首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquaporins are important molecules that control the moisture level of cells and water flow in plants. Plant aquaporins are present in various tissues, and play roles in water transport, cell differentiation and cell enlargement involved in plant growth and water relations. The insights into aquaporins’ diversity, structure, expression, post-translational modification, permeability properties, subcellular location, etc., from considerable studies, can lead to an understanding of basic features of the water transport mechanism and increased illumination into plant water relations. Recent important advances in determining the structure and activity of different aquaporins give further details on the mechanism of functional regulation. Therefore, the current paper mainly focuses on aquaporin structure-function relationships, in order to understand the function and regulation of aquaporins at the cellular level and in the whole plant subjected to various environmental conditions. As a result, the straightforward view is that most aquaporins in plants are to regulate water flow mainly at cellular scale, which is the most widespread general interpretation of the physiological and functional assays in plants.  相似文献   

2.
There is strong evidence that aquaporins are central components in plant water relations. Plant species possess more aquaporin genes than species from other kingdoms. According to sequence similarities, four major groups have been identified, which can be further divided into subgroups that may correspond to localization and transport selectivity. They may be involved in compatible solute distribution, gas-transfer (CO2, NH3) as well as in micronutrient uptake (boric acid). Recent advances in determining the structure of some aquaporins gives further details on the mechanism of selectivity. Gating behaviour of aquaporins is poorly understood but evidence is mounting that phosphorylation, pH, pCa and osmotic gradients can affect water channel activity. Aquaporins are enriched in zones of fast cell division and expansion, or in areas where water flow or solute flux density would be expected to be high. This includes biotrophic interfaces between plants and parasites, between plants and symbiotic bacteria or fungi, and between germinating pollen and stigma. On a cellular level aquaporin clusters have been identified in some membranes. There is also a possibility that aquaporins in the endoplasmic reticulum may function in symplasmic transport if water can flow from cell to cell via the desmotubules in plasmodesmata. Functional characterization of aquaporins in the native membrane has raised doubt about the conclusiveness of expression patterns alone and need to be conducted in parallel. The challenge will be to elucidate gating on a molecular level and cellular level and to tie those findings into plant water relations on a macroscopic scale where various flow pathways need to be considered.  相似文献   

3.
The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant–water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The role of aquaporins in cellular and whole plant water balance   总被引:48,自引:0,他引:48  
Aquaporins are water channel proteins belonging to the major intrinsic protein (MIP) superfamily of membrane proteins. More than 150 MIPs have been identified in organisms ranging from bacteria to animals and plants. In plants, aquaporins are present in the plasma membrane and in the vacuolar membrane where they are abundant constituents. Functional studies of aquaporins have hitherto mainly been performed by heterologous expression in Xenopus oocytes. A main issue is now to understand their role in the plant, where they are likely to be important both at the cellular and at the whole plant level. Plants contain a large number of aquaporin isoforms with distinct cell type- and tissue-specific expression patterns. Some of these are constitutively expressed, whereas the expression of others is regulated in response to environmental factors, such as drought and salinity. At the protein level, regulation of water transport activity by phosphorylation has been reported for some aquaporins.  相似文献   

5.
Aquaporins and plant transpiration   总被引:1,自引:0,他引:1       下载免费PDF全文
Although transpiration and aquaporins have long been identified as two key components influencing plant water status, it is only recently that their relations have been investigated in detail. The present review first examines the various facets of aquaporin function in stomatal guard cells and shows that it involves transport of water but also of other molecules such as carbon dioxide and hydrogen peroxide. At the whole plant level, changes in tissue hydraulics mediated by root and shoot aquaporins can indirectly impact plant transpiration. Recent studies also point to a feedback effect of transpiration on aquaporin function. These mechanisms may contribute to the difference between isohydric and anisohydric stomatal regulation of leaf water status. The contribution of aquaporins to transpiration control goes far beyond the issue of water transport during stomatal movements and involves emerging cellular and long‐distance signalling mechanisms which ultimately act on plant growth.  相似文献   

6.
Plant aquaporins: Roles in plant physiology   总被引:2,自引:0,他引:2  

Background

Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms.

Scope of review

Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts.

Major conclusions

In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots.

General significance

Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins.  相似文献   

7.
植物水分传输过程中的调控机制研究进展   总被引:2,自引:0,他引:2  
杨启良  张富仓  刘小刚  王玺  张楠  戈振扬 《生态学报》2011,31(15):4427-4436
农田土壤水分的转化利用与调控是以土壤-植物-大气连续体(SPAC)为基础,以植物为核心,其中水分在植物体内的传输与调控研究一直是国际学术研究的前沿性热点课题。本文概述了植物水分传输的驱动力和传输途径,重点从植物的气孔调节、水容调节、渗透调节、水孔蛋白调节、贮水调节、气穴和栓塞调节等方面综述了植物水分传输过程中的调控机制研究进展。通过对植物存在优化调控水分平衡的潜在能力的研究,不仅可充实SPAC系统水分传输理论,而且有助于明确植物对环境的适应机制和高效用水的潜力及其节水调控的效应,对指导干旱半干旱地区农业生产提供理论依据。  相似文献   

8.
9.
Roles of Aquaporins in Root Responses to Irrigation   总被引:1,自引:0,他引:1  
Due to current environmental issues concerning the use of water for irrigation, the improvement of crop water-use efficiency and a reduction in water consumption has become a priority. New irrigation methods that reduce water use, while still maintaining production have been developed. To optimise these techniques knowledge of above- and below-ground plant physiological responses is necessary. During growth, plant roots are exposed to cycles of wetting and drying in normal rain-fed and irrigation situations. This review concentrates on the below-ground aspects, in particular the water permeability of roots. Significant research has been conducted on the root anatomy and hydraulic conductivity of desert plants subjected to wetting and drying. Major intrinsic proteins (MIPs), most of which show aquaporin (water-channel) activity are likely to be involved in balancing the water relations of the plants during water deficit. However, many MIPs seem to allow permeation of other small neutral solutes and some may allow permeation of ions under certain conditions. The ability of the plant to rapidly respond to rewetting may be important in maintaining productivity. It has been suggested that aquaporins may be involved in this rapid response. The down-regulation of the aquaporins during dry conditions can also limit water loss to the soil, and intrinsic sensitivity of aquaporins to water potential is shown here to be very strong in some cases (NOD26). However, the response of aquaporins in various plant species to water deficits has been quite varied. Another component of aquaporin regulation in response to various stresses (hypoxia/anoxia, salinity and chilling) may be related to redistribution of flow to more favourable regions of the soil. Some irrigation techniques may be triggering these responses. Diurnal fluctuations of root hydraulic conductance that is related to aquaporin expression seem to match the expected transpirational demands of the shoot, and it remains to be seen if shoot-to-root signalling may be important in regulation of root aquaporins. If so, canopy management typical of horticultural crops may impact on root hydraulic conductance. An understanding of the regulation of aquaporins may assist in the development of improved resistance to water stress and greater efficiency of water use by taking into account where and when roots best absorb water.  相似文献   

10.
Water uptake by plant roots: an integration of views   总被引:20,自引:0,他引:20  
Steudle  Ernst 《Plant and Soil》2000,226(1):45-56
A COMPOSITE TRANSPORT MODEL is presented which explains the variability in the ability of roots to take up water and responses of water uptake to different factors. The model is based on detailed measurements of 'root hydraulics' both at the level of excised roots (root hydraulic conductivity, Lpr) and root cells (membrane level; cell Lp) using pressure probes and other techniques. The composite transport model integrates apoplastic and cellular components of radial water flow across the root cylinder. It explains why the hydraulic conductivity of roots changes in response to the nature (osmotic vs. hydraulic) and intensity of water flow. The model provides an explanation of the adaptation of plants to conditions of drought and other stresses by allowing for a `coarse regulation of water uptake' according to the demands from the shoot which is favorable to the plant. Coarse regulation is physical in nature, but strongly depends on root anatomy, e.g. on the existence of apoplastic barriers in the exo- and endodermis. Composite transport is based on the composite structure of roots. A `fine regulation' results from the activity of water channels (aquaporins) in root cell membranes which is assumed to be under metabolic and other control.  相似文献   

11.
Regulation of plant aquaporin activity   总被引:21,自引:0,他引:21  
Accumulating evidence indicates that aquaporins play a key role in plant water relations. Plant aquaporins are part of a large and highly divergent protein family that can be divided into four subfamilies according to amino acid sequence similarity. As in other organisms, plant aquaporins facilitate the transcellular movement of water, but, in some cases, also the flux of small neutral solutes across a cellular membrane. Plant cell membranes are characterized by a large range of osmotic water permeabilities, and recent data indicate that plant aquaporin activity might be regulated by gating mechanisms. The factors affecting the gating behaviour possibly involve phosphorylation, heteromerization, pH, Ca2+, pressure, solute gradients and temperature. Regulation of aquaporin trafficking may also represent a way to modulate membrane water permeability. The aim of this review is to integrate recent molecular and biophysical data on the mechanisms regulating aquaporin activity in plant membranes and to relate them to putative changes in protein structure.  相似文献   

12.
植物水通道蛋白生理功能的研究进展   总被引:1,自引:0,他引:1  
自1992年第一个水通道蛋白AQP1被人们认识以来,从植物中分离得到了大量AQPs基因。AQPs在植物体内形成选择性运输水及一些小分子溶质和气体的膜通道,参与介导多个植物生长发育的生理活动,如细胞伸长、气孔运动、种子发育、开花繁殖和逆境胁迫等。就植物水通道蛋白的生理功能进行概述。  相似文献   

13.
This review introduces the pressure probe technique that was originally designed to detect the turgor of a giant algal cell, then adapted to measure the turgor and other water-relations parameters of higher plants, and now has developed into a diverse tool on researches of plant physiology and eco-physiology. This technique can be used to measure in situ the permeability of cell membranes to water and solutes at the resolution of single cells, and hence is a useful tool to study function and regulation of water channels (aquaporins) of intact plant cells. The recently developed xylem-pressure probe technique is the only way to directly measure the negative pressure in xylem conduits. In this review we introduce the basic principles and the theoretical backgrounds underlying the pressure probe. Finally some important achievements and applications of the pressure probe in studies of plant water relations are reviewed and discussed.  相似文献   

14.
植物水孔蛋白   总被引:4,自引:0,他引:4  
水孔蛋白的发现丰富了人们对水分跨膜转运机制的认识,植物水孔蛋白在水分吸收、渗透调节、细胞的伸长和气孔运动等方面都有重要作用。现对植物水孔蛋白的结构特征、多样性、生理学功能、活性调节以及水孔蛋白与环境因子的关系等方面的研究进展进行综述。  相似文献   

15.
Plant aquaporins: novel functions and regulation properties   总被引:2,自引:0,他引:2  
Maurel C 《FEBS letters》2007,581(12):2227-2236
Aquaporins are water channel proteins of intracellular and plasma membranes that play a crucial role in plant water relations. The present review focuses on the most recent findings concerning the molecular and cellular properties of plant aquaporins. The mechanisms of transport selectivity and gating (i.e. pore opening and closing) have recently been described, based on aquaporin structures at atomic resolution. Novel dynamic aspects of aquaporin subcellular localisation have been uncovered. Also, some aquaporin isoforms can transport, besides water, physiologically important molecules such as CO(2), H(2)O(2), boron or silicon. Thus, aquaporins are involved in many great functions of plants, including nutrient acquisition, carbon fixation, cell signalling and stress responses.  相似文献   

16.
17.
Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and plant responses to drought still remains elusive. Moreover, the contribution of aquaporin genes to the enhanced tolerance to drought in arbuscular mycorrhisal (AM) plants has never been investigated. Therefore, we studied, at a molecular level, whether the expression of aquaporin-encoding genes in roots is altered by the AM symbiosis as a mechanism to enhance host plant tolerance to water deficit. In this study, genes encoding plasma membrane aquaporins (PIPs) from soybean and lettuce were cloned and their expression pattern studied in AM and nonAM plants cultivated under well-watered or drought stressed conditions. Results showed that AM plants responded to drought stress by down-regulating the expression of the PIP genes studied and anticipating its down-regulation as compared to nonAM plants. The possible physiological implications of this down-regulation of PIP genes as a mechanism to decrease membrane water permeability and to allow cellular water conservation is further discussed.  相似文献   

18.
The majority of plants are unable to evade unfavorable conditions such as flooding, salinity, or drought. Therefore, a fine-tuned water homeostasis appears to be of crucial importance for plant survival, and it was assumed that aquaporins play a significant role in these processes. Regulation of plant aquaporin conductivity was suggested to be achieved by a gating mechanism that involves protein phosphorylation under drought stress conditions and protonation after cytosolic acidification during flooding. The effect of protein phosphorylation or protonation of aquaporins was studied on two plasma membrane intrinsic proteins, NtPIP2;1 and NtAQP1 from tobacco, which were heterologously expressed in yeast. Our results on mutated aquaporins with serine-to-alanine exchange indicate that phosphorylation of the two key serine residues did not affect the pH-dependent modification of water permeability. Protonation on a conserved histidine residue decreased water conductivity of NtPIP2;1. Although cells expressing NtPIP2;1 with a replacement of the histidine by an alanine were found to be pH-insensitive with regard to water permeability, these maintain high water transport rates, similar to those obtained under acidic conditions. The data clearly support the role of histidine at 196 as a component of pH-dependent modification of aquaporin-facilitated water transport. The predictions of combined effects from phosphorylation at conserved serines and histidine protonation were not supported by the results of functional analysis. The obtained results challenge the gating model as a general regulation mechanism for plant plasma membrane aquaporins.  相似文献   

19.
Plant aquaporins   总被引:1,自引:0,他引:1  
  相似文献   

20.
The role of aquaporins in root water uptake   总被引:42,自引:0,他引:42  
Javot H  Maurel C 《Annals of botany》2002,90(3):301-313
The capacity of roots to take up water is determined in part by the resistance of living tissues to radial water flow. Both the apoplastic and cell-to-cell paths mediate water transport in these tissues but the contribution of cell membranes to the latter path has long been difficult to estimate. Aquaporins are water channel proteins that are expressed in various membrane compartments of plant cells, including the plasma and vacuolar membranes. Plant aquaporins are encoded by a large multigene family, with 35 members in Arabidopsis thaliana, and many of these aquaporins show a cell-specific expression pattern in the root. Mercury acts as an efficient blocker of most aquaporins and has been used to demonstrate the significant contribution of water channels to overall root water transport. Aquaporin-rich membranes may be needed to facilitate intense water flow across root tissues and may represent critical points where an efficient and spatially restricted control of water uptake can be exerted. Roots, in particular, show a remarkable capacity to alter their water permeability over the short term (i.e. in a few hours to less than 2-3 d) in response to many stimuli, such as day/night cycles, nutrient deficiency or stress. Recent data suggest that these rapid changes can be mostly accounted for by changes in cell membrane permeability and are mediated by aquaporins. Although the processes that allow perception of environmental changes by root cells and subsequent aquaporin regulation are nearly unknown, the study of root aquaporins provides an interesting model to understand the regulation of water transport in plants and sheds light on the basic mechanisms of water uptake by roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号