首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of the neural cell adhesion molecules N-CAM and L1 was investigated in the olfactory system of the mouse using immunocytochemical and immunochemical techniques. In the olfactory epithelium, globose basal cells and olfactory neurons were stained by the polyclonal N-CAM antibody reacting with all three components of N-CAM (N-CAM total) in their adult and embryonic states. Dark basal cells and supporting cells were not found positive for N-CAM total. The embryonic form of N-CAM (E-N-CAM) was only observed on the majority of globose basal cells, the precursor cells of olfactory neurons, and some neuronal elements, probably immature neurons, since they were localized adjacent to the basal cell layer. Differentiated neurons in the olfactory epithelium did not express E-N-CAM. In contrast to N-CAM total, the 180-kDa component of N-CAM (N-CAM180) and E-N-CAM, L1 was not detectable on cell bodies in the olfactory epithelium. L1 and N-CAM180 were strongly expressed on axons leaving the olfactory epithelium. Olfactory axons were also labeled by antibodies to N-CAM180 and L1 in the lamina propria and the nerve fiber and glomerular layers of the olfactory bulb, but only some axons showed a positive immunoreaction for E-N-CAM. Ensheathing cells in the olfactory nerve were observed to bear some labeling for N-CAM total, L1, and N-CAM180, but not E-N-CAM. In the olfactory bulb, L1 was not present on glial cells. In contrast, N-CAM180 was detectable on some glia and N-CAM total on virtually all glia. Glia in the nerve fiber layer were labeled by E-N-CAM antibody only at the external glial limiting membrane. In the glomerular layer, E-N-CAM expression was particularly pronounced at contacts between olfactory axons and target cells. The presence of E-N-CAM in the adult olfactory epithelium and bulb was confirmed by Western blot analysis. The continued presence of E-N-CAM in adulthood on neuronal precursor cells, a subpopulation of olfactory axons, glial cells at the glia limitans, and contacts between olfactory axons and their target cells indicates the retention of embryonic features in the mammalian olfactory system, which may underlie its remarkable regenerative capacity.  相似文献   

2.
B Key  R A Akeson 《Neuron》1991,6(3):381-396
The olfactory neuroepithelium, which contains the primary sensory olfactory neurons, continually undergoes neurogenesis and axonal outgrowth throughout life. We describe here several new olfactory system-specific glycoforms of the neural cell adhesion molecule N-CAM in the frog, R. catesbeiana. Using immunochemical methods for in situ localization, we show that the lectin dolichos biflorus agglutinin (DBA) and two monoclonal antibodies, 9OE and 3A6, detect three unique N-CAM forms present on primary sensory olfactory axons. In addition, DBA and monoclonal antibody 9OE recognize glycoconjugates and/or N-CAM glycoforms expressed specifically in discrete central olfactory pathways and regions in frog brain. This is a novel example of unique adhesion molecule forms present in a chain of two neurons within a vertebrate neural pathway. Together these glycoconjugates and N-CAM glycoforms may participate in cellular interactions associated with olfactory system pathway formation and renewal.  相似文献   

3.
Vertebrate olfactory receptor neurons are unique because they are continually replaced throughout life. They die by apoptosis under physiological conditions at all stages in their life cycle, and the dead olfactory neurons are replaced by the progeny of dividing basal cells. Thus, in the olfactory epithelium apoptosis is involved in tissue homeostasis and may be a direct or indirect trigger of neurogenesis. In this study, we focused on morphological changes occurring in the olfactory epithelium, i.e., degradation of DNA, condensation of nuclear chromatin, condensation of cytoplasm, blebbing of cytoplasmic fragments, and disposal of the dying and dead cells as the final phase of apoptosis. Moreover, we addressed other stages of apoptosis examining the nature of the stimulus that provokes the apoptotic response, the signal or metabolic state, and transduction of the signal that sends the message to the effector apparatus, and the effector or execution phase, which includes the activation of proteases.  相似文献   

4.
5.
During embryogenesis, LHRH neurons arise in the olfactory epithelium, migrate along the olfactory nerve, and enter the forebrain. We have examined the distribution of several cell adhesion molecules (CAMs) in the developing chick olfactory system and brain to determine whether differential distributions of these adhesion molecules might be important in pathway choices made by migrating LHRH neurons. Single- and double-label immunocytochemical studies indicated that high levels of N-CAM and N-cadherin were expressed throughout the olfactory epithelium and not restricted to the medial half of the olfactory epithelium where most of the LHRH neurons originate. Further, high levels of N-CAM, Ng-CAM, and N-cadherin were uniformly expressed throughout the entire olfactory nerve while migrating LHRH neurons were confined to the medial half of the nerve. However, once LHRH neurons reach the brain, they migrate dorsally and caudally, tangential to the medial surface of the forebrain, along a region enriched in N-CAM and Ng-CAM. After this first stage of migration within the brain, LHRH neurons migrate laterally. At this stage, there is no correlation between the intensity of N-CAM and Ng-CAM immunostaining and the location of LHRH neurons. These results suggest that N-CAM, Ng-CAM, and N-cadherin do not play a guiding role in LHRH neuronal migration through the olfactory epithelium and olfactory nerve but that migrating LHRH neurons may follow a "CAM-trail" of N-CAM and Ng-CAM along the medial surface of the forebrain.  相似文献   

6.
mAb-based approaches were used to identify cell surface components involved in the development and function of the frog olfactory system. We describe here a 205-kD cell surface glycoprotein on olfactory receptor neurons that was detected with three mAbs: 9-OE, 5-OE, and 13-OE. mAb 9-OE immunoreactivity, unlike mAbs 5-OE and 13-OE, was restricted to only the axons and terminations of the primary sensory olfactory neurons in the frog nervous system. The 9-OE polypeptide(s) were immunoprecipitated and tested for cross-reactivity with known neural cell surface components including HNK-1, the cell adhesion molecule L1, and the neural cell adhesion molecule (N-CAM). These experiments revealed that 9-OE-reactive molecules were not L1 related but were a subset of the 200-kD isoforms of N-CAM. mAb 9-OE recognized epitopes associated with N-linked carbohydrate residues that were distinct from the polysialic acid chains present on the embryonic form of N-CAM. Moreover, 9-OE N-CAM was a heterogeneous population consisting of subsets both with and without the HNK-1 epitope. Thus, combined immunohistochemical and immunoprecipitation experiments have revealed a new glycosylated form of N-CAM unique to the olfactory system. The restricted spatial expression pattern of this N-CAM glycoform suggests a possible role in the unusual regenerative properties of this sensory system.  相似文献   

7.
Adult neurogenesis is a characteristic feature of the olfactory pathways of decapod crustaceans. In crayfish and clawed lobsters, adult-born neurons are the progeny of precursor cells with glial characteristics located in a neurogenic niche on the ventral surface of the brain. The daughters of these precursor cells migrate during S and G2 stages of the cell cycle along glial fibers to lateral (cluster 10) and medial (cluster 9) proliferation zones. Here, they divide (M phase) producing offspring that differentiate into olfactory interneurons. The complete lineage of cells producing neurons in these animals, therefore, is arranged along the migratory stream according to cell cycle stage. We have exploited this model to examine the influence of environmental and endogenous factors on adult neurogenesis. We find that increased levels of serotonin upregulate neuronal production, as does maintaining animals in an enriched (versus deprived) environment or augmenting their diet with omega-3 fatty acids; increased levels of nitric oxide, on the other hand, decrease the rate of neurogenesis. The features of the neurogenic niche and migratory streams, and the fact that these continue to function in vitro, provide opportunities unavailable in other organisms to explore the sequence of cellular and molecular events leading to the production of new neurons in adult brains.  相似文献   

8.
While the regenerative capacity of the olfactory neuroepithelium has been well studied less is known about the molecular events controlling precursor cell activity. Neuropeptide Y (NPY) is expressed at high levels in the olfactory system, and NPY has been shown to play a role in neuroregeneration of the brain. In this study, we show that the numbers of olfactory neurospheres derived from NPY, NPY/peptide YY, and Y1 receptor knockout mice are decreased compared with wild type (WT) controls. Furthermore, flow cytometric analysis of isolated horizontal basal cells, globose basal cells, and glandular cells showed that only glandular cells derived from WT mice, but not from NPY and Y1 receptor knockout mice, formed secondary neurospheres suggesting a critical role for NPY signaling in this process. Interestingly, olfactory function tests revealed that olfaction in Y1 knockout mice is impaired compared with those of WT mice, probably because of the reduced number of olfactory neurons formed. Together these results indicate that NPY and the Y1 receptor are required for the normal proliferation of adult olfactory precursors and olfactory function.  相似文献   

9.
《Developmental neurobiology》2017,77(11):1308-1320
The olfactory epithelium (OE) has the remarkable capability to constantly replace olfactory receptor neurons (ORNs) due to the presence of neural stem cells (NSCs). For this reason, the OE provides an excellent model to study neurogenesis and neuronal differentiation. In the present work, we induced neuronal degeneration in the OE of Xenopus laevis larvae by bilateral axotomy of the olfactory nerves. We found that axotomy induces specific‐ neuronal death through apoptosis between 24 and 48h post‐injury. In concordance, there was a progressive decrease of the mature‐ORN marker OMP until it was completely absent 72h post‐injury. On the other hand, neurogenesis was evident 48h post‐injury by an increase in the number of proliferating basal cells as well as NCAM‐180– GAP‐43+ immature neurons. Mature ORNs were replenished 21 days post‐injury and the olfactory function was partially recovered, indicating that new ORNs were integrated into the olfactory bulb glomeruli. Throughout the regenerative process no changes in the expression pattern of the neurotrophin Brain Derivate Neurotrophic Factor were observed. Taken together, this work provides a sequential analysis of the neurodegenerative and subsequent regenerative processes that take place in the OE following axotomy. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1308–1320, 2017  相似文献   

10.
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin-driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors.  相似文献   

11.
The functional activity of the neural cell adhesion molecule N-CAM can be modulated by posttranslational modifications such as glycosylation. For instance, the long polysialic acid side chains of N-CAM alter the adhesion properties of the protein backbone. In the present study, we identified two novel carbohydrates present on N-CAM, NOC-3 and NOC-4. Both carbohydrates were detected on N-CAM glycoforms expressed by subpopulations of primary sensory olfactory neurons in the rat olfactory system. Based on the expression of NOC-3 and NOC-4 and the olfactory marker protein (OMP), four independent subpopulations of primary sensory olfactory neurons were characterized. These neurons expressed: both NOC-3 and NOC-4 but not OMP; both NOC-4 and OMP but not NOC-3; NOC-3, NOC-4, and OMP together; and OMP alone. The NOC-3- and NOC-4-expressing neurons were widely dispersed in the olfactory neuroepithelium lining the nasal cavity. The axons of NOC-4 expressing neurons innervated all glomeruli in the olfactory bulb, whereas the NOC-3 expressing axons terminated in a discrete subset of glomeruli scattered throughout the whole olfactory bulb. We propose that both NOC-3 and NOC-4 are part of a chemical code of olfactory neurons which is used in establishing the topography of connections between the olfactory neuroepithelium and the olfactory bulb. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 659–670, 1997  相似文献   

12.
The rodent olfactory epithelium (OE) is a good model system for studying the principles of stem and progenitor cell biology, because of its capacity for continuous neurogenesis throughout life and relatively well-characterized neuronal lineage. The development of mouse OE is divided into two stages, early and established neurogenesis. In established neurogenesis, which starts at embryonic day (E) 12.5, sustentacular cells and olfactory receptor neurons (ORNs) are produced from apical and basal progenitors, respectively. We previously reported that Six1(-/-) shows a lack of mature ORNs throughout development and disorganization of OE after E12.5. However, the molecular bases for these defects have not been addressed. Here, we show that Six1 is expressed in both apical and basal progenitors. In Six1(-/-) mice, apical proliferating cells were absent and no morphologically identifiable sustentacular cells were observed. Consistently, the expression of Notch2 and Jagged1 in the apical layer was absent in Six1(-/-) mice. On the other hand, basal proliferating cells were observed in Six1(-/-) animals, but the expression of Ngn1, NeuroD, Notch1, and Jagged2 in the basal layer was absent. The expression of Mash1, the determination gene for ORNs, and Hes genes was enhanced in Six1(-/-) mice. The present findings suggest that Six1 regulates production of functional apical and basal progenitors during OE development, through the regulation of various genes, such as neuronal basic helix-loop-helix (bHLH), neuronal repressor bHLH, and genes involved in the Notch signaling pathway.  相似文献   

13.
The critical role of cyclin D2 in adult neurogenesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Adult neurogenesis (i.e., proliferation and differentiation of neuronal precursors in the adult brain) is responsible for adding new neurons in the dentate gyrus of the hippocampus and in the olfactory bulb. We describe herein that adult mice mutated in the cell cycle regulatory gene Ccnd2, encoding cyclin D2, lack newly born neurons in both of these brain structures. In contrast, genetic ablation of cyclin D1 does not affect adult neurogenesis. Furthermore, we show that cyclin D2 is the only D-type cyclin (out of D1, D2, and D3) expressed in dividing cells derived from neuronal precursors present in the adult hippocampus. In contrast, all three cyclin D mRNAs are present in the cultures derived from 5-day-old hippocampi, when developmental neurogenesis in the dentate gyrus takes place. Thus, our results reveal the existence of molecular mechanisms discriminating adult versus developmental neurogeneses.  相似文献   

14.
15.
16.
The location of neurogenesis and the direction of migration of neurons in the adult mouse vomeronasal organ is controversial. Cell division occurs at the center, and particularly, at the edges of the epithelium. Newly generated cells at the center of the epithelium participate in neurogenesis, however, it is unknown to what extent dividing cells at the edges participate in growth, become apoptotic or mature into neurons. Premitotic cells were labeled with bromodeoxyuridine (BrdU) in adult mice and animals allowed to survive for different postinjection periods. The terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end-labeling (TUNEL) method was used to show the distribution of apoptotic cells. The vertical and horizontal position of BrdU-labeled cells was analyzed as a function of postinjection survival time. Vertical and horizontal migration of BrdU-labeled cells were detected. Cells in the central portions of the epithelium migrated vertically to become neurons as demonstrated by co-expression of olfactory marker protein. Cells at the edges migrated horizontally very slowly (less than 10% of the distance from the edge to the center of the epithelium per month), thus indicating that these cells participate in cell renewal exclusively in marginal regions. Neural turnover in the mouse vomeronasal epithelium, therefore appears to occur through a process of vertical migration. Data on the distribution of apoptotic cells indicate that a number of dividing cells throughout the epithelium, but particularly at the edges, die before becoming functional neurons. Accordingly, most dividing cells at the edges probably constitute a reservoir of stem cells dying before differentiation.  相似文献   

17.
Nitric oxide regulates neurogenesis in the developing and adult brain. The olfactory epithelium is a site of neurogenesis in the adult and previous studies suggest a role for nitric oxide in this tissue during development. We investigated whether neuronal precursor proliferation and differentiation is regulated by nitric oxide using primary cultures of olfactory epithelial cells and an immortalized, clonal, neuronal precursor cell line derived from adult olfactory epithelium. In these cultures NOS inhibition reduced cell proliferation and stimulated neuronal differentiation, including expression of a voltage-dependent potassium conductance of the delayed rectifier type. In the neuronal precursor cell line, differentiation was associated with a significant decrease in nitric oxide release. In contrast, addition of nitric oxide stimulated proliferation and reduced neuronal differentiation. Nitric oxide regulated olfactory neurogenesis independently of added growth factors. Taken together these results indicate that nitric oxide levels can regulate cell proliferation and neuronal differentiation of olfactory precursor cells.  相似文献   

18.
Neuronal nitric oxide synthase (nNOS) is implicated in some developmental processes, including neuronal survival, differentiation, and precursor proliferation. To define the roles of nNOS in neuronal development, we utilized the olfactory system as a model. We hypothesized that the role of nNOS may be influenced by its localization. nNOS expression was developmentally regulated in the olfactory system. During early postnatal development, nNOS was expressed in developing neurons in the olfactory epithelium (OE), while in the adult its expression was restricted to periglomerular (PG) cells in the olfactory bulb (OB). At postnatal week 1 (P1W), loss of nNOS due to targeted gene deletion resulted in a decrease in immature neurons in the OE due to decreased proliferation of neuronal precursors. While the pool of neuronal precursors and neurogenesis normalized in the nNOS null mouse by P6W, there was an overgrowth of mitral or tufted cells dendrites and a decreased number of active synapses in the OB. Cyclic GMP (cGMP) immunostaining was reduced in the OE and in the glomeruli of the OB at early postnatal and adult ages, respectively. Our results suggest that nNOS appears necessary for neurogenesis in the OE during early postnatal development and for glomerular organization in the OB in the adult. Thus, the location of nNOS, either within cell bodies or perisynaptically, may influence its developmental role.  相似文献   

19.
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.  相似文献   

20.
Neurogenesis persists throughout life in the olfactory pathway of many decapod crustaceans. However, the relationships between precursor cells and the temporal characteristics of mitotic events in these midbrain regions have not been examined. We have conducted studies aimed at characterizing the sequence of proliferative events that leads to the production of new deutocerebral projection neurons in embryos of the American lobster, Homarus americanus. In vivo bromodeoxyuridine (BrdU) labeling patterns show that three distinct cell types are involved in neurogenesis in this region. Quantitative and temporal analyses suggest that the clearing time for BrdU is 2-3 days in lobster embryos, and that the sequence of proliferative events in the midbrain is significantly different from the stereotypical pattern for the generation of neurons in the ventral nerve cord ganglia of insects and crustaceans. The unusual pattern of proliferation in the crustacean midbrain may be related to the persistence of neurogenesis throughout life in these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号