首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells.  相似文献   

2.
Bone marrow-derived mesenchymal stem cells (MSCs) are being explored for clinical applications, and genetic engineering represents a useful strategy for boosting the therapeutic potency of MSCs. Vascular endothelial growth factor (VEGF)-based gene therapy protocols have been used to treat tissue ischemia, and a combined VEGF/MSC therapeutics is appealing due to their synergistic paracrine actions. However, multiple VEGF splice variants exhibit differences in their mitogenicity, chemotactic efficacy, receptor interaction, and tissue distribution, and the differential regulatory effects of multiple VEGF isoforms on the function of MSCs have not been characterized. We expressed three rat VEGF-A splice variants VEGF120, 164, and 188 in MSCs using adenoviral vectors, and analyzed their effects on MSC proliferation, differentiation, survival, and trophic factor production. The three VEGF splice variants exert common and differential effects on MSCs. All three expressed VEGFs are potent in promoting MSC proliferation. VEGF120 and 188 are more effective in amplifying expression of multiple growth factor and cytokine genes. VEGF164 on the other hand is more potent in promoting expression of genes associated with MSC remodeling and endothelial differentiation. The longer isoform VEGF188, which is preferentially retained by proteoglycans, facilitates bone morphogenetic protein-7 (BMP7)-mediated MSC osteogenesis. Under serum starvation condition, virally expressed VEGF188 preferentially enhances serum withdrawal-mediated cell death involving nitric oxide production. This work indicates that seeking the best possible match of an optimal VEGF isoform to a given disease setting can generate maximum therapeutic benefits and minimize unwanted side effects in combined stem cell and gene therapy.  相似文献   

3.
4.
Caveolae are flask-shaped endocytic structures composed primarily of caveolin-1 (Cav1) and caveolin-2 (Cav2) proteins. Interestingly, a cytoplasmic accumulation of Cav1 protein does not always result in a large number of assembled caveolae organelles, suggesting a regulatory mechanism that controls caveolae assembly. In this study we report that stimulation of epithelial cells with epithelial growth factor (EGF) results in a profound increase in the number of caveolar structures at the plasma membrane. Human pancreatic tumor cells (PANC-1) and normal rat kidney cells (NRK), as a control, were treated with 30 ng/ml EGF for 0, 5, and 20 min before fixation and viewing by electron microscopy. Cells fixed without EGF treatment exhibited modest numbers of plasma membrane-associated caveolae. Cells treated with EGF for 5 or 20 min showed an 8-10-fold increase in caveolar structures, some forming long, pronounced caveolar "towers" at the cell-cell borders. It is known that Cav1 is Src-phosphorylated on tyrosine 14 in response to EGF treatment, although the significance of this modification is unknown. We postulated that phosphorylation could provide the stimulus for caveolae assembly. To this end, we transfected cells with mutant forms of Cav1 that could not be phosphorylated (Cav1Y14F) and tested if this altered protein reduced the number of EGF-induced caveolae. We observed that EGF-stimulated PANC-1 cells expressing the mutant Cav1Y14F protein exhibited a 90-95% reduction in caveolae number compared with cells expressing wild type Cav1. This study provides novel insights into how cells regulate caveolae formation and implicates EGF-based signaling cascades in the phosphorylation of Cav1 as a stimulus for caveolae assembly.  相似文献   

5.
The role of soluble factors (including angiogenic cytokines) and extracellular matrix components in the regulation of angiogenesis is clearly established. However, the interrelationship between these factors and perivascular mesenchymal cells is not well understood. Here we have used a three-dimensional collagen gel coculture system to assess the effect of mesenchymal C3H10T1/2 cells on vascular endothelial growth factor-A (VEGF-A)- and fibroblast growth factor-2 (FGF-2)-induced angiogenesis in vitro. We found that coculture markedly potentiated the angiogenic activity of VEGF-A, irrespective of whether or not direct cell-to-cell contact occurred. In contrast, under conditions in which cell-to-cell contact was possible, FGF-2-induced angiogenesis was inhibited by cocultured 10T1/2 cells; this effect was not seen when cell-to-cell contact was prevented. Attempts to identify the molecules responsible for this effect allowed us to exclude FGF-2, transforming growth factorbeta1, platelet derived growth factor-BB, angiopoietin-1, and NO as possible mediators of the potentiating effect of coculture on VEGF-A-induced invasion. In the living organism, angiogenesis occurs in a three-dimensional microenvironment. Contrary to the inhibitory effect of 10T1/2 cells previously reported by others in two-dimensional cultures, our data demonstrate that the paracrine interaction between endothelial and mesenchymal cells potentiates angiogenesis in vitro and that this is cytokine-specific, i.e., it occurs with VEGF-A but not with FGF-2.  相似文献   

6.
Eicosapentaenoic acid (EPA; 20:5, n-3) can restrain tumor growth and metastasis in vivo; however, the mechanism of its antitumor effect is still not fully understood. Angiogenesis is a crucial process for tumor growth and metastasis and inhibition of tumor angiogenesis can suppress tumor growth and metastasis in vivo. Vascular endothelial growth factor (VEGF) is an important angiogenic factor. In this study, we investigated the mechanisms of the inhibitory effect of EPA on VEGF-induced proliferation of bovine carotid artery endothelial (BAE) cells. BAE cells, treated with 0–5 μg/ml EPA for 48 h, displayed a dose-dependent suppression to VEGF (0.2 nM)-induced proliferation. Similar inhibitory effect was not found in BAE cells treated with arachidonic acid (AA; 20:4, n-6), or docasahexaenoic acid (DHA; 22:5, n-3). In contrast to its effect on VEGF-induced proliferation, EPA had no inhibition to basic fibroblast growth factor (bFGF, 0.2 nM)-induced proliferation in BAE cells. Both VEGF and bFGF activated mitogen-activated protein (MAP) kinase in BAE cells; however, EPA selectively inhibited VEGF-induced, but not bFGF-induced activation of MAP kinase. Flk-1 expression was inhibited dose-dependently in EPA-treated cells, whereas Flt-1 expression was increased in EPA treated cells. This in vitro inhibitory effect by EPA on Flk-1 receptor expression provides indirect evidence that one of the mechanisms of EPA for antitumor action in vivo maybe related to its antiangiogenic action. J. Cell. Physiol. 176:342–349, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Vascular endothelial growth factor (VEGF)-D binds to VEGF receptors (VEGFR) VEGFR2/KDR and VEGFR3/Flt4, but the signaling mechanisms mediating its biological activities in endothelial cells are poorly understood. Here we investigated the mechanism of action of VEGF-D, and we compared the signaling pathways and biological responses induced by VEGF-D and VEGF-A in endothelial cells. VEGF-D induced KDR and phospholipase C-gamma tyrosine phosphorylation more slowly and less effectively than VEGF-A at early times but had a more sustained effect and was as effective as VEGF-A after 60 min. VEGF-D activated extracellular signal-regulated protein kinases 1 and 2 with similar efficacy but slower kinetics compared with VEGF-A, and this effect was blocked by inhibitors of protein kinase C and mitogen-activated protein kinase kinase. In contrast to VEGF-A, VEGF-D weakly stimulated prostacyclin production and gene expression, had little effect on cell proliferation, and stimulated a smaller and more transient increase in intracellular [Ca(2+)]. VEGF-D induced strong but more transient phosphatidylinositol 3-kinase (PI3K)-mediated Akt activation and increased PI3K-dependent endothelial nitric-oxide synthase phosphorylation and cell survival more weakly. VEGF-D stimulated chemotaxis via a PI3K/Akt- and endothelial nitric-oxide synthase-dependent pathway, enhanced protein kinase C- and PI3K-dependent endothelial tubulogenesis, and stimulated angiogenesis in a mouse sponge implant model less effectively than VEGF-A. VEGF-D-induced signaling and biological effects were blocked by the KDR inhibitor SU5614. The finding that differential KDR activation by VEGF-A and VEGF-D has distinct consequences for endothelial signaling and function has important implications for understanding how multiple ligands for the same VEGF receptors can generate ligand-specific biological responses.  相似文献   

8.
Signaling pathways mediating the antiangiogenic action of 16K human (h)PRL include inhibition of vascular endothelial growth factor (VEGF)-induced activation of the mitogen-activated protein kinases (MAPK). To determine at which step 16K hPRL acts to inhibit VEGF-induced MAPK activation, we assessed more proximal events in the signaling cascade. 16K hPRL treatment blocked VEGF-induced Raf-1 activation as well as its translocation to the plasma membrane. 16K hPRL indirectly increased cAMP levels; however, the blockade of Raf-1 activation was not dependent on the stimulation of cAMP-dependent protein kinase (PKA), but rather on the inhibition of the GTP-bound Ras. The VEGF-induced tyrosine phosphorylation of the VEGF receptor, Flk-1, and its association with the Shc/Grb2/Ras-GAP (guanosine triphosphatase-activating protein) complex were unaffected by 16K hPRL treatment. In contrast, 16K hPRL prevented the VEGF-induced phosphorylation and dissociation of Sos from Grb2 at 5 min, consistent with inhibition by 16K hPRL of the MEK/MAPK feedback on Sos. The inhibition of Ras activation was paralleled by the increased phosphorylation of 120 kDa proteins comigrating with Ras-GAP. Taken together, these findings show that 16K hPRL inhibits the VEGF-induced Ras activation; this antagonism represents a novel and potentially important mechanism for the control of angiogenesis.  相似文献   

9.
10.
11.
12.
Sowa G  Xie L  Xu L  Sessa WC 《Biochemistry》2008,47(1):101-111
In the present study, using a combination of reconstituted systems and endothelial cells endogenously expressing caveolins, we show that phosphorylation of caveolin-2 at serines 23 and 36 can be differentially regulated by caveolin-1 mediated subcellular targeting to lipid raft/caveolae and in endothelial cells synchronized in mitosis. Detergent insolubility and sucrose flotation gradient experiments revealed that serine 23 phosphorylation of caveolin-2 preferably occurs in detergent-resistant membranes (DRMs), while serine 36 phosphorylation takes place in non-DRMs. Furthermore, immunofluorescence microscopy studies determined that in the presence of caveolin-1, serine 23-phosphorylated caveolin-2 mostly localizes to plasma membrane, while serine 36-phosphorylated caveolin-2 primarily resides in intracellular compartments. To directly address the role of caveolin-1 in regulating phosphorylation of endogenous caveolin-2, we have used the siRNA approach. The specific knockdown of caveolin-1 in endothelial cells decreases caveolin-2 phosphorylation at serine 23 but not at serine 36. Thus, upregulation of serine 23 phosphorylation of caveolin-2 depends on caveolin-1-driven targeting to plasma membrane lipid rafts and caveolae. Interestingly, although serine 36 phosphorylation does not seem to be regulated in endothelial cells by caveolin-1, it can be selectively upregulated in endothelial cells synchronized in mitosis. The latter data suggests a possible involvement of serine 36-phosphorylated caveolin-2 in modulating mitosis.  相似文献   

13.
To study the regulation of fenestrations by vascular endothelial growth factor in liver sinusoidal endothelial cells, SK Hep1 cells were transfected with green fluorescence protein (GFP)-actin and GFP-caveolin-1. SK Hep1 cells had pores; some of which appeared to be fenestrations (diameter 55 +/- 28 nm, porosity 2.0 +/- 1.4%), rudimentary sieve plates, bristle-coated micropinocytotic vesicles and expressed caveolin-1, von Willebrand factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase and clathrin, but not CD31. There was avid uptake of formaldehyde serum albumin, consistent with endocytosis. Vascular endothelial growth factor caused an increase in porosity to 4.8 +/- 2.6% (P < 0.01) and pore diameter to 104 +/- 59 nm (P < 0.001). GFP-actin was expressed throughout the cells, whereas GFP-caveolin-1 had a punctate appearance; both responded to vascular endothelial growth factor by contraction toward the nucleus over hours in parallel with the formation of fenestrations. SK Hep1 cells resemble liver sinusoidal endothelial cells, and the vascular endothelial growth factor-induced formation of fenestration-like pores is preceded by contraction of actin cytoskeleton and attached caveolin-1 toward the nucleus.  相似文献   

14.

Background

Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation of human UCB-derived MSCs could attenuate Escherichia coli (E. coli)-induced acute lung injury (ALI) in mice by suppressing the inflammatory response.

Methods

Eight-week-old male ICR mice were randomized to control or ALI groups. ALI was induced by intratracheal E. coli instillation. Three-hours after E. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores, myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation.

Results

MSC transplantation increased survival and attenuated lung injuries in ALI mice, as evidenced by decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and protein levels of IL-1α, IL-1β, IL-6, TNF-α, and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury.

Conclusions

Intratracheal transplantation of UCB-derived MSCs attenuates E. coli-induced ALI primarily by down-modulating the inflammatory process and enhancing bacterial clearance.  相似文献   

15.
The adherens junctional molecule, vascular endothelial cadherin (VE-cadherin), functions to maintain adherens junction stability and to suppress apoptosis of endothelial cells by forming a complex with vascular endothelial growth factor (VEGF) receptor 2 and members of the armadillo family of cytoplasmic proteins. In order to investigate the dynamics of the association of VE-cadherin with adherens junctions during the initial stages of angiogenesis, human umbilical cord endothelial cells (HUVECs) were stimulated with VEGF to undergo angiogenesis in type-I collagen three-dimensional culture. In confluent monolayers of HUVECs, VE-cadherin and its signaling partner, beta-catenin, as well as the paracellular transmembrane adhesion molecule platelet-endothelial cell adhesion molecule (PECAM-1), were all present in regions of cell-cell contact. Within 3 h of stimulation of angiogenesis, VE-cadherin and beta-catenin were lost from these regions. In contrast, the distribution pattern of PECAM-1 did not alter. After 6 h the majority of endothelial cells had migrated to form a network of capillary cords with cell-cell contacts that contained all three molecules. By metabolic labeling of HUVECs it was found that de novo synthesis of VE-cadherin was not essential for the formation of new adherens junctions. Coimmunoprecipitation and immunoblotting experiments showed that the VE-cadherin and beta-catenin remained associated after they were lost from adherens junctions. Detergent extraction of cells with Triton X-100 indicted that the majority of VE-cadherin and beta-catenin was Triton soluble, indicating that they are only weakly associated with the actin-based cytoskeleton.  相似文献   

16.
The growth and metastases of many solid tumors are dependent on the recruitment of new blood vessels. Tumor angiogenesis is most likely initiated by paracrine release of growth factors that bind to their corresponding endothelial cell surface receptors. To determine whether angiogenesis and growth factor receptor expression are consistent findings in malignant melanoma, primary human melanomas were examined for mRNA expression of receptors for fibroblast growth factors (FGFR-1, FGFR-2), vascular endothelial growth factor (VEGFR-1, VEGFR-2), and the receptors Tiel and Tie2. Charts were reviewed and archival formalin-fixed, paraffin-embedded primary tumors were obtained from patients with thin (<1 mm; n = 10), intermediate (1 to 4 mm; n = 10), or thick malignant melanoma (>4 mm; n = 8). Also examined was whether melanoma cell lines could induce endothelial growth factor receptor synthesis by metabolic labeling. It was found that tumor vascularity did not correlate with clinical stage, melanoma thickness, or clinical outcome. It was also found that melanoma cell lines were not capable of directly regulating endothelial cell synthesis of growth factor receptors. However, expression of Tiel and VEGFR-2 mRNA by the tumor vasculature in select stage IA-IIB patients, and FGFR-1 mRNA expression by the tumor cells in the same clinical stages was found. The expression of these growth factor receptors did not correlate with clinical outcome. These data suggest that angiogenesis is not a prominent characteristic of primary malignant melanoma lesions and that the endothelial cell expression of Tiel and VEGFR-2 in vivo is probably not directly induced by the tumor.  相似文献   

17.
18.
Vascular endothelial growth factor (VEGF) is not only essential for vasculogenesis and angiogenesis but is also capable of inducing tissue factor, the prime initiator of coagulation, in endothelial cells. In this study we have analyzed the VEGF-elicited pathways involved in the induction of tissue factor in human umbilical cord vein endothelial cells. Using specific low molecular weight inhibitors we could demonstrate a crucial role of the p38 and Erk-1/2 mitogen-activated protein (MAP) kinases. In contrast, treatment with wortmannin or LY294002, inhibitors of phosphatidylinositol 3 (PI3)-kinase, resulted in a strong enhancement of the VEGF-induced tissue factor production, indicating a negative regulatory role of the PI3-kinase on tissue factor-inducing pathways. Accordingly, transduction with constitutively active Akt led to a reduction of VEGF-induced tissue factor production. Western blot analyses using antibodies specific for phosphorylated p38 showed an enhanced activation of this MAP kinase in human umbilical cord vein endothelial cells when stimulated with VEGF in the presence of wortmannin in comparison to either agent alone. Thus, the negative regulation of the PI3-kinase pathway on endothelial tissue factor activity can be explained at least in part by a suppression of this MAP kinase-signaling pathway. This is the first demonstration of a reciprocal relationship between procoagulant activity and the PI3-kinase-Akt signaling pathway, and it reveals a novel mechanism by which tissue factor expression can be controlled in endothelial cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号