首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an outbreak of hospital infection caused by Klebsiella aerogenes type K-16 isolates over a 3-month period carried, apparently unaltered, a cryptic 90-Megadalton (Md) plasmid (unclassified) and a multiple-resistance 65-Md plasmid of IncM. The IncM plasmid, identified in environmentally related strains of Citrobacter koseri and Escherichia coli, showed minor variations from that in the klebsiella vector. The IncM plasmids, as well as all wild host strains cured of the IncM plasmids, carried a transposable DNA sequence, encoding trimethoprim and, in every case but one, streptomycin resistance. This transposon appeared identical with Tn7, previously identified in unrelated plasmids in bacteria from different environments.  相似文献   

2.
Salmonella typhi, the causative agent of typhoid fever, annually infects 16 million people and kills 600 000 world wide. Plasmid-encoded multiple drug resistance in S.typhi is always encoded by plasmids of incompatibility group H (IncH). The complete DNA sequence of the large temperature-sensitive conjugative plasmid R27, the prototype for the IncHI1 family of plasmids, has been compiled and analyzed. This 180 kb plasmid contains 210 open reading frames (ORFs), of which 14 have been previously identified and 56 exhibit similarity to other plasmid and prokaryotic ORFs. A number of insertion elements were found, including the full Tn10 transposon, which carries tetracycline resistance genes. Two transfer regions, Tra1 and Tra2, are present, which are separated by a minimum of 64 kb. Homologs of the DNA-binding proteins TlpA and H-NS that act as temperature-regulated repressors in other systems have been located in R27. Sequence analysis of transfer and replication regions supports a mosaic-like structure for R27. The genes responsible for conjugation and plasmid maintenance have been identified and mechanisms responsible for thermosensitive transfer are discussed.  相似文献   

3.
Although it is generally assumed that mobile genetic elements facilitate the adaptation of microbial communities to environmental stresses, environmental data supporting this assumption are rare. In this study, river sediment samples taken from two mercury-polluted (A and B) and two nonpolluted or less-polluted (C and D) areas of the river Nura (Kazakhstan) were analyzed by PCR for the presence and abundance of mercury resistance genes and of broad-host-range plasmids. PCR-based detection revealed that mercury pollution corresponded to an increased abundance of mercury resistance genes and of IncP-1β replicon-specific sequences detected in total community DNA. The isolation of IncP-1β plasmids from contaminated sediments was attempted in order to determine whether they carry mercury resistance genes and thus contribute to an adaptation of bacterial populations to Hg pollution. We failed to detect IncP-1β plasmids in the genomic DNA of the cultured Hg-resistant bacterial isolates. However, without selection for mercury resistance, three different IncP-1β plasmids (pTP6, pTP7, and pTP8) were captured directly from contaminated sediment slurry in Cupriavidus necator JMP228 based on their ability to mobilize the IncQ plasmid pIE723. These plasmids hybridized with the merRTΔP probe and conferred Hg resistance to their host. A broad host range and high stability under conditions of nonselective growth were observed for pTP6 and pTP7. The full sequence of plasmid pTP6 was determined and revealed a backbone almost identical to that of the IncP-1β plasmids R751 and pB8. However, this is the first example of an IncP-1β plasmid which had acquired only a mercury resistance transposon but no antibiotic resistance or biodegradation genes. This transposon carries a rather complex set of mer genes and is inserted between Tra1 and Tra2.  相似文献   

4.
Antibiotic resistance plasmids from staphylococci and soil bacilli have been isolated and compared. A tetracycline resistance (Tcr) plasmid, indistinguishable from pT181, which is typical of Tcr plasmids that are widely dispersed among human clinical isolates of S. aureus, has been found also in bovine mastitis isolates. This plasmid, however, shows no detectable homology to a family of related Tcr plasmids, typified by pBC16, that is widely dispersed among aerobic spore-forming bacilli. However, and rather unexpectedly, pBC16 is highly homologous to and incompatible with pUB110, an S. aureus plasmid specifying kanamycin resistance. The two plasmids are homologous except for the region occupied by their resistance determinants, which has the appearance of a heterologous substitution. These results suggest the occurrence of natural plasmid transfer between staphylococci and soil bacilli.  相似文献   

5.
The 46.4-kb nucleotide sequence of pSK41, a prototypical multiresistance plasmid from Staphylococcus aureus, has been determined, representing the first completely sequenced conjugative plasmid from a gram-positive organism. Analysis of the sequence has enabled the identification of the probable replication, maintenance, and transfer functions of the plasmid and has provided insights into the evolution of a clinically significant group of plasmids. The basis of deletions commonly associated with pSK41 family plasmids has been investigated, as has the observed insertion site specificity of Tn552-like β-lactamase transposons within them. Several of the resistance determinants carried by pSK41-like plasmids were found to be located on up to four smaller cointegrated plasmids. pSK41 and related plasmids appear to represent a consolidation of antimicrobial resistance functions, collected by a preexisting conjugative plasmid via transposon insertion and IS257-mediated cointegrative capture of other plasmids.  相似文献   

6.
《Gene》1996,171(1):9-17
A striking feature of recent outbreaks of vancomycin-resistant (VmR) enterococci is the apparent horizontal dissemination of resistance determinants. The plasmids pHKK702 and pHKK703 from Enterococcus faecium clinical isolate R7 have been implicated in the conjugal transfer of VmR. pHKK702 is a 41-kb plasmid that contains an element indistinguishable from the glycopeptide-resistance transposon Tn1546. pHKK703 is an approx. 55-kb putative sex pheromone-response plasmid that is required for conjugative mobilization of pHKK702. During experiments in which strain R7 was used as a donor, a highly conjugative VmR transconjugant was isolated that formed constitutive cellular aggregates. Restriction analyses and DNA hybridizations revealed that the transconjugant harbored a single plasmid of approx. 92 kb and this plasmid (pHKK701) was composed of DNA from both pHKK702 and pHKK703. Results from DNA sequence analyses showed that a 39-kb composite transposon (Tn5506) from pHKK702 had inserted into pHKK703. The left end of Tn5506 contained a single insertion sequence (IS) element, IS1216V2, whereas the right end was composed of a tandem IS structure consisting of the novel 1065-bp IS1252 nested within an IS1216V1 element. Transposition of Tn5506 from pHKK702 to pHKK703 created an 8-bp target sequence duplication at the site of insertion and interrupted an ORF (ORFX) that was 91% identical to that of prgX, a gene proposed to negatively regulate sex pheromone response of the E. faecalis plasmid, pCF10. We propose that the interruption of ORFX by Tn5506 led to the constitutive cellular aggregation phenotype and thereby enhanced the efficiency with which VmR was transferred. Similar IS1216V-mediated transposition events may contribute to the horizontal spread of glycopeptide resistance among enterococci in nature.  相似文献   

7.
Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.  相似文献   

8.
《Plasmid》1986,15(2):119-131
A set of plasmids conferring resistance to several antibiotics, including the combination of trimethoprim and sulfamethoxazole, has been isolated from Escherichia coli following conjugative cotransfer from a clinical isolate of Shigella flexneri 2a. One of the plasmids, pCN1, was shown by subcloning and DNA sequencing to carry a gene encoding a trimethoprim-insensitive dihydrofolate reductase identical to that found in E. coli transposon 7. This plasmid was also shown to confer resistance to both streptomycin and spectinomycin by production of an adenylyltransferase that inactivated the drugs and the gene encoding this enzyme has also been sequenced. A second plasmid from the set, pCN2, was shown to inactivate streptomycin by a phosphotransferase mechanism and also to confer resistance to sulfonamides. The third plasmid from the set could not be correlated with a drug-resistance phenotype, but does appear to play a crucial role in plasmid mobilization.  相似文献   

9.
The plasmid-encoded quinolone resistance gene qnrS1 was recently found to be commonly associated with ciprofloxacin resistance in Nigeria. We mapped the qnrS1 gene from an Escherichia coli isolate obtained in Nigeria to a 43.5 Kb IncX2 plasmid. The plasmid, pEBG1, was sufficient to confer ciprofloxacin non-susceptibility, as well as tetracycline and trimethoprim resistance, on E. coli K-12. Deletion analysis confirmed that qnrS1 accounted for all the ciprofloxacin non-suceptibility conferred by pEBG1 and tetracycline and trimethoprim resistance could be attributed to tetAR and dfrA14 genes respectively. While it contained a complete IncX conjugation system, pEBG1 was not self-transmissible likely due to an IS3 element inserted between the pilX5 and pilX6 genes. The plasmid was however efficiently mobilizable. pEBG1 was most similar to another qnrS1-bearing IncX2 plasmid from Nigeria, but both plasmids acquired qnrS1 independently and differ in their content of other resistance genes. Screening qnrS1–positive isolates from other individuals in Nigeria revealed that they carried neither pEBG1 nor pNGX2-QnrS1 but that IncX plasmids were prevalent. This study demonstrates that the IncX backbone is a flexible platform that has contributed to qnrS1 dissemination in Nigeria.  相似文献   

10.
Eight of 40 strains of Streptococcus lactis and S. lactis subsp. diacetylactis were able to conjugally transfer a degree of phage insensitivity to Streptococcus lactis LM0230. Transconjugants from one donor strain, S. lactis subsp. diacetylactis 4942, contained a 106-kilobase (kb) cointegrate plasmid, pAJ1106. The plasmid was conjugative (Tra+) and conferred phage insensitivity (Hsp) and lactose-fermenting ability (Lac) in S. lactis and Streptococcus cremoris transconjugants. The phage resistance mechanism was effective against prolate- and small isometric-headed phages at 30°C. In S. lactis transconjugants, the phage resistance mechanism was considerably weakened at elevated temperatures. A series of deletion plasmids was isolated from transconjugants in S. cremoris 4854. Deletion plasmids were pAJ2074 (74 kb), Lac+, Hsp+, Tra+; pAJ3060 (60 kb), Lac+, Hsp+; and pAJ4013 (13 kb), Lac+. These plasmids should facilitate mapping Hsp and tra genes, with the aim of constructing phage-insensitive strains useful to the dairy industry.  相似文献   

11.
Tn554: Isolation and characterization of plasmid insertions   总被引:15,自引:0,他引:15  
Tn554, a transposon in Staphylococcus aureus that carries determinants of spectinomycin resistance and inducible macrolide-lincosamide resistance, is characterized by a highly efficient transposition, exceptional site specificity for insertion, and inhibition of transposition by a copy of the transposon inserted at its preferred chromosomal site. In this communication we describe the characteristics of a number of rare, secondary-site insertions of Tn554 into several related penicillinase plasmids. These plasmid insertions display considerable variation in the frequencies with which they can act as transposon donors, as well as in the frequencies at which they undergo apparently precise excision. Transposition from the plasmid transposon donors is ordinarily a duplicative process and these subsequent transposition events always return Tn554 to its preferred site in the S. aureus chromosome; such derivatives are indistinguishable from the primary chromosomal insertion from which they were originally derived. We also report an unusual relationship between Tn554 and the transducing phage, φ11, in which Tn554 is frequently transferred independently of its plasmid carrier. We suggest that the bacteriophage may play an important role in the mobility of Tn554, in addition to the usual transduction mechanism, in a process that we have referred to as “hitchhiking.”  相似文献   

12.
Although it is generally assumed that mobile genetic elements facilitate the adaptation of microbial communities to environmental stresses, environmental data supporting this assumption are rare. In this study, river sediment samples taken from two mercury-polluted (A and B) and two nonpolluted or less-polluted (C and D) areas of the river Nura (Kazakhstan) were analyzed by PCR for the presence and abundance of mercury resistance genes and of broad-host-range plasmids. PCR-based detection revealed that mercury pollution corresponded to an increased abundance of mercury resistance genes and of IncP-1beta replicon-specific sequences detected in total community DNA. The isolation of IncP-1beta plasmids from contaminated sediments was attempted in order to determine whether they carry mercury resistance genes and thus contribute to an adaptation of bacterial populations to Hg pollution. We failed to detect IncP-1beta plasmids in the genomic DNA of the cultured Hg-resistant bacterial isolates. However, without selection for mercury resistance, three different IncP-1beta plasmids (pTP6, pTP7, and pTP8) were captured directly from contaminated sediment slurry in Cupriavidus necator JMP228 based on their ability to mobilize the IncQ plasmid pIE723. These plasmids hybridized with the merRTDeltaP probe and conferred Hg resistance to their host. A broad host range and high stability under conditions of nonselective growth were observed for pTP6 and pTP7. The full sequence of plasmid pTP6 was determined and revealed a backbone almost identical to that of the IncP-1beta plasmids R751 and pB8. However, this is the first example of an IncP-1beta plasmid which had acquired only a mercury resistance transposon but no antibiotic resistance or biodegradation genes. This transposon carries a rather complex set of mer genes and is inserted between Tra1 and Tra2.  相似文献   

13.
Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc) A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.  相似文献   

14.
The IncX family of plasmids has recently been expanded to include at least four subtypes, IncX1–IncX4. The revised classification provides an opportunity for improving our understanding of the sequence diversity of the IncX plasmids and the resistance genes they carried. We described the complete nucleotide sequence of a novel IncX3 plasmid, pKPC-NY79 (42,447 bp) from a sequence-type 258 Klebsiella pneumoniae strain that was isolated from a patient who was hospitalized in New York, United States. In pKPC-NY79, the plasmid scaffold and genetic load region were highly similar to homologous regions in pIncX-SHV (IncX3, JN247852) and the bla KPC carrying pKpQIL (IncFIIk, GU595196), respectively, indicating that it has possibly arisen through recombination of plasmids. The bla KPC-2 gene, as part of a transposon Tn4401a, was found within the genetic load region. The backbone of pKPC-NY79 differs from pIncX-SHV by a deletion involving the gene tandem hnstopB (encoding H-NS protein and topoisomerase III, respectively) and a putative ATPase gene. Unexpectedly, the impact of the hnstopB deletion on host fitness and plasmid stability was found to be small. In conclusion, the findings contribute to a better understanding of the plasmid platforms carrying bla KPC and of variations in the backbone of the IncX3 plasmids.  相似文献   

15.
We determined the complete nucleotide sequence of conjugative plasmid pUM505 isolated from a clinical strain of Pseudomonas aeruginosa. The plasmid had a length of 123,322 bp and contained 138 complete coding regions, including 46% open reading frames encoding hypothetical proteins. pUM505 can be considered a hybrid plasmid because it presents two well-defined regions. The first region corresponded to a larger DNA segment with homology to a pathogenicity island from virulent Pseudomonas strains; this island in pUM505 was comprised of genes probably involved in virulence and genes encoding proteins implicated in replication, maintenance and plasmid transfer. Sequence analysis identified pil genes encoding a type IV secretion system, establishing pUM505 as a member of the family of IncI1 plasmids. Plasmid pUM505 also contained virB4/virD4 homologues, which are linked to virulence in other plasmids. The second region, smaller in length, contains inorganic mercury and chromate resistance gene clusters both flanked by putative mobile elements. Although no genes for antibiotic resistance were identified, when pUM505 was transferred to a recipient strain of P. aeruginosa it conferred resistance to the fluoroquinolone ciprofloxacin. pUM505 also conferred resistance to the superoxide radical generator paraquat. pUM505 could provide Pseudomonas strains with a wide variety of adaptive traits such as virulence, heavy-metal and antibiotic resistance and oxidative stress tolerance which can be selective factors for the distribution and prevalence of this plasmid in diverse environments, including hospitals and heavy metal contaminated soils.  相似文献   

16.
Transposons Tn501 (specifying mercury resistance) and Tn7 (specifying resistance to trimethoprim and streptomycin) were introduced into extra-slow-growing Rhizobium japonicum by conjugal transfer of the 82 kilobase chimeric plasmid pUW942. Mercury-resistant transconjugants were obtained at a frequency of 10−7 to 10−9. The transfer frequency of streptomycin resistance was lower than that of mercury resistance, and Tn7 was relatively unstable. pUW942 was not maintained as an autonomously replicating plasmid in R. japonicum strains. However, some of the Hgr transconjugants from the RJ19FY, RJ17W, and RJ12S strains acquired antibiotic markers of the vector plasmid pUW942. Southern hybridization of plasmid and chromosomal DNA of R. japonicum strains with 32P-labeled pUW942 and pAS8Rep-1, the same plasmid as pUW942 except that it does not contain Tn501, revealed the formation of cointegrates between pUW942 and the chromosome of R. japonicum. More transconjugants with only Tn501 insertions in plasmids or the chromosome were obtained in crosses with strains RJ19FY and RJ17W than with RJ12S. These retained stable Hgr both in plant nodules and under nonselective in vitro growth conditions. One of the RJ19FY and two of the RJ12S Hgr transconjugants with vector plasmid-chromosome cointegrates conjugally transferred plasmids of 82, 84 or 86, and 90 kilobases, respectively, into plasmidless Escherichia coli C. These plasmids strongly hybridized to pUW942 and EcoRI digests of total DNA of each respective R. japonicum strain but not to indigenous plasmid DNA of the R. japonicum strains. These R′ plasmids consisted of pUW942-specific EcoRI fragments and an additional one or two new fragments derived from the R. japonicum chromosome.  相似文献   

17.
A recombinant plasmid isolated from a Mycobacterium fortuitum genomic library by selection for gentamicin and 2-N′-ethylnetilmicin resistance conferred low-level aminoglycoside and tetracycline resistance when introduced into M. smegmatis. Further characterization of this plasmid allowed the identification of the M. fortuitum tap gene. A homologous gene in the M. tuberculosis H37Rv genome has been identified. The M. tuberculosis tap gene (Rv1258 in the annotated sequence of the M. tuberculosis genome) was cloned and conferred low-level resistance to tetracycline when introduced into M. smegmatis. The sequences of the putative Tap proteins showed 20 to 30% amino acid identity to membrane efflux pumps of the major facilitator superfamily (MFS), mainly tetracycline and macrolide efflux pumps, and to other proteins of unknown function but with similar antibiotic resistance patterns. Approximately 12 transmembrane regions and different sequence motifs characteristic of the MFS proteins also were detected. In the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), the levels of resistance to antibiotics conferred by plasmids containing the tap genes were decreased. When tetracycline accumulation experiments were carried out with the M. fortuitum tap gene, the level of tetracycline accumulation was lower than that in control cells but was independent of the presence of CCCP. We conclude that the Tap proteins of the opportunistic organism M. fortuitum and the important pathogen M. tuberculosis are probably proton-dependent efflux pumps, although we cannot exclude the possibility that they act as regulatory proteins.  相似文献   

18.
Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), remains a serious global health concern. Since their emergence in the mid-1970s multi-drug resistant (MDR) S. Typhi now dominate drug sensitive equivalents in many regions. MDR in S. Typhi is almost exclusively conferred by self-transmissible IncHI1 plasmids carrying a suite of antimicrobial resistance genes. We identified over 300 single nucleotide polymorphisms (SNPs) within conserved regions of the IncHI1 plasmid, and genotyped both plasmid and chromosomal SNPs in over 450 S. Typhi dating back to 1958. Prior to 1995, a variety of IncHI1 plasmid types were detected in distinct S. Typhi haplotypes. Highly similar plasmids were detected in co-circulating S. Typhi haplotypes, indicative of plasmid transfer. In contrast, from 1995 onwards, 98% of MDR S. Typhi were plasmid sequence type 6 (PST6) and S. Typhi haplotype H58, indicating recent global spread of a dominant MDR clone. To investigate whether PST6 conferred a selective advantage compared to other IncHI1 plasmids, we used a phenotyping array to compare the impact of IncHI1 PST6 and PST1 plasmids in a common S. Typhi host. The PST6 plasmid conferred the ability to grow in high salt medium (4.7% NaCl), which we demonstrate is due to the presence in PST6 of the Tn6062 transposon encoding BetU.  相似文献   

19.
An environmental isolate of Salmonella typhi was chromosomally marked with a gfp gene encoding green fluorescence protein (GFP) isolated from Aequorea victoria. The hybrid transposon mini-Tn5 gfp was transconjugated from E. coli to S. typhi, resulting in constitutive GFP production. The survival of S. typhi GFP155 introduced into groundwater and pond water microcosms was examined by GFP-based plate counts, total cell counts, and direct viable counts. A comparison between GFP-based direct viable counts and plate counts was a good method for verifying the viable, but non-culturable (VBNC), state of S. typhi. The entry into a VBNC state of S. typhi was shown in all microcosms. S. typhi survived longer in groundwater than in pond water as both a culturable and a VBNC state.  相似文献   

20.
Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3’-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号