首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Kinetoplast DNA (kDNA), the mitochondrial genome of trypanosomes, is a catenated network containing thousands of minicircles and tens of maxicircles. The topological complexity dictates some unusual features including a topoisomerase-mediated release-and-reattachment mechanism for minicircle replication and at least six mitochondrial DNA polymerases (Pols) for kDNA transactions. Previously, we identified four family A DNA Pols from Trypanosoma brucei with similarity to bacterial DNA Pol I and demonstrated that two (POLIB and POLIC) were essential for maintaining the kDNA network, while POLIA was not. Here, we used RNA interference to investigate the function of POLID in procyclic T. brucei. Stem-loop silencing of POLID resulted in growth arrest and the progressive loss of the kDNA network. Additional defects in kDNA replication included a rapid decline in minicircle and maxicircle abundance and a transient accumulation of minicircle replication intermediates before loss of the kDNA network. These results demonstrate that POLID is a third essential DNA Pol required for kDNA replication. While other eukaryotes utilize a single DNA Pol (Pol gamma) for replication of mitochondrial DNA, T. brucei requires at least three to maintain the complex kDNA network.  相似文献   

3.
4.
Minicircle sequence evolution has been studied by comparison of the minicircles from Crithidia fasciculata and C. luciliae (C. fasciculata, var. luciliae) by restriction enzyme analysis and hybridization experiments. In contrast to the maxicircle sequence, the minicircle sequence of these trypanosomes evolves very rapidly. No conservation of restriction fragments has been observed and cross-hybridization of minicircles, minicircle fragments, and total kDNA is relatively weak. We conclude that no fragment larger than 550 bp is perfectly conserved between all minicircles of the two trypanosomes. Alterations in the minicircle fragment patterns of our stocks of trypanosomes were even apparent in a cultivation period of 1.5 to 2 years. The alterations suggest a random drift of the sequence which supports a noncodogenic function for the minicircles. Double restriction enzyme digestion experiments show that primary fragments are homogeneous with respect to cleavage by the second enzyme. This suggests that sequence rearrangements, rather than point mutations are the basis of the minicircle sequence heterogeneity.  相似文献   

5.
Transcription of kinetoplast DNA minicircles   总被引:11,自引:0,他引:11  
  相似文献   

6.
7.
Kinetoplast DNA of Bodo caudatus: a noncatenated structure.   总被引:6,自引:1,他引:5       下载免费PDF全文
The kinetoplast DNA (kDNA) of trypanosomes and other parasitic members of the order Kinetoplastida is organized as a complex network containing thousands of catenated circular DNA molecules. We found that the kDNA of a free-living kinetoplastida, Bodo caudatus, exists as a noncatenated structure. The kDNA of B. caudatus represents about 40% of the total cellular DNA, and the major components of this DNA are large circles of 10 and 12 kilobases (kb). Our results indicate that these circles are analogous to trypanosome kDNA minicircles despite their large size and noncatenated form. The kDNA of B. caudatus also contains a minor component of 19 kb which is transcribed. The 19-kb molecules are probably analogous to the maxicircles of trypanosomes. The properties of the B. caudatus kDNA suggest that the catenated network structure of trypanosome kDNA is not required for maxicircle segregation during kinetoplast division or for the expression of the maxicircle genome.  相似文献   

8.
9.
10.
Kinetoplast DNA (kDNA), a unique mitochondrial structure common to trypanosomatid parasites, contains thousands of DNA minicircles that are densely packed and can be topologically linked into a chain mail-like network. Experimental data indicate that every minicircle in the network is, on average, singly linked to three other minicircles (i.e., has mean valence 3) before replication and to six minicircles in the late stages of replication. The biophysical factors that determine the topology of the network and its changes during the cell cycle remain unknown. Using a mathematical modeling approach, we previously showed that volume confinement alone can drive the formation of the network and that it induces a linear relationship between mean valence and minicircle density. Our modeling also predicted a minicircle valence two orders of magnitude greater than that observed in kDNA. To determine the factors that contribute to this discrepancy we systematically analyzed the relationship between the topological properties of the network (i.e., minicircle density and mean valence) and its biophysical properties such as DNA bending, electrostatic repulsion, and minicircle relative position and orientation. Significantly, our results showed that most of the discrepancy between the theoretical and experimental observations can be accounted for by the orientation of the minicircles with volume exclusion due to electrostatic interactions and DNA bending playing smaller roles. Our results are in agreement with the three dimensional kDNA organization model, initially proposed by Delain and Riou, in which minicircles are oriented almost perpendicular to the horizontal plane of the kDNA disk. We suggest that while minicircle confinement drives the formation of kDNA networks, it is minicircle orientation that regulates the topological complexity of the network.  相似文献   

11.
The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded   总被引:17,自引:0,他引:17  
The mitochondrial DNA of Trypanosoma brucei is organized as a catenated network of maxicircles and minicircles. The maxicircles are equivalent to the typical mitochondrial genome except that the genes for the mitochondrial tRNAs have not been identified by sequence analysis of the maxicircle DNA. The apparent absence of tRNA genes in the maxicircle DNA suggests that the mitochondrial tRNAs are encoded by either the minicircle or the nuclear DNA. In order to determine their genomic origin, we isolated and identified the mitochondrial tRNAs of T. brucei. We show that these mitochondrial tRNAs are truly mitochondrially located in vivo and that they are free from detectable contamination by cytosolic RNAs. By hybridization analysis, using mitochondrial tRNAs as the probe, we determined that the mitochondrial tRNAs are encoded by nuclear DNA. This implies that RNAs, like proteins, are imported into the mitochondria. We investigated the relationship between the cytosolic and the mitochondrial tRNA genes and show that there are unique cytosolic tRNA genes, unique mitochondrial tRNA genes, and tRNA genes which appear to be shared and whose products are therefore targeted to both the cytosol and the mitochondrion.  相似文献   

12.
Kenneth Stuart 《Plasmid》1979,2(4):520-528
Trypanosoma brucei maxicircle DNA in kinetoplast DNA (kDNA) networks was characterized with restriction endonucleases. The data allow the construction of a circular map of a 22.2-kb molecule. Based on these and previous data each T. brucei kDNA network contains about 45 maxicircles which probably have the same sequence. The maxicircle of strain 164 used in this study was slightly larger and had three EcoRI sites compared to two found in other strains. Fragments generated by digestion with BamHI were largely singly cleaved maxicircles that had a density of 1.681 g/cm3 compared to 1.693 g/cm3 for the intact network. This suggests that maxicircles have a higher A + T content than minicircles. Minicircles in the kDNA network were also characterized with restriction endonucleases. Each enzyme cleaved a specific subset of minicircles from the network. However, no single restriction endonuclease or combination of up to three of these enzymes cleaved all molecules in the network. These results are consistent with earlier results of renaturation kinetic experiments and indicate that there are many different sequence classes of mini-circle DNA.  相似文献   

13.
The mitochondrial DNA of Trypanosoma brucei is organized in a complex structure called the kinetoplast. In this study, we define the complete kinetoplast duplication cycle in T. brucei based on three-dimensional reconstructions from serial-section electron micrographs. This structural model was enhanced by analyses of the replication process of DNA maxi- and minicircles. Novel insights were obtained about the earliest and latest stages of kinetoplast duplication. We show that kinetoplast S phase occurs concurrently with the repositioning of the new basal body from the anterior to the posterior side of the old flagellum. This emphasizes the role of basal body segregation in kinetoplast division and suggests a possible mechanism for driving the rotational movement of the kinetoplast during minicircle replication. Fluorescence in situ hybridization with minicircle- and maxicircle-specific probes showed that maxicircle DNA is stretched out between segregated minicircle networks, indicating that maxicircle segregation is a late event in the kinetoplast duplication cycle. This new view of the complexities of kinetoplast duplication emphasizes the dependencies between the dynamic remodelling of the cytoskeleton and the inheritance of the mitochondrial genome.  相似文献   

14.
Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10?bp sequence) and CSB-2 (8?bp sequence) present lower interspecies homology, while CSB-3 (12?bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257?bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes.  相似文献   

15.
The mitochondrial DNA of Trypanosoma brucei, termed kinetoplast DNA or kDNA, consists of thousands of minicircles and a small number of maxicircles catenated into a single network organized as a nucleoprotein disk at the base of the flagellum. Minicircles are replicated free of the network but still contain nicks and gaps after rejoining to the network. Covalent closure of remaining discontinuities in newly replicated minicircles after their rejoining to the network is delayed until all minicircles have been replicated. The DNA ligase involved in this terminal step in minicircle replication has not been identified. A search of kinetoplastid genome databases has identified two putative DNA ligase genes in tandem. These genes (LIG k alpha and LIG k beta) are highly diverged from mitochondrial and nuclear DNA ligase genes of higher eukaryotes. Expression of epitope-tagged versions of these genes shows that both LIG k alpha and LIG k beta are mitochondrial DNA ligases. Epitope-tagged LIG k alpha localizes throughout the kDNA, whereas LIG k beta shows an antipodal localization close to, but not overlapping, that of topoisomerase II, suggesting that these proteins may be contained in distinct structures or protein complexes. Knockdown of the LIG k alpha mRNA by RNA interference led to a cessation of the release of minicircles from the network and resulted in a reduction in size of the kDNA networks and rapid loss of the kDNA from the cell. Closely related pairs of mitochondrial DNA ligase genes were also identified in Leishmania major and Crithidia fasciculata.  相似文献   

16.
Organized packaging of kinetoplast DNA networks   总被引:5,自引:0,他引:5  
L E Silver  A F Torri  S L Hajduk 《Cell》1986,47(4):537-543
The kinetoplast DNA (kDNA) of Trypanosoma equiperdum is organized as a complex structure of catenated circular DNA molecules. The major component of the kDNA network is the one kilobase minicircle that is present at about 10,000 copies per network. We have developed two assays to examine the structure of kDNA networks compacted in vitro with spermidine. Our results suggest that minicircles are arranged into a regular structure with an exposed domain which is DNAase I- and restriction-sensitive and a protected domain which is resistant to restriction endonucleases and DNAase I. This regularly packaged structure is dependent upon spermidine compaction and the circularity of the kDNA, but does not require supercoiled minicircles or catenated networks.  相似文献   

17.
The mitochondrial genome of trypanosomes, termed kinetoplast DNA (kDNA), contains thousands of minicircles and dozens of maxicircles topologically interlocked in a network. To identify proteins involved in network replication, we screened an inducible RNA interference-based genomic library for cells that lose kinetoplast DNA. In one cloned cell line with inducible kinetoplast DNA loss, we found that the RNA interference vector had aberrantly integrated into the genome resulting in overexpression of genes down-stream of the integration site (Motyka, S. A., Zhao, Z., Gull, K., and Englund, P. T. (2004) Mol. Biochem. Parasitol. 134, 163-167). We now report that the relevant overexpressed gene encodes a mitochondrial cytochrome b(5) reductase-like protein. This overexpression caused kDNA loss by oxidation/inactivation of the universal minicircle sequence-binding protein, which normally binds the minicircle replication origin and triggers replication. The rapid loss of maxicircles suggests that the universal minicircle sequence-binding protein might also control maxicircle replication. Several lines of evidence indicate that the cytochrome b(5) reductase-like protein controls the oxidization status of the universal minicircle sequence-binding protein via tryparedoxin, a mitochondrial redox protein. For example, overexpression of mitochondrial tryparedoxin peroxidase, which utilizes tryparedoxin, also caused oxidation of the universal minicircle sequence-binding protein and kDNA loss. Furthermore, the growth defect caused by overexpression of cytochrome b(5) reductase-like protein could be partially rescued by simultaneously overexpressing tryparedoxin.  相似文献   

18.
The trypanosome mitochondrial genome, kinetoplast DNA (kDNA), is a massive network of interlocked DNA rings, including several thousand minicircles and dozens of maxicircles. The unusual complexity of kDNA would indicate that numerous proteins must be involved in its condensation, replication, segregation and gene expression. During our investigation of trypanosome mitochondrial PIF1-like helicases, we found that TbPIF8 is the smallest and most divergent. It lacks some conserved helicase domains, thus implying that unlike other mitochondrial PIF1-like helicases, this protein may have no enzymatic activity. TbPIF8 is positioned on the distal face of kDNA disk and its localization patterns vary with different kDNA replication stages. Stem-loop RNAi of TbPIF8 arrests cell growth and causes defects in kDNA segregation. RNAi of TbPIF8 causes only limited kDNA shrinkage but the networks become disorganized. Electron microcopy of thin sections of TbPIF8-depleted cells shows heterogeneous electron densities in the kinetoplast disk. Although we do not yet know its exact function, we conclude that TbPIF8 is essential for cell viability and is important for maintenance of kDNA.  相似文献   

19.
ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes, Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the 26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU homologs have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We characterized the HslVU homolog from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication that has never been observed in other organisms.  相似文献   

20.
Melting and reannealing of purified kinetoplast DNA (kDNA) from Crithidia fasciculata, Trypanosoma mega, and T. brucei have been studied with an automated optical system. The slow reassociation rate of trypanosome kDNA is due neither to the formation of hyperpolymers nor to mispairing of bases and certainly reflects extensive sequence heterogeneity. Simulation of the reassociation kinetics indicates that the kDNA comprises essentially two kinetic components: a fast renaturing component which might be a common sequence present in all the minicircles and a slow renaturing component which is responsible for minicircle heterogeneity. The rapidly renaturing component is more abundant in Crithidia than in trypanosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号