首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unstable allele sh-m6233 caused by insertion of the transposable element Ds into the sucrose synthase gene of maize, was cloned. The mutation is caused by the insertion of an ˜4 kb DNA segment, consisting of two identical Ds elements of ˜2000 bp length, of which one is inserted into the center of the other in inverted orientation. This structure is, at the level of restriction mapping and partial DNA sequencing, identical to the double Ds element found in a larger insert in the mutant allele sh-m5933. 8 bp of host DNA are duplicated upon insertion. In a revertant, a 6-bp duplication is retained.  相似文献   

2.
Summary A mouse dihydrofolate reductase gene (DHFR), encoding an enzyme conferring methotrexate (MTX) resistance, under the control of the cauliflower mosaic virus (CaMV) 35 S promoter, was inserted within a maize nonautonomous Ds transposable element. The presence of at least one element (Ds-DHFR) can easily be monitored using methotrexate selection in plants. This chimeric element is able to transpose at a frequency similar to its unmodified progenitor in transgenic tobacco callus containing an autonomous Ac element. The orientation of the selectable marker cassette in the Ds element does not affect relative excision frequencies. Approximately two-thirds of these elements can be detected after excision while the remaining one-third cannot. The Ds-DHFR element is useful in elucidating the mechanism by which Ac/Ds transposition occurs, and allows for a rapid identification of mutants in which methotrexate resistance cosegregates with a mutant phenotype.  相似文献   

3.
Summary The regulatory mutation bronze mutable 4 Derivative 6856 (bz-m4 D6856) contains a complex 6.7 kb Dissociation (Ds) element tagged with a duplication of low copy bz 3 flanking sequences (Klein et al. 1988). This creates a unique opportunity to study the transposition of a single member of the repetitive family of Ds elements. Eighteen full purple revertants (Bz alleles) of bz-m4 were characterized enzymatically and by genomic mapping. For 17 of the Bz alleles, reversion to a wild-type phenotype was caused by excision of the 6.7 kb Ds transposon. Nine of these Bz alleles retained the transposon somewhere in their genome. In this study we show that like Ac (Schwartz 1989; Dooner and Belachew 1989), the 6.7 kb Ds element can transpose within a short physical distance, both proximal and distal to its original position. Additional bz sequences have been mapped immediately distal to the mutant locus in bz-m4 D6856; genetic evidence suggests these are flanked by two additional Ds elements. The remaining Bz revertant, Bz :107, arose from excision of a more complex 13 kb Ds element.  相似文献   

4.
Summary Modified Ac and Ds elements, in combination with dominant markers (to facilitate monitoring of excision, reinsertion and segregation of the elements) were introduced into Arabidopsis thaliana ecotype Landsberg erecta. The frequencies of somatic and germinal transactivation of the Ds elements were monitored using a streptomycin resistance assay. Transactivation was significantly higher from a stable Ac (sAc) carrying a 537 by deletion of the CpG-rich 5 untranslated leader of the transposase mRNA than from a wild-type sAc. However, substitution of the central 1.77 kb of the transposase open reading frame (ORF) with a hygromycin resistance marker did not alter the excision frequency of a Ds element. -Glucuronidase (GUS) or iaaH markers were linked to the transposase source to allow the identification of plants in which the transposase source had segregated away from the transposed Ds element, eliminating the possibility of somatic or germinal re-activation. Segregation of the excision marker, Ds and sAc was monitored in the progeny of plants showing germinal excision of Ds. 29% of the plants inheriting the excision marker carried a transposed Ds element.  相似文献   

5.
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events.  相似文献   

6.
The bz-m1 mutation in maize was one of the first to arise by direct transposition of the chromosome-breaking Ds element from its original or `standard' location in chromosome 9S to a known locus in the same chromosome arm. Thus, elucidation of its structure should shed light on the nature of the original Ds element described by McClintock in 1948. The Ds insertion in bz-m1 has been reported to be only 1.2 kb long – much shorter than other chromosome-breaking Ds elements that have been described. We have characterized here the Ds element in our bz-m1 stocks and have confirmed by genetic and molecular tests that, in the presence of Ac, it acts as a chromosome breaker. The Ds insertion at bz-m1 is 1260 bp long. Besides its normal 5′ and 3′ ends, it contains an internal 3′ end at the same junction as the chromosome-breaking double Ds element that has been found in several sh mutations. Thus, it appears to have arisen from the 4.1-kb double Ds by internal deletion of 2.9 kb. Because the element has lost one internal 5′ end, but retains the chromosome-breaking properties of double Ds, we have named it sesqui-Ds (sDs). The origin, structure and properties of sDs vis-à-vis double Ds support the hypothesis that double Ds corresponds to the chromosome-breaking Ds element at the `standard' location in 9S. Received: 10 March 1997 / Accepted: 2 May 1997  相似文献   

7.
The maize Ac/Dstransposable elements, which belong to the hAT transposon superfamily, are widely used as insertional mutagens in numerous plant species. Molecular studies suggest that Ac/Ds elements transpose in a conservative non-replicative fashion; however the molecular mechanism of transposition remains unclear. We describe here the identification of an unusual Ds element, Ds-mmd1, in a transgenic Arabidopsis line. Ds-mmd1 is rearranged relative to the original Ds element, such that the original 5 and 3 ends are internal and previously internal sequences are the new 5 and 3 termini of Ds-mmd1. Short duplications of plant genomic DNA and Ds sequences are present at the Ds-mmd1 junctions, suggesting that a circular Dsmolecule was part of the events that created the Ds-mmd1 element. In addition, a revertant analysis on mmd1 plants demonstrated that Ds-mmd1 can be eliminated from the genome in an Ac-dependent process.  相似文献   

8.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

9.
The maize transposable element, Activator (Ac), is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. In this paper, we describe somatic and germinal transactivation of Ds by chimeric transposase genes in whole plants. Constructs containing either the Ds element or the Ac transposase open reading frame (ORF) were introduced into lettue. The Ds element was located between either the 35S or the Nos promoter and a chimeric spectinomycin resistance gene (which included a transit peptide), preventing expression of spectinomycin resistance. The genomic coding region of the Ac transposase was expressed from the 35S promoter. Crosses were made between 104 independent R1 plants containing Ds and three independent R1 plants expressing transposase. The excision of Ds in F1 progenies was monitored using a phenotypic assay on spectinomycin-containing medium. Green sectors in one-third of the F1 families indicated transactivation of Ds by the transposase at different developmental stages and at different frequencies in lettuce plants. Excision was confirmed using PCR and by Southern analysis. The lack of green sectors in the majority of F1 families suggests that the majority of T-DNA insertion sites are not conducive to excision. In subsequent experiments, the F1 plants containing both Ds and the transposase were grown to maturity and the F2 seeds screened on medium containing spectinomycin. Somatic excision was again observed in several F2 progeny; however, evidence for germinal excision was observed in only one F2 family.  相似文献   

10.
The maize transposable element Activator (Ac) is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. Two constructs containing the complete Ac from the waxy-m7 locus of maize were introduced into lettuce and monitored for activity using Southern analysis and PCR amplification of the excision site. No transposition of Ac was detected in over 32 transgenic R1 plants, although these constructs were known to provide frequent transposition in other species. Also, no transposition was observed in later generations. In subsequent experiments, transposition was detected in lettuce calli using constructs that allowed selection for excision events. In these constructs, the neomycin phosphotransferase II gene was interrupted by either Ac or Ds. Excision was detected as the ability of callus to grow on kanamycin. Synthesis of the transposase from the cDNA of Ac expressed from the T-DNA 2 promoter resulted in more frequent excision of Ds than was observed with the wild-type Ac. No excision was observed with Ds in the absence of the transposase. The excision events were confirmed by amplification of the excision site by PCR followed by DNA sequencing. Excision and reintegration were also confirmed by Southern analysis. Ac/Ds is therefore capable of transposition in at least calli of lettuce.  相似文献   

11.
The targeted (or directed) tagging is a strategy aimed to mobilize a tranposon into a specific gene (target). Only a very few Arabidopsis genes have been tagged by this way, thus the efficiency of the strategy, as well as the diversity of the alleles obtained are not well documented. We have used a maize Ds element in a directed tagging of HY2. The starting Ds element, located 22kb proximal to HY2, has been remobilized in a cross with an Ac transposase source line. From the F2 progeny of 4800 F1 we phenotypically isolated seven hy2 mutants. Molecular analysis of these alleles revealed that two contained a Ds element in HY2 and were instable, three have a large deletion that partially or completely removed HY2, one has a footprint in a HY2 exon and one leaky allele consisted of a 22 kb inversion upstream the HY2 coding sequence. Thus, the transposon-based directed tagging strategy generates a wide diversity of tagged and non-tagged alleles that can be used to generate allelic series or deletion of clustered genes.  相似文献   

12.
Transposition depends on DNA sequences located at or near the termini of the transposon. In the maize transposable element Ds, these sequences were studied by site-directed mutagenesis followed by a transient excision assay in Petunia protoplasts. The transposase-binding AAACGG motifs found in large numbers in the element are important, but none of them is in itself indispensable, for excision. However, mutation of an isolated motif at the 3 end considerably reduced excisability. The inverted termini were confirmed to be indispensable. Point mutations in regions outside the inverted termini of Ds and not located in the transposase-binding motifs had, in some cases, a pronounced effect on excision frequency. The implications of these findings are discussed.  相似文献   

13.
For the development of an efficient transposon tagging strategy it is important to generate populations of plants containing unique independent transposon insertions that will mutate genes of interest. To develop such a transposon system in diploid potato the behavior of the autonomous maize transposable element Ac and the mobile Ds element was studied. A GBSS (Waxy) excision assay developed for Ac was used to monitor excision in somatic starch-forming tissue like tubers and pollen. Excision of Ac results in production of amylose starch that stains blue with iodine. The frequency and patterns of blue staining starch granules on tuber slices enabled the identification of transformants with different Ac activity. After excision the GBSS complementation was usually not complete, probably due to the segment of DNA flanking Ac that is left behind in the GBSS gene. Molecular and phenotypic analyses of 40 primary transformants classified into 4 phenotypic classes revealed reproducible patterns. A very high percentage (32.5%) of the primary transformants clearly showed early excision in the first transformed cell as displayed both by the analysis of the GBSS excision marker gene as well as DNA blot analyses. Genotypes useful for tagging strategies were used for crosses and the frequency of independent germinal transpositions was assessed. In crosses to Ds genotypes, excision of Ds was revealed that correlated to the activity of the Ac genotype. A line displaying Ac amplification to multiple copies conferred a high frequency of independent Ds transpositions. The genotypes described here are useful in somatic insertion mutagenesis aimed at the isolation of tagged mutations in diploid potato.  相似文献   

14.
The bz-m1 mutation in maize was one of the first to arise by direct transposition of the chromosome-breaking Ds element from its original or `standard' location in chromosome 9S to a known locus in the same chromosome arm. Thus, elucidation of its structure should shed light on the nature of the original Ds element described by McClintock in 1948. The Ds insertion in bz-m1 has been reported to be only 1.2 kb long – much shorter than other chromosome-breaking Ds elements that have been described. We have characterized here the Ds element in our bz-m1 stocks and have confirmed by genetic and molecular tests that, in the presence of Ac, it acts as a chromosome breaker. The Ds insertion at bz-m1 is 1260?bp long. Besides its normal 5′ and 3′ ends, it contains an internal 3′ end at the same junction as the chromosome-breaking double Ds element that has been found in several sh mutations. Thus, it appears to have arisen from the 4.1-kb double Ds by internal deletion of 2.9 kb. Because the element has lost one internal 5′ end, but retains the chromosome-breaking properties of double Ds, we have named it sesqui-Ds (sDs). The origin, structure and properties of sDs vis-à-vis double Ds support the hypothesis that double Ds corresponds to the chromosome-breaking Ds element at the `standard' location in 9S.  相似文献   

15.
The Ac/Ds transposon system of maize shows low activity in Arabidopsis. However, fusion of the CaMV 35S promoter to the transposase gene (35S::TPase) increases the abundance of the single Ac mRNA encoded by Ac and increases the frequency of Ds excision. In the experiments reported here it is examined whether this high excision frequency is associated with efficient re-insertion of the transposon. This was measured by using a Ds that carried a hygromycin resistance gene (HPT) and was inserted within a streptomycin resistance gene (SPT). Excision of Ds therefore gives rise to streptomycin resistance, while hygromycin resistance is associated with the presence of a transposed Ds or with retention of the element at its original location. Self-fertilisation of most individuals heterozygous for Ds and 35S::TPase produced many streptomycin-resistant (strepr) progeny, but in many of these families a small proportion of strepr seedlings were also resistant to hygromycin (hygr). Nevertheless, 70% of families tested did give rise to at least one strepr, hygr seedling, and over 90% of these individuals carried a transposed Ds. In contrast, the Ac promoter fusion to the transposase gene (Ac::TPase) produced fewer streprhygr progeny, and only 53% of these carried a transposed Ds. However, a higher proportion of the strepr seedlings were also hygr than after activation by 35S::TPase. We also examined the genotype of strepr, hygr seedlings and demonstrated that after activation by 35S::TPase many of these were homozygous for the transposed Ds, while this did not occur after activation by Ac::TPase. From these and other data we conclude that excisions driven by 35S::TPase usually occur prior to floral development, and that although a low proportion of strepr progeny plants inherit a transposed Ds, those that do can be efficiently selected with an antibiotic resistance gene contained within the element. Our data have important implications for transposon tagging strategies in transgenic plants and these are discussed.  相似文献   

16.
Antibiotic resistance genes can act as either cell autonomous or non-cell autonomous genetic markers with which to monitor the excision of plant transposons. To convert spectinomycin resistance from a noncell autonomous resistance to cell autonomous resistance, a transit peptide for chloroplast localization from a petunia ribulose bisphosphate carboxylase (rbcS) gene was fused in-frame to the aadA gene, which confers spectinomycin and streptomycin resistance. Constructs were generated in which the expression of this chimeric gene was prevented by the presence, in the 5 untranslated leader, of the maize transposons Activator (Ac) or Dissociation (Ds). When progeny of tobacco or tomato plants transformed with these constructs were germinated on spectinomycin-containing medium, germinally revertant and somatically variegated individuals could be distinguished.  相似文献   

17.
Summary Two different factors control the mutability of an unstable allele (c2-m8810581) of the C2 gene of maize. Both an autonomous En/Spm element and an unrelated independent factor, named Mediator, are coordinately required for the excision of the insert in c2-m881058Y. According to genetic analysis, Mediator does not have the suppressor (S) function or mutator (M) function of En/Spm. Mediator has no effect on the timing or frequency of excision of Enl, En-low, or various I/dSpm elements. Hence, Mediator only mediates a specific interaction between En and the insert at c2m881058Y. Molecular analysis of c2-m881058Y has revealed a 3.3 kb, complex, En-related receptor element inserted into the second exon of the C2 gene. The ends of this element are homologous to the ends of En/Spm, but an internal l.7 kb region shows no En/Spm homology. A great degree (11–14%) of nucleotide changes, relative to Enl, occur within and between the 12 bp TNPA binding motifs. Alterations of these critical cis-determinants may account for the need for a helper factor for excision. This element is named Irma, for Inhibitor that requires Mediator also, and represents a unique, low copy number class of receptor element.  相似文献   

18.
We have developed a novel four-element based gene tagging system in Arabidopsis to minimize the number of starter lines required to generate genome-wide insertions for saturation mutagenesis. In this system, the non-autonomous cassette, Ds(dSpm), comprises of both Ds and dSpm elements cloned one within the other along with appropriate selection markers to allow efficient monitoring of excision and re-integration of the transposons. Trans-activation of the outer borders (Ds) and selection against the negative selection marker (iaaH) linked to the cassette ensures unlinked spread of the Ds(dSpm) cassette from the initial site of integration of the T-DNA. This creates several launch pads within the genome from where the internal element (dSpm) can be subsequently mobilized to generate secondary insertions. In this study, starting from a single T-DNA integration we could spread the Ds(dSpm) cassette to 11 different locations over all the five chromosomes of Arabidopsis. The frequency of unlinked Ds transpositions in the F2 generation varied between 0.05 and 3.35%. Three of these lines were then deployed to trans-activate the internal dSpm element which led to the selection of 29 dSpm insertions. The study conclusively shows the feasibility of deploying Ds and the dSpm elements in a single construct for insertional mutagenesis.  相似文献   

19.
A complete sequence of the rice sucrose synthase-1 (RSs1) gene   总被引:5,自引:0,他引:5  
Using a fragment of the maize sucrose synthase gene Sh-1 as probe, the rice genome was shown to contain at least three genes encoding sucrose synthase. One of these genes was isolated from a genomic library, and its full sequence, including 1.7 kb of 5 flanking sequence and 0.9 kb of 3 flanking sequence, is reported. The new rice gene, designated RSs1, is highly homologous to maize Sh-1 (approx. 94% identity in derived amino acid sequence), and contains an identical intron-exon structure (16 exons and 15 introns). Both RSs1 and maize Sh-1 show similar sequence homologies to a second rice sucrose synthase gene described recently (designated RSs2, Yu et al. (1992) Plant Mol Biol 18: 139–142), although both the rice genes predict an extra 6 amino acids at the C-terminus of the protein when compared to the maize gene. The RSs1 5 flanking sequence contains a number of promoter-like sequences, including putative protein-binding regions similar to maize zein genes.  相似文献   

20.
The Ac elements present in the unstable wxm7 and wx-m9 alleles of maize trigger different patterns of Ds excision in trans. To determine whether this differential regulation is a feature of the Ac alleles themselves or is mediated by genetically distinct factors, maize plants heterozygous for the wx-m7 and wx-m9 alleles were crossed to tester strains homozygous for Ds reporter alleles. Kernels showing the variegation pattern characteristic for the Ac elements carried in the wx-m7 and wx-m9 alleles were found to be present in the ratios expected from the genetic constitution of the strains. The aleurone variegation caused by excision of the Ds reporter element and the endosperm variegation caused by excision of Ac from the wx-m7 and wx-m9 alleles themselves segregated with the original wx-m alleles. In addition, stable Wx and wx derivatives of wx-m9 that have lost Ac no longer exert any trans effect on the wx-m7 allele (and vice versa). Therefore it is concluded that the observed variegation patterns are autonomously determined by specific trans effects of the particular Ac element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号