首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Perturbation in a level of any peptide from insulin-like growth factor (IGF) family (ligands, receptors, and binding proteins) seems to be implicated in lung cancer formation; IGF ligands and IGF-I receptor through their mitogenic and anti-apoptotic action, and the mannose 6-phosphate/insulin-like growth factor II receptor (M6-P/IGF-IIR) possibly as a tumor suppressor. MATERIALS AND METHODS: To determine the identity, role, and mutual relationship of IGFs in lung cancer growth and maintenance, we examined IGF's gene (by RT-PCR) and protein (by immunohistochemistry) expression in 69 human lung carcinoma tissues. We also examined IGF-I receptor numbers (Scatchard analysis) and IGF-II production and release (by Western blot) in IGF-II/IGF-IR mRNA positive and negative lung carcinomas. Finally, the potential role of IGF-IR and IGF-II as growth promoting factors in lung cancer was studied using antisense oligodeoxynucleotides that specifically inhibit IGF-IR and IGF-II mRNA. RESULTS: Thirty-two tumors were positive for IGF-I, 39 for IGF-II, 48 for IGF-IR, and 35 for IGFBP-4 mRNA. Seventeen tumors were concomitantly positive for all four IGFs, whereas 34 were positive for IGF-II, IGF-IR, and IGFBP-4 mRNA. An elevated amount of IGF-II peptide was secreted into the growth medium of cell cultures established from five different IGF-II/IGF-IR mRNA positive lung cancer tissues. The cells also expressed elevated numbers of IGF-IR. Nine IGF-II-negative and 19 IGF-II-positive lung cancers of different stages were selected, and M6-P/ IGF-II receptor was determined immunohistochemically. Most of the IGF-II-negative tumors were strongly positive for M6-P/IGF-IIR. IGF-II-positive tumors were mostly negative for M6-P/IGF-II receptors. Antisense oligodeoxynucleotides to IGF-II significantly inhibited, by 25-60%, the in vitro growth of all six lung cancer cell lines. However, the best results (growth inhibition of up to 80%) were achieved with concomitant antisense treatment (to IGF-IR and IGF-II). CONCLUSION: Our data suggest that lung cancer cells produce IGF-IR and IGF-II, which in turn stimulates their proliferation by autocrine mechanism. Cancer cell proliferation can be abrogated or alleviated by blocking the mRNA activity of these genes indicating that an antisense approach may represent an effective and practical cancer gene therapy strategy.  相似文献   

2.
The insulin-like growth factor-II receptor (IGF-IIR) is frequently mutated or deleted in some malignant human tumors, suggesting that the IGF-IIR is a tumor suppressor. However, the exact mechanism by which IGF-IIR suppresses growth in tumors has not been definitively established. We demonstrate that IGF-IIR-deficient murine L cells (D9) have higher growth rates than IGF-IIR-positive L cells (Cc2) in response to IGF-II. IGF-II levels are higher in growth-conditioned medium from D9 versus Cc2 cells. Receptor neutralization studies and measurements of insulin receptor substrate 1 phosphorylation confirm that the enhanced growth of D9 cells is due to increased stimulation of the IGF-I and insulin receptors by IGF-II. In contrast, the levels of secreted latent and active transforming growth factor beta (TGF-beta) are similar for both D9 and Cc2 cells, indicating that the slower growth of Cc2 cells is not due to activation of latent TGF-beta by IGF-IIR and growth inhibition. The results directly demonstrate that down regulation of the IGF-IIR promotes the growth of transformed D9 cells by sustaining IGF-II, which binds to and activates IGF-IR and insulin receptor to increase intracellular growth signals.  相似文献   

3.
In BALB/c 3T3 cells pretreated with platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) (primed-competent cells), insulin-like growth factors I and II (IGF-I and IGF-II) bind to their own receptors (IGF-IR and IGF-IIR) and stimulate calcium influx and DNA synthesis by a mechanism involving a 40-kDa pertussis toxin substrate. In contrast, these IGFs do not act on unprimed quiescent cells. In this study, the 40-kDa pertussis toxin substrate was identified as Gi-2 alpha using anti-G protein antibodies. We analyzed the quality of signal transduction from IGF-II to Gi-2 alpha. There was no difference in the amount of Gi-2 alpha between quiescent and primed-competent cells, and both of these cells had similar Kd values and numbers of IGF-II-binding sites. Whereas IGF-II did not alter pertussis toxin-catalyzed ADP-ribosylation of Gi-2 alpha in quiescent cells, IGF-II reduced the pertussis toxin substrate activity by 35-50% via the IGF-IIR in primed-competent cells. The action of IGF-II lasted for up to 3 h when IGF-II was present in the medium, and it disappeared when IGF-II was removed. These results suggest that the signaling pathway triggered by IGF-II is uncoupled between the IGF-IIR and Gi-2 alpha in quiescent cells and that PDGF and EGF restore the IGF-IIR-Gi-2 coupling. This study also indicates that low concentrations of IGF-I reduce the pertussis toxin substrate activity of Gi-2 alpha in primed-competent cells in a time course slower than that of IGF-II, but not at all in quiescent cells. However, both of these cells had similar Kd values and numbers of IGF-I binding sites. Therefore, the IGF-I signaling pathway may also be uncoupled between the IGF-IR and Gi-2 alpha in quiescent cells and restored by PDGF and EGF. In BALB/c 3T3 cells transfected with temperature-sensitive Kirsten sarcoma virus bearing the v-Ki-ras gene (ts cells), a 40-kDa pertussis toxin substrate was also identified as Gi-2 alpha. In nonpermissive ts cells, IGF-II was without effect on the pertussis toxin substrate activity of Gi-2 alpha or on calcium influx.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Embryos produced through somatic cell nuclear transfer (NT) or in vitro production (IVP) are often associated with increased abortion and abnormalities thought to arise from disruptions in normal gene expression. The insulin-like growth factor (IGF) family has a major influence on embryonic, fetal and placental development; differences in IGF expression in NT- and IVP-derived embryos may account for embryonic losses during placental attachment. In the present study, expression of IGF-I, IGF-II, IGF-I receptor (IGF-IR), and IGF-IIR mRNAs was quantitated in Day 7 and 25 bovine embryos produced in vivo, by NT, IVP, or parthenogenesis, to further understand divergent changes occurring during development. Expression of the IGF-I gene was not detected in Day 7 blastocysts for any treatment. However, there were no differences (P>0.10) among Day 7 treatments in the amounts of IGF-IR, IGF-II, and IGF-IIR mRNA. For Day 25 conceptuses, there was higher expression of IGF-I mRNA for NT and IVP embryonic tissues than for in vivo embryonic tissues (P<0.05). Furthermore, embryonic tissues from NT-derived embryos had higher expression of IGF-II mRNA than IVP embryonic tissues (P<0.05). Placental expression of IGF-IIR mRNA was greater for NT-derived than in vivo-derived embryos (P<0.05). There were no differences in IGF-IR mRNA across all treatments and tissues (P>0.10). In conclusion, these differences in growth factor gene expression during early placental attachment and rapid embryonic growth may directly or indirectly contribute to increased losses and abnormalities in IVP- and NT-derived embryos.  相似文献   

5.
The pattern of expression of receptors for insulin-like growth factors (IGF-I and IGF-II) and insulin was studied on monocyte-depleted human peripheral blood T cells activated via anti-CD3. Binding assays demonstrated the sequential appearance of receptors for IGF-I, IGF-II, and insulin on activated T cells. IGF-IR appeared early, their expression reaching maximum levels at or before the peak of cellular proliferation. IGF-IIR expression generally followed that of the IGF-IR and was more transient, with increases and decreases in expression paralleling the rise and decline of cellular proliferation. Insulin receptor expression remained low throughout the activation time course. The identity of the IGFR on anti-CD3-activated T cells was confirmed in affinity cross-linking experiments. These data demonstrated a 135,000 Mr peptide that specifically binds radiolabeled IGF-I and corresponds to the alpha subunit of the type I IGF-IR, and a 260,000 Mr peptide that specifically binds radiolabeled IGF-II and corresponds to the type II IGFR. We have additionally found that IGF-I and IGF-II (in nanomolar concentrations) produce as much as a threefold enhancement of T cell proliferation early in the activation process, correlating with the early appearance of IGF-IR. The effect of both IGF appeared to be mediated through the type I receptor, since an antibody (alpha IR3), which blocks binding to the alpha subunit of this receptor, inhibited enhancement by up to 83%. Furthermore, we have found expression of IGF-IR on T cells after activation to be associated with both CD4+ and CD8+ T cell subpopulations. These observations provide a foundation for investigating the contribution of IGF in regulating T cell proliferation, differentiation, and effector function.  相似文献   

6.
Objective: This study explores the synergistic effect of cardiomyoblast apoptosis induced by angiotensin II (Ang II) and Insulin-like growth factor (IGF)-I resistance, and elucidates the role of IGF-II via IGF-II receptor (R) and calcineurin pathways in apoptosis induced by Ang II and IGF-I resistance. Methods: Apoptosis of cultured cardiomyoblast H9c2 cells was assessed by DNA fragmentation on agarose gel electrophoresis, nuclear condensation stained with DAPI, and Western blot analysis of pro-apoptotic Bad and cytochrome c in various combinations of control, Ang II, antisense IGF (I or II), IGF (I or II) antibody, IGF (I or II) receptor (R) antibody, or calcineurin inhibitor (Cyclosporine A, (CsA)). Results: We found the following: (1) The combination of Ang II and IGF-I deficiencies had a synergistic effect on apoptosis, confirmed by DNA fragmentation, nuclei condensation, and increases in such pro-apoptotic proteins as Bad, cytochrome c, caspase 9, and caspase 3 in H9c2 cells. (2) IGF-II and IGF-IIR protein products were increased by antisense IGF-I and IGF-I resistance, but these IGF-II protein products were not affected by sense IGF-I and non-specific antibody IgG in H9c2 cells. (3) The alteration of Bad protein level and the release of cytochrome c, both induced by treatments containing combinations of Ang II and antisense IGF-I, IGF-I antibody or IGF-IR antibody, were inhibited by IGF-II antibody. (4) DNA fragmentation, Bad, and cytochrome c which was induced by treatments combining IGF-IR antibody with Ang II or combining IGF-IR antibody with IGF-II were remarkably attenuated by CsA. Conclusion: IGF-I deficiency and/or IGF-IR resistance induced apoptosis in cardiomyoblast cells. The apoptosis, which might have been caused by the upregulation of IGF-II and IGF-IIR genes possibly activated the downstream calcineurin pathway, was synergistically augmented by Ang II. The last two authors contributed equally.  相似文献   

7.
The insulin-like growth factors (insulin-like growth factor I [IGF-I] and IGF-II) exert important effects on growth, development, and differentiation through the IGF-I receptor (IGF-IR) transmembrane tyrosine kinase. The insulin receptor (IR) is structurally related to the IGF-IR, and at high concentrations, the IGFs can also activate the IR, in spite of their generally low affinity for the latter. Two mechanisms that facilitate cross talk between the IGF ligands and the IR at physiological concentrations have been described. The first of these is the existence of an alternatively spliced IR variant that exhibits high affinity for IGF-II as well as for insulin. A second phenomenon is the ability of hybrid receptors comprised of IGF-IR and IR hemireceptors to bind IGFs, but not insulin. To date, however, direct activation of an IR holoreceptor by IGF-I at physiological levels has not been demonstrated. We have now found that IGF-I can function through both splice variants of the IR, in spite of low affinity, to specifically activate IRS-2 to levels similar to those seen with equivalent concentrations of insulin or IGF-II. The specific activation of IRS-2 by IGF-I through the IR does not result in activation of the extracellular signal-regulated kinase pathway but does induce delayed low-level activation of the phosphatidylinositol 3-kinase pathway and biological effects such as enhanced cell viability and protection from apoptosis. These findings suggest that IGF-I can function directly through the IR and that the observed effects of IGF-I on insulin sensitivity may be the result of direct facilitation of insulin action by IGF-I costimulation of the IR in insulin target tissues.  相似文献   

8.
9.
B Zhang  R A Roth 《Biochemistry》1991,30(21):5113-5117
We constructed and expressed chimeric receptor cDNAs with insulin receptor exon 3 (residues 191-297 of the cysteine-rich region) replaced with either the comparable region of the insulin-like growth factor I receptor (IGF-IR) or the insulin receptor related receptor (IRR). Both chimeric receptors still could bind insulin with as high affinity as the wild-type receptor. In addition, chimeric receptors containing exon 3 of the IGF-IR could also bind with high affinity both IGF-I and IGF-II. In contrast, chimeric receptors containing exon 3 of IRR did not bind either IGF-I, IGF-II, or relaxin. These results indicate that (1) the high affinity of binding of insulin to its receptor can occur in the absence of insulin receptor specific residues encoded by exon 3, the cysteine-rich region; (2) the cysteine-rich region of the IGF-I receptor can confer high-affinity binding to both IGF-I and IGF-II; and 3) the IRR is unlikely to be a receptor for either IGF-I, IGF-II, or relaxin.  相似文献   

10.
Insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) are both from the same subgroup of receptor tyrosine kinases that exist as covalently bound receptor dimers at the cell surface. For both IR and IGF-IR, the most described forms are homodimer receptors. However, hybrid receptors consisting of one-half IR and one-half IGF-IR are also present at the cell surface. Two splice variants of IR are expressed that enable formation of two isoforms of the IGF-IR/IR hybrid receptor. In this study, these two splice variants of hybrid receptors were studied with respect to binding affinities of insulin, insulin-like growth factor I (IGF-I), and insulin-like growth factor II (IGF-II). Unlike previously published data, in which semipurified receptors have been studied, we found that the two hybrid receptor splice variants had similar binding characteristics with respect to insulin, IGF-I, and IGF-II binding. We studied both semipurified and purified hybrid receptors. In all cases we found that IGF-I had at least 50-fold higher affinity than insulin, irrespective of the splice variant. The binding characteristics of insulin and IGF-I to both splice variants of the hybrid receptors were similar to classical homodimer IGF-IR.  相似文献   

11.
《MABS-AUSTIN》2013,5(5):475-480
The insulin-like growth factors (IGFs) signaling system has been shown to play important roles in neoplasia. The IGF receptor type 1 (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and there is substantial experimental and clinical evidence that targeting IGF-IR is a promising therapeutic strategy against cancer. It has been previously reported that a mouse monoclonal antibody (mAb), 4G11, blocked IGF-I binding to IGF-IR and downregulated the IGF-IR in MCF-7 cells. We cloned this antibody, constructed a human-mouse chimeric antibody, designated m590, and characterized it. The chimeric IgG1 m590 bound to cell-associated IGF-IR on NWT c43 stably transfected cells and MCF-7 breast cancer cells as efficiently as the parental murine antibody. Using purified IGF-IR extracellular domains, we found that both the chimeric m590 and the parental 4G11 antibodies bind to conformational epitopes on IGF-IR. Neither of these antibodies bound to the insulin receptor (IR) ectodomain. Furthermore, IgG1 m590 blocked the binding of IGF-I and IGF-II to IGF-IR, and inhibited both IGF-I and IGF-II induced phosphorylation of IGF-IR in MCF-7 cells. These results suggest that m590 could be an useful antibody in diagnosis and treatment of cancer, as well as a research tool.  相似文献   

12.
Hearts from severely Cu-deficient rats show a variety of pathological defects, including hypertrophy and, in intact hearts, depression of contractile function. Paradoxically, isolated cardiomyocytes from these rats exhibit enhanced contractile properties. Because hypertrophy and enhanced contractility observed with other pathologies are associated with elevation of insulin-like growth factor-I (IGF)-I, this mechanism was examined for the case of dietary Cu deficiency. Male, weanling Sprague-Dawley rats were provided diets that were deficient (approximately 0.5 mg Cu/kg diet) or adequate (approximately 6 mg Cu/kg diet) in Cu for 5 wk. IGF-I was measured in serum and hearts by an ELISA method, cardiac IGF-I and IGF-II receptors and IGFBP-3 were measured by Western blotting analysis, and mRNAs for cardiac IGF-I and IGF-II were measured by RT-PCR. Contractility of isolated cardiomyocytes was assessed by a video-based edge-detection system. Cu deficiency depressed serum and heart IGF-I and heart IGFBP-3 protein levels and increased cardiac IGF-I receptor protein. Cardiac IGF-II protein and mRNA for cardiac IGF-I and IGF-II were unaffected by Cu deficiency. A Cu deficiency-induced increase in cardiomyocyte contractility, as indicated by increases in maximal velocities of shortening (-dL/dt) and relengthening (+dL/dt) and decrease in time to peak shortening (TPS), was confirmed. These changes were largely inhibited by use of H-1356, an IGF-I receptor blocker. We conclude that enhanced sensitivity to IGF-I, as indicated by an increase in IGF-I receptor protein, accounts for the increased contractility of Cu-deficient cardiomyocytes and may presage cardiac failure.  相似文献   

13.
The insulin-like growth factors (IGFs) signaling system has been shown to play important roles in neoplasia. The IGF receptor type 1 (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and there is substantial experimental and clinical evidence that targeting IGF-IR is a promising therapeutic strategy against cancer. It has been previously reported that a mouse monoclonal antibody (mAb), 4G11, blocked IGF-I binding to IGF-IR and downregulated the IGF-IR in MCF-7 cells. We cloned this antibody, constructed a human-mouse chimeric antibody, designated m590, and characterized it. The chimeric IgG1 m590 bound to cell-associated IGF-IR on NWT c43 stably transfected cells and MCF-7 breast cancer cells as efficiently as the parental murine antibody. Using purified IGF-IR extracellular domains, we found that both the chimeric m590 and the parental 4G11 antibodies bind to conformational epitopes on IGF-IR. Neither of these antibodies bound to the insulin receptor (IR) ectodomain. Furthermore, IgG1 m590 blocked the binding of IGF-I and IGF-II to IGF-IR, and inhibited both IGF-I and IGF-II induced phosphorylation of IGF-IR in MCF-7 cells. These results suggest that m590 could be an useful antibody in diagnosis and treatment of cancer, as well as a research tool.  相似文献   

14.
Insulin-like growth factor (IGF)-II is known to induce hypertrophy of isolated adult rat ventricular cardiomyocytes cultured in the absence of serum. However, it is not known how the growth factor exerts this hypertrophic effect. We show here that IGF-II induces hypertrophy of the cultured cardiomyocytes via two alternative pathways: (1) an IGF-I receptor-dependent pathway, or (2) a lysosome-dependent pathway when the IGF-I receptor-dependent pathway is blocked.  相似文献   

15.
We previously established that exposure of the estrogen receptor (ER) positive MCF-7 human breast cancer cell line to 17-β-estradiol (E2) results in the post-confluent development of multilayered cellular aggregates (foci) which is consistent with the in vivo cancer phenotype of uncontrolled cellular proliferation. In this investigation, the interaction between the insulin-like growth factor receptor (IGF-IR) and ER-signaling systems in regard to post-confluent focus development was studied. We demonstrated that focus development requires the presence of E2 and insulin-like growth factor I (IGF-I) or insulin-like growth factor II (IGF-II), as well as intact ER and IGF-IR.

Focus development in MCF-7 cultures, which occurs only after formation of a confluent monolayer, coincides with E2 regulation of key members of the IGF-signaling system such as IGF-IR, IGF-II, insulin receptor substrate 1 (IRS-1), and insulin-like growth factor binding protein 3 (IGFBP-3), as demonstrated by real-time polymerase chain reaction (PCR). To establish the relevancy of an intact IGF-signaling system for foci formation, we generated stable clones from MCF-7 with IGF-IR suppressed by siRNA. Results from these studies implicate signaling through the IGF-IR to be an integral requirement for E2-dependent post-confluent proliferation and focus formation. In summary, these studies establish the interactive roles of IGFs and E2 in the post-confluent development of foci, and will allow subsequent identification of targets for therapeutic intervention in the control and treatment of estrogen-dependent breast cancer.  相似文献   


16.
Primary structure of a putative receptor for a ligand of the insulin family   总被引:15,自引:0,他引:15  
Nucleotide sequence analysis of human and guinea pig genomic DNA encoding a new member of the insulin receptor (IR) family revealed that the predicted primary structure of this IR-related protein is as similar to the IR and insulin-like growth factor (IGF) I receptor as the IR and IGF-IR are to each other. The conservation of this IR-related sequence among mammals and with the IR and IGF-IR suggests that this IR-related protein is a novel receptor for insulin, IGF-I, IGF-II, or an as yet unidentified peptide hormone or growth factor belonging to the insulin family.  相似文献   

17.
Mouse L cells deficient in expression of the murine cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor (CI-MPR/IGF-IIR) were stably transfected with a plasmid containing the cDNA for the human receptor. Transfected cells expressed high levels of the human receptor which functioned in the transport of lysosomal enzymes and was capable of binding 125I-IGF-II, both at the cell surface and intracellularly. Cell surface binding of 125I-IGF-II by the receptor could be inhibited by pretreatment of cells with antibodies to the receptor or by coincubation with the lysosomal enzyme, beta-glucuronidase. Expression of the receptor conferred on transfected cells the ability to internalize and degrade 125I-IGF-II. Cells transfected with the parental vector and those expressing the human CI-MRP/IGF-IIR were found to express an atypical binding site for IGF-II that was distinct from the CI-MPR/IGF-IIR and the type I IGF-receptor. The availability of two cell lines, one of which overexpresses the human CI-MPR/IGF-IIR and one deficient in expression of the murine receptor, may help in the analysis of the role of the receptor in mediating the biological effects of IGF-II. They should also be useful in examining the significance of binding of ligands, such as transforming growth factor-beta 1 precursor and proliferin to this receptor.  相似文献   

18.
The insulin-like growth factor I receptor (IGF-IR) activated by its ligands insulin-like growth factor (IGF)-I or IGF-II mediates suppression of apoptosis and contributes to tumorigenesis and cell growth. Here we investigated the activation of the stress-activated protein kinases including Jun N-terminal Kinases and p38 MAPK by IGF-I in interleukin-3-dependent FL5.12 lymphocytic cells that overexpress the IGF-IR (FL5.12/WT). We have shown previously that IGF-I protects these cells from apoptosis induced by interleukin-3 withdrawal but does not promote proliferation. IGF-I induced a rapid and transient activation of JNK that peaked at 40 min that was paralleled by a transient and robust phosphorylation of c-Jun. p38 was constitutively phosphorylated in FL5.12/WT cells. Activation of the JNK pathway by IGF-I occurred in the presence of phosphatidylinositol 3-kinase inhibitors and could be enhanced by anisomycin. Analysis of a series of FL5.12 cells expressing mutated IGF-IRs and analysis of 32D/IGF-IR cells showed that neither the C terminus of the receptor nor IRS-1 and IRS-2 were required for JNK activation, although tyrosine 950 was essential for full activation. The JNK inhibitor dicumarol suppressed IGF-I-mediated activation of JNK and phosphorylation of c-Jun but did not affect p38 and IkappaB phosphorylation or activation of AKT. IGF-I-mediated protection from apoptosis in FL5.12/WT cells was completely suppressed by dicumarol and partially suppressed by a p38 inhibitor. In the breast carcinoma cell line MCF-7, treatment with dicumarol also induced apoptosis. These data indicate that transient activation of JNK by IGF-I is mediated by signals that are distinct from those leading to phosphatidylinositol 3-kinase and AKT activation. The data further suggest that the SAPK pathways contribute to suppression of apoptosis by the IGF-IR.  相似文献   

19.
The insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) have a highly homologous structure, but different biological effects. Insulin and IGF-I half-receptors can heterodimerize, leading to the formation of insulin/IGF-I hybrid receptors (Hybrid-Rs) that bind IGF-I with high affinity. As the IR exists in two isoforms (IR-A and IR-B), we evaluated whether the assembly of the IGF-IR with either IR-A or IR-B moieties may differently affect Hybrid-R signaling and biological role. Three different models were studied: (a) 3T3-like mouse fibroblasts with a disrupted IGF-IR gene (R(-) cells) cotransfected with the human IGF-IR and with either the IR-A or IR-B cDNA; (b) a panel of human cell lines variably expressing the two IR isoforms; and (c) HepG2 human hepatoblastoma cells predominantly expressing either IR-A or IR-B, depending on their differentiation state. We found that Hybrid-Rs containing IR-A (Hybrid-Rs(A)) bound to and were activated by IGF-I, IGF-II, and insulin. By binding to Hybrid-Rs(A), insulin activated the IGF-I half-receptor beta-subunit and the IGF-IR-specific substrate CrkII. In contrast, Hybrid-Rs(B) bound to and were activated with high affinity by IGF-I, with low affinity by IGF-II, and insignificantly by insulin. As a consequence, cell proliferation and migration in response to both insulin and IGFs were more effectively stimulated in Hybrid-R(A)-containing cells than in Hybrid-R(B)-containing cells. The relative abundance of IR isoforms therefore affects IGF system activation through Hybrid-Rs, with important consequences for tissue-specific responses to both insulin and IGFs.  相似文献   

20.
At present, the circulating bioactivity of insulin-like growth factor I (IGF-I) is estimated by immunological measurements of IGF-I levels. However, immunoassays ignore the modifying effects of the IGF-binding proteins (IGFBPs) on the interaction between IGF-I and the IGF-I receptor (IGF-IR). Therefore, we developed an IGF-I kinase receptor activation assay (KIRA) based on cells transfected with the human IGF-IR gene. The bioassay was sensitive (detection limit 0.08 microg/l), specific (cross-reactivity of insulin, insulin analogs, and proinsulin was <1%; IGF-II cross-reactivity was 12%), and accurate (within- and between-assay coefficients of variation <7 and <15%). The operational range of the assay (0.25-10.0 microg/l) allowed for determination of IGF-I bioactivity in serum from patients with, for example, growth hormone deficiency, type 1 diabetes, and acromegaly. Addition of IGFBPs dose dependently reduced the KIRA signal, whereas addition of IGF-II to preformed complexes (1:1 molar ratio) of IGF-I and IGFBP dose dependently increased IGF-I bioactivity by displacement of bound IGF-I. In conclusion, the KIRA will enable us to compare IGF-I bioactivity with existing immunological measurements of IGF-I in serum and, hopefully, to elucidate the factors that determine IGF-I bioactivity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号