human cell extracts of G:T mismatches in various DNA contexts. We performed two sets of experiments. In the first, repair was sequence specific in that G:T mispairs at CpG sites at four different CpG sites were repaired, but a G:T mismatch at a GpG site was not. Cytosine hemimethylation did not block repair of a substrate containing a CpG/GpT mismatch. In the second set of experiments, substrates with a G:T mismatch at a fixed position were constructed with an A, T, G, or C 5' to the mismatched G, and alterations in the complementary strand to allow otherwise perfect Watson-Crick pairing. All were incised just 5' to the mismatched T and competed for repair incision with a G:T substrate in which a C was 5' to the mismatched G. Thus human G:T mismatch activity shows sequence specificity, incising G:T mismatched pairs at some DNA sites, but not at others. At an incisable site, however, incision is little influenced by the base 5' to the mismatched G.  相似文献   

4.
5.
Genetic stability relies in part on the efficiency with which post-replicative mismatch repair (MMR) detects and corrects DNA replication errors. In Escherichia coli, endogenous transition mispairs and insertion/deletion (ID) heterologies are corrected with similar efficiencies – but much more efficiently than transversion mispairs – as revealed by mutation rate increases in MMR mutants. To assess the relative efficiencies with which these mismatches are corrected in the yeast Saccharomyces cerevisiae, we examined repair of defined mismatches on heteroduplex plasmids and compared the spectra for >1000 spontaneous SUP4-o mutations arising in isogenic wild-type or MMR-deficient (pms1, mlh1, msh2) strains. Heteroduplexes containing G/T mispairs or ID heterologies were corrected more efficiently than those containing transversion mismatches. However, the rates of single base-pair insertion/deletion were increased much more (82-fold or 34-fold, respectively) on average than the rate of base pair substitutions (4.4-fold), with the rates for total transitions and transversions increasing to similar extents. Thus, the relative efficiencies with which mismatches formed during DNA replication are repaired appear to differ in prokaryotic and eukaryotic cells. In addition, our results indicate that in yeast, and probably other eukaryotes, these efficiencies may not mirror those obtained from an analysis of heteroduplex correction.  相似文献   

6.
Genetic stability relies in part on the efficiency with which post-replicative mismatch repair (MMR) detects and corrects DNA replication errors. In Escherichia coli, endogenous transition mispairs and insertion/deletion (ID) heterologies are corrected with similar efficiencies – but much more efficiently than transversion mispairs – as revealed by mutation rate increases in MMR mutants. To assess the relative efficiencies with which these mismatches are corrected in the yeast Saccharomyces cerevisiae, we examined repair of defined mismatches on heteroduplex plasmids and compared the spectra for >1000 spontaneous SUP4-o mutations arising in isogenic wild-type or MMR-deficient (pms1, mlh1, msh2) strains. Heteroduplexes containing G/T mispairs or ID heterologies were corrected more efficiently than those containing transversion mismatches. However, the rates of single base-pair insertion/deletion were increased much more (82-fold or 34-fold, respectively) on average than the rate of base pair substitutions (4.4-fold), with the rates for total transitions and transversions increasing to similar extents. Thus, the relative efficiencies with which mismatches formed during DNA replication are repaired appear to differ in prokaryotic and eukaryotic cells. In addition, our results indicate that in yeast, and probably other eukaryotes, these efficiencies may not mirror those obtained from an analysis of heteroduplex correction. Received: 15 November 1998 / Accepted: 4 February 1999  相似文献   

7.
S B Waters  S A Akman 《Mutation research》2001,487(3-4):109-119
The double mismatch reversion (DMR) assay quantifies the repair of G:T mispairs exclusively by base excision repair in vivo. Synthetic oligonucleotides containing two G:T mispairs on opposite strands were placed into the suppressor tRNA gene supF in the shuttle plasmid pDMR. Placement of two mispairs on opposite strands of supF creates a one to one correspondence between the number of correct repair events prior to replication in which G:T mispairs are converted to G:C base pairs and the number of post-replication progeny plasmids with functional supF. Replication of unrepaired or incorrectly repaired mispairs cannot produce progeny plasmids containing functional supF. Indeed, direct transformation of Escherichia coli strain MBL50, which reports the functional status of supF, with pDMR constructs containing two G:T or G:G mispairs yielded <0.5% wild-type supF-containing colonies. In contrast, passage of G:T mispair-containing pDMR constructs through human 5637 bladder carcinoma cells for 48h prior to plasmid recovery and transformation of the reporter E. coli strain MBL50 produced 47% wild-type supF-containing colonies. This finding was indicative of repair prior to the onset of replication in 5637 cells. However, passage of G:G mispair-containing pDMR constructs through 5637 cells yielded <0.5% wild-type supF-containing colonies. Moreover, no difference was observed in the rate of G:T mispair repair by HCT 116 colorectal carcinoma cells deficient in long-patch mismatch repair and a long-patch mismatch repair proficient HCT 116 subline. These data demonstrate that repair measured by the DMR assay is exclusively attributable to short-patch pathways. The DMR assay proved useful in the analysis of the effect of the base 5' to a mispaired G on the rate of G:T base excision repair by 5637 cells, indicating the sequence preference CpG approximately 5mCpG>TpG>GpG approximately ApG, and in the comparison of G:T base excision repair rates between cell lines.  相似文献   

8.
A previously unrecognized mismatch repair activity is described. Extracts of immortalized MSH2-deficient mouse fibroblasts did not correct most single base mispairs. The same extracts carried out efficient repair of A/C mismatches. A/G mispairs were less efficiently corrected and there was no significant repair of A/A. MLH1-defective mouse extracts also repaired an A/C mispair. A/C correction by Msh2(-/-) mouse cell extracts was not affected by antibodies against the PMS2 protein, which inhibited long-patch mismatch repair. A/C repair activity is thus independent of MutSalpha, MutSbeta and MutLalpha. A/C mismatches were corrected 5-fold more efficiently by extracts of Msh2 knockout mouse cells than by comparable extracts prepared from hMSH2- or hMLH1-deficient human cells. MSH2-independent A/C correction by mouse cell extracts did not require a nick in the circular duplex DNA substrate. Repair involved replacement of the A and was associated with the resynthesis of a limited stretch of 相似文献   

9.
5-Formyluracil (fU), a major methyl oxidation product of thymine, forms correct (fU:A) and incorrect (fU:G) base pairs during DNA replication. In the accompanying paper (Masaoka, A., Terato, H., Kobayashi, M., Honsho, A., Ohyama, Y., and Ide, H. (1999) J. Biol. Chem. 274, 25136-25143), it has been shown that fU correctly paired with A is recognized by AlkA protein (Escherichia coli 3-methyladenine DNA glycosylase II). In the present work, mispairing frequency of fU with G and cellular repair protein that specifically recognized fU:G mispairs were studied using defined oligonucleotide substrates. Mispairing frequency of fU was determined by incorporation of 2'-deoxyribonucleoside 5'-triphosphate of fU opposite template G using DNA polymerase I Klenow fragment deficient in 3'-5' exonuclease. Mispairing frequency of fU was dependent on the nearest neighbor base pair in the primer terminus and 2-12 times higher than that of thymine at pH 7.8 and 2.6-6.7 times higher at pH 9.0 with an exception of the nearest neighbor T(template):A(primer). AlkA catalyzed the excision of fU placed opposite G, as well as A, and the excision efficiencies of fU for fU:G and fU:A pairs were comparable. In addition, MutS protein involved in methyl-directed mismatch repair also recognized fU:G mispairs and bound them with an efficiency comparable to T:G mispairs, but it did not recognize fU:A pairs. Prior complex formation between MutS and a heteroduplex containing an fU:G mispair inhibited the activity of AlkA to fU. These results suggest that fU present in DNA can be restored by two independent repair pathways, i.e. the base excision repair pathway initiated by AlkA and the methyl-directed mismatch repair pathway initiated by MutS. Biological relevance of the present results is discussed in light of DNA replication and repair in cells.  相似文献   

10.
A. L. Lu  D. Y. Chang 《Genetics》1988,118(4):593-600
Six different base-pair transversion mismatches are repaired with different efficiencies in an in vitro mismatch repair system. In particular, the T/T and C/C mismatches appear to be less efficiently repaired than the A/A and G/G mismatches. Four A/G and four C/T mismatches at different positions are repaired to different extents. One of the A/G mismatches is repaired equally efficiently when DNA heteroduplexes are fully methylated or hemi-methylated at the d(GATC) sequences. This type of mismatch repair appears to be unidirectional with A to C conversion by acting at A/G mispairs to restore the C/G pairs. This methylation-independent correction is not controlled by the mutH, mutL, mutS, uvrE, uvrB, phr, recA, recF, and recJ gene products. The independence of the transversion mismatch repair of these genes and methylation distinguishes this from the known mismatch repair pathways.  相似文献   

11.
T C Brown  J Jiricny 《Cell》1987,50(6):945-950
5-Methylcytosine spontaneously deaminates to form thymine, thus generating G/T mispairs in DNA. We investigated the way in which these lesions are addressed in mammalian cells by introducing specific G/T mispairs into the genome of SV40 and determining the fate of the mismatched bases in simian cells. Mispairs were incorporated in 12 bp synthetic duplexes ligated into SV40 DNA between the BstXI and TaqI restriction sites. Analysis of 347 plaques obtained after transfection of this modified DNA indicated that mispairs were corrected in 343 cases (99%), revealing 314 repair events in favor of guanine (90%) and 29 in favor of thymine (8%). Correction in favor of guanine occurred regardless of the orientation of the mispair in DNA and regardless of whether the mispair was in the commonly methylated CpG dinucleotide. These results attest to a specific mismatch repair pathway that restores G/C pairs lost through deamination of 5-methylcytosine residues.  相似文献   

12.
An endonuclease activity (called MS-nicking) for all possible base mismatches has been detected in the extracts of yeast, Saccharomyces cerevisiae. DNAs with twelve possible base mismatches at one defined position are cleaved at different efficiencies. DNA fragments with A/G, G/A, T/G, G/T, G/G, or A/A mismatches are nicked with greater efficiencies than C/T, T/C, C/A, and C/C. DNA with an A/C or T/T mismatch is nicked with an intermediate efficiency. The MS-nicking is only on one particular DNA strand, and this strand disparity is not controlled by methylation, strand break, or nature of the mismatch. The nicks have been mapped at 2-3 places at second, third, and fourth phosphodiester bonds 5' to the mispaired base; from the time course study, the fourth phosphodiester bond probably is the primary incision site. This activity may be involved in mismatch repair during genetic recombination.  相似文献   

13.
Temperature-gradient gel electrophoresis (TGGE) was employed to determine the thermal stabilities of 48 DNA fragments that differ by single base pair mismatches. The approach provides a rapid way for studying how specific base mismatches effect the stability of a long DNA fragment. Homologous 373 bp DNA fragments differing by single base pair substitutions in their first melting domain were employed. Heteroduplexes were formed by melting and reannealing pairs of DNAs, one of which was 32P-labeled on its 5'-end. Product DNAs were separated based on their thermal stability by parallel and perpendicular temperature-gradient gel electrophoresis. The order of stability was determined for all common base pairs and mismatched bases in four different nearest neighbor environments; d(GXT).d(AYC), d(GXG).d(CYC), d(CXA).d(TYG), and d(TXT).d(AYA) with X,Y = A, T, C, or G. DNA fragments containing a single mismatch were destabilized by 1 to 5 degrees C with respect to homologous DNAs with complete Watson-Crick base pairing. Both the bases at the mismatch site and neighboring stacking interactions influence the destabilization caused by a mismatch. G.T, G.G and G.A mismatches were always among the most stable mismatches for all nearest neighbor environments examined. Purine.purine mismatches were generally more stable than pyrimidine.pyrimidine mispairs. Our results are in very good agreement with data where available from solution studies of short DNA oligomers.  相似文献   

14.
A L Lu  D Y Chang 《Cell》1988,54(6):805-812
A protein that binds specifically to A/G mismatches has been detected in E. coli by a gel electrophoresis DNA binding assay. A specific endonuclease is associated with the A/G mismatch-binding protein through two chromatographic steps. The endonuclease is specific for A/G-containing DNA fragments and has no cleavage activity on DNA containing the other seven possible mispairs or homoduplex DNA. The endonuclease simultaneously makes incisions at the first phosphodiester bond 3' to and the second phosphodiester bond 5' to the dA of the A/G mismatch. No incision site was detected on the other strand. These results are consistent with the unidirectional A to C conversion and short repair tract of a novel dam- and mutHLS-independent A/G repair pathway we have recently described. A nucleotide excision repair model is proposed for the conversion of an A/G mismatch to a C/G base pair.  相似文献   

15.
J Jiricny  S S Su  S G Wood    P Modrich 《Nucleic acids research》1988,16(16):7843-7853
The binding of the mutS gene product, a protein involved in at least two E. coli mismatch correction pathways, to a series of synthetic DNA duplexes containing mismatches or mismatch analogues of the purine/pyrimidine type was studied in order to establish whether a correlation exists between the recognition of these mispairs and the efficiency of their correction in vivo. Experiments using nitrocellulose filter binding or band-shift assays revealed that duplexes containing a G/T mismatch or its analogues I/T and DI/T were bound by the protein with affinities correlating to the efficiency of their repair in vivo. In contrast, the A/C mismatch, contained within the same sequence, was bound only poorly, despite being efficiently corrected in vivo. The analogues of the A/C mispair, uncorrected in vivo, were not detectably bound under the conditions of these assays.  相似文献   

16.
Modified SV40 for analysis of mismatch repair in simian and human cells   总被引:1,自引:0,他引:1  
We have developed a way of introducing specific mispairs into the genome of simian virus 40 and of determining the fate of the mispaired bases in simian and human cells. Mispairs are introduced into viral DNA within the intron of the gene coding for the large T antigen. Each DNA molecule harbors a single mispair in a defined orientation. Transfection of mismatch-containing SV40 DNA into host cells yields plaques, each corresponding to a productive infection initiated by a single viral DNA molecule. Isolation of DNA derived from individual plaques and determination of the DNA sequence at the site of the mispair reveals whether correction occurred and what the repair products are. Here we describe repair patterns for G/T and A/C mispairs in CV-1 African green monkey kidney cells, and for G/T mispairs in human fibroblasts derived from 3 normal individuals, 1 patient with xeroderma pigmentosum (complementation group A), and 3 patients with Bloom's syndrome. G/T mispairs, which arise in resting DNA through the deamination of 5-methylcytosine (mC) to form thymine, are corrected in all cases with extremely high efficiency and nearly always in favor of guanine. In contrast, A/C mispairs are corrected randomly and relatively inefficiently in simian cells.  相似文献   

17.
Replication of the oxidative lesion 8-oxo-7,8-dihydroguanine (GO) leads to the formation of both 8-oxo-7,8-dihydroguanine:adenine (GO:A) and 8-oxo-7,8-di-hydroguanine:cytosine (GO:C) pairs. The repair and mutagenic potency of these two kinds of base pairs were studied in simian COS7 and human MRC5V1 cells using the shuttle vector technology. Shuttle vectors carrying a unique GO residue opposite either a C or an A were constructed, then transfected into recipient mammalian cells. DNA repair resulting in G:C pairs and mutation frequency, were determined using resistance to digestion by the Ngo MI restriction enzyme for screening and DNA sequencing of suspect mutants. Results showed that the GO:C mismatch was well repaired since almost no mutations were detected in the plasmid progeny obtained 72 h after cell transfection. The GO:A pair was poorly repaired since only 32-34% of the plasmid progeny contained G:C whereas two thirds contained A:T at the original site. Repair kinetics measured with a non-replicating vector deleted by 13 bp at the SV40 replication origin, showed that GO:A was slowly repaired. Only 30% of the mispairs were corrected in 12 h. During this time 100% of the plasmids containing GO:A pairs were replicated as seen by the replication kinetics in a vector with an intact SV40 replication origin. These results show that, under our experimental conditions, replication is occurring before completion of DNA repair which explains the high mutagenic potency of the GO:A mispair.  相似文献   

18.
Oxidation of G in DNA yields 8-oxo-G (GO), a mutagenic lesion that leads to misincorporation of A opposite GO. In E. coli, GO in GO:C base pairs is removed by MutM, and A in GO:A mispairs is removed by MutY. In S. cerevisiae, mutations in MSH2 or MSH6 caused a synergistic increase in mutation rate in combination with mutations in OGG1, which encodes a MutM homolog, resulting in a 140- to 218-fold increase in the G:C-to-T:A transversion rate. Consistent with this, MSH2-MSH6 complex bound to GO:A mispairs and GO:C base pairs with high affinity and specificity. These data indicate that in S. cerevisiae, MSH2-MSH6-dependent mismatch repair is the major mechanism by which misincorporation of A opposite GO is corrected.  相似文献   

19.
Back JH  Park JH  Chung JH  Kim DS  Han YS 《DNA Repair》2006,5(8):894-903
Oxidative damage represents a major threat to genomic stability because the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. We were interested in finding out how hyperthermophilic bacteria under goes the process of excising mispaired adenine from A/GO to deal with genomic oxidative damage. Herein we report the properties of an Escherichia coli MutY (EcMutY) homolog, TthMutY, derived from a hyperthermophile Thermus thermophilus. TthMutY preferentially excises on A/GO and G/GO mispairs and has additional activities on T/GO and A/G mismatches. TthMutY has significant sequence homology to the A/G and T/G mismatch recognition motifs, respectively, of MutY and Mig.MthI. A substitution from Tyr112 to Ser or Ala (Y112S and Y112A) in the putative thymine-binding site of TthMutY showed significant decrease in DNA glycosylase activity. A mutant form of TthMutY, R134K, could form a Schiff base with DNA and fully retained its DNA glycosylase activity against A/GO and A/G mispair. Interestingly, although TthMutY cannot form a trapped complex with substrate in the presence of NaBH(4), it expressed AP lyase activity, suggesting Tyr112 in TthMutY may be the key residue for AP lyase activity. These results suggest that TthMutY may be an example of a novel class of bifunctional A/GO mismatch DNA glycosylase that can also remove thymine from T/GO mispair.  相似文献   

20.
O Fleck  P Schr    J Kohli 《Nucleic acids research》1994,22(24):5289-5295
We have performed band-shift assays to identify mismatch-binding proteins in cell extracts of Schizosaccharomyces pombe. By testing heteroduplex DNA containing either a T/G or a C/C mismatch, two distinct band shifts were produced in the gels. A low mobility complex was observed with the T/G substrate, while a high mobility complex was present with C/C. Further analysis of the mismatch-binding specificities revealed that the T/G binding activity also binds to T/C, C/T, T/T, T/-, A/-, C/-, G/-, G/G, A/A, A/C, A/G, G/T, G/A, and C/A substrates with varying efficiencies, but not binds to C/C. The C/C binding activity efficiently binds to C/C, T/C, C/T, C/A, A/C, C/-, and weakly also to T/T, while all other mispairs are not recognized. Protein extracts of a mutant strain, defective in the mutS homologue swi4, displayed both mismatch-binding activities. Thus, swi4 does not encode for either one of the mismatch-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号