首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Strains of Streptococcus mutans (biotype 1), Streptococcus sanguis, and Streptococcus mitior have been grown in mixed continuous culture in a semidefined medium under glucose limitation at a growth rate of D = 0.1 h-1. The effect of varying the environmental pH on the proportions of the different populations within the community has been determined. Initially the populations were allowed to reach steady state at pH 7.0 when S. sanguis was dominant with S. mutans and "S. mitior" maintaining similar populations. The medium pH was then lowered in steps of 0.5 pH units from pH 7.0 to 4.5, and the community was grown at each step for at least 15 generations. Viable counts of each species were made at 24-h intervals. The population ratios established at pH 7.0 remained relatively stable when the environmental pH was set at pH 6.5. However, after the medium pH was lowered to 6.0 (days 18-27), the population of S. mutans began to increase and the S. mitior population began to decline. A further change was seen at pH 5.5 (days 27-34) when S. mutans became dominant, S. sanguis declined, and S. mitior was not detectable. At pH 4.5, both S. mutans and S. sanguis were reduced in numbers, but survived until the experimental run was terminated (44 days). Samples of culture fluid were taken throughout the experiment and analyzed for the presence of the acid products of glucose metabolism. The amounts of lactic acid produced by the community increased as the environmental pH was lowered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Nine commonly isolated oral bacterial populations were inoculated into a glucose-limited and a glucose-excess (amino acid-limited) chemostat maintained at a constant pH 7.0 and a mean community generation time of 13.9 h. The bacterial populations were Streptococcus mutans ATCC 2-27351, Strep. sanguis NCTC 7865, Strep. mitior EF 186, Actinomyces viscosus WVU 627, Lactobacillus casei AC 413, Neisseria sp. A1078, Veillonella alkalescens ATCC 17745, Bacteroides intermedius T 588 and Fusobacterium nucleatum NCTC 10593. All nine populations became established in the glucose-limited chemostat although Strep. sanguis and Neisseria sp. were present only after a second and third inoculation, respectively. In contrast, even following repeated inoculations, Strep. mutans, B. intermedius and Neisseria sp. could not be maintained under glucose-excess conditions. A more extensive pattern of fermentation products and amino acid catabolism occurred under glucose-limited growth; this simultaneous utilization of mixed substrates also contributed to the higher yields (Y molar glucose) and greater species diversity of these communities. Microscopic and biochemical evidence suggested that cell-to-cell interactions and food chains were occurring among community members. To compare the reproductibility of this system, communities were established on three occasions under glucose-limitation and twice under glucose-excess conditions. The bacterial composition of the steady-state communities and their metabolic behaviour were similar when grown under identical conditions but varied in a consistent manner according to the nutrient responsible for limiting growth. Although a direct simulation of the oral cavity was not attempted, the results show that the chemostat could be used as an environmentally-related model to grow complex but reproducible communities of oral bacteria for long periods from a defined inoculum.  相似文献   

3.
Polyvinyl chloride membrane electrodes sensitive to tetraphenyl phosphonium (TPP+), butyltriphenyl phosphonium ( bTPP +), and methyltriphenyl phosphonium ( mTPP +) ions have been compared for the determination of the electrical potential difference (delta psi) of the oral bacteria, Streptococcus mutans DR0001 /6 and Lactobacillus casei RB1014 . All three types of electrode proved suitable for determining delta psi, although the TPP+-sensitive electrode was particularly susceptible to interference by protonmotive force (delta p) dissipators known to inhibit sugar uptake by the bacteria. The mTPP +-sensitive electrode was the least affected. Similarly, both strains had a high nonspecific binding capacity for TPP+ and bTPP + ions, and this increased for all three ions when the bacteria were heated to 80 degrees C for 1 h to abolish glucose uptake and metabolism. This heat-treatment procedure is therefore not a suitable control for determination of nonspecific binding to cells. However, 1% (v/v) toluene, 20 microM gramicidin, or 10 microM valinomycin effectively depolarized the bacteria without interfering with nonspecific binding. The ionophores were therefore used subsequently for the determination of nonspecific binding of the lipid-soluble cations. The mTPP + ion and corresponding electrode proved the most effective system, and delta psi values of -89 and -107 mV were obtained for S. mutans and L. casei, respectively, harvested from glucose-limited continuous cultures and incubated in 100 mM Hepes-KOH buffer (pH 7.0), containing 1 mM dithiothreitol and 10 mM glucose. Although the delta psi of S. mutans decreased significantly in the presence of Mes-KOH and potassium phosphate buffers at pH 7.0, it increased to -119 mV in Tris-HCl buffer (pH 7.0).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Carbohydrate metabolism by the oral bacterium Streptococcus sanguis NCTC 7865 was studied using cells grown in a chemostat at pH 7.0 under glucose or amino acid limitation (glucose excess) over a range of growth rates (D = 0.05 h-1-0.4 h-1). A mixed pattern of fermentation products was always produced although higher concentrations of lactate were formed under amino acid limitation. Analysis of culture filtrates showed that arginine was depleted from the medium under all conditions of growth; a further supplement of 10 mM-arginine was also consumed but did not affect cell yields, suggesting that it was not limiting growth. Except at the slowest growth rate (D = 0.05 h-1) under glucose limitation, the activity of the glucose phosphotransferase (PTS) system was insufficient to account for the glucose consumed during growth, emphasizing the importance of an alternative method of hexose transport in the metabolism of oral streptococci. The PTS for a number of sugars was constitutive in S. sanguis NCTC 7865 and, even though the cells were grown in the presence of glucose, the activity of the sucrose-PTS was highest. The glycolytic activity of cells harvested from the chemostat was affected by the substrate, the pH of the environment, and their original conditions of growth. Glucose-limited cells produced more acid than those grown under conditions of glucose excess; at slow growth rates, in particular, greater activities were obtained with sucrose compared with glucose or fructose. Maximum rates of glycolytic activity were obtained at pH 8.0 (except for cells grown at D = 0.4 h-1 where values were highest at pH 7.0), while slow-growing, amino acid-limited cells could not metabolize at pH 5.0. These results are discussed in terms of their possible significance in the ecology of dental plaque and the possible involvement of these bacteria in the initiation but not the clinical progression of a carious lesion.  相似文献   

5.
Abstract Oral Streptococcus species experience carbohydrate limitation interrupted by periods of substrate excess following food intake by the host. To investigate the competitiveness of various streptococcal species under fluctuating carbohydrate supply, 2-membered chemostat cultures were run.
Under continuous limitation of glucose or sucrose, all 6 Streptococcus mutans test strains were outcompeted by Streptococcus sanguis P4A7 or Streptococcus milleri B448. This indicated that S. mutans had a lower affinity for glucose and sucrose than S. sanguis and S. milleri .
Mixed cultures were then subjected to hourly pulses with glucose. Under these conditions S. mutans Ny344 competed successfully with S. milleri B448, but still lost the competition against S. sanguis P4A7. The streptococci responded to pulses by taking up glucose at the maximum rate almost instantaneously. S. sanguis P4A7 had the highest rate of glucose uptake while the q max value of S. mutans Ny344 was higher than that of S. milleri B448. This suggested a causal relationship between q max and competitiveness.  相似文献   

6.
Abstract The microbiota in the mouth is subjected to substrate limitations. In this study we have evaluated the role of competition for carbon and energy substrates on the proportions of 2 microbial species in a simplified plaque ecosystem in gnotobiotic rats. Germ-free rats were inoculated with a combination of Streptococcus sanguis and Streptococcus mutans , or with a combination of Streptococcus milleri and S. mutans . The available carbon and energy sources were varied through the host's diet. 3 Experimental diets were tested: (i) a basal diet low in soluble carbohydrates; (ii) an arginine-supplemented diet; (iii) a sucrose-supplemented diet. Arginine is used for growth by S. sanguis and S. milleri , but not by S. mutans . Sucrose is rapidly fermented by all 3 species.
The total number of viable organisms on the dentition increased when arginine or sucrose were supplied in the diet. With the arginine-supplemented diet, S. sanguis and S. milleri increased while S. mutans decreased. With the sucrose-supplemented diet, S. mutans increased while S. sanguis and S. milleri decreased. These results were explained by assuming that the organism with the highest growth rate on the supplementary substrate competes most favourably. Changes in the environmental pH, due to breakdown of sucrose and arginine, might also have affected the competition between the streptococci. In addition, production of extracellular glucans from sucrose could be a competitive advantage for S. mutans .  相似文献   

7.
Abstract Streptococcus mutans GS-5 synthesizes an exo-β-d-fructosidase, FruA, capable of degrading levans, inulins, sucrose and raffinose, with the greatest activity on levans. A previous analysis of the deduced amino acid sequence of the FruA protein revealed the presence of a C-terminus with an LPXTGX membrane sorting sequence and membrane spanning domain, characteristic of many Gram-positive cocci surface proteins. Here it is demonstrated that FruA, which had been previously shown to exist almost exclusively as an extracellular enzyme, can be detected in significant proportions at the surface of S. mutans cells. Moreover, growth of S. mutans GS-5 at steady state in continuous culture at pH values of 7.0, 6.0, or 5.0 revealed that the amount of cell-associated enzyme increased with decreasing pH values, such that roughly 50% of the total fructanase activity of pH 5.0-grown organisms was cell-associated. This result was confirmed using anti-recombinant-FruA antisera in Western blotting of culture supernate and cell-associated enzyme preparations from chemostat-grown cells. Incubation of S. mutans at pH values of 5.0, 6.0 or 7.0 in buffered media yielded results similar to those observed in the chemostat experiments. The release of FruA from S. mutans was also shown to be inhibitable by copper, which is known to interfere with the release of the surface adhesin, P1, from intact cells and protoplasts of S. mutans . These data provide evidence for a unique post-translational mechanism for the regulation of the catabolism of polysaccharides by bacteria. The control of degradation of plaque fructans by modulation of the release of the fructanase enzyme from S. mutans may play a critical role in the temporal and spatial separation of the synthesis and degradation of dental plaque fructans.  相似文献   

8.
慢性根尖周炎的细菌学研究   总被引:1,自引:0,他引:1  
本文对14例慢性根尖周炎患者16个感染根管细菌培养检查的结果发现:以厌氧菌为优势的混合菌感染是慢性根尖周炎感染根管细菌学的主要特点。穿髓根管由于敞开的髓腔,同一根管内4—9种细菌混合感染者占87.5%;未穿髓的感染根管2—3种细菌混合感染的占62.5%,4种以上细菌混合感染的占37.5%。优势的感染菌包括产黑色素类杆菌、口腔类杆菌、口类杆菌、具核梭杆菌、干酪乳杆菌、内氏放线菌等6种厌氧菌;血液链球菌、变链球菌和酿脓链球菌为最常见的兼性厌氧菌。本文指出口腔正常菌群是感染根管的机会病原菌。  相似文献   

9.
pH activity profiles and inhibitor sensitivities were compared for membrane ATPases isolated from three oral lactic acid bacteria, Lactobacillus casei ATCC 4646, Streptococcus mutans GS-5, and Streptococcus sanguis NCTC 10904, with, respectively, high, moderate, and low levels of acid tolerance. Membranes containing F1F0 ATPases were isolated by means of salt lysis of cells treated with muralytic enzymes. Membrane-free F1F0 complexes were then isolated from membranes by detergent extraction with Triton X-100 or octylglucoside. Finally, F1 complexes free of the proton-conducting F0 sector were obtained by washing membranes with buffers of low ionic strength. The pH activity profiles of the membrane-associated enzymes reflected the general acid tolerances of the organisms from which they were isolated; for example, pH optima were approximately 5.5, 6.0, and 7.0, respectively, for enzymes from L. casei, S. mutans, and S. sanguis. Roughly similar profiles were found for membrane-free F1F0 complexes, which were stabilized by phospholipids against loss of activity during storage. However, profiles for F1 enzymes were distinctly narrower, indicating that association with F0 and possibly other membrane components enhanced tolerance to both acid and alkaline media. All of the enzymes were found to have similar sensitivities to Al-F complexes, but only F1F0 enzymes were highly sensitive to dicyclohexylcarbodiimide. The procedures described for isolation of membrane-free F1F0 forms of the enzymes from oral lactic acid bacteria will be of use in future studies of the characteristics of the enzymes, especially in studies with liposomes.  相似文献   

10.
pH activity profiles and inhibitor sensitivities were compared for membrane ATPases isolated from three oral lactic acid bacteria, Lactobacillus casei ATCC 4646, Streptococcus mutans GS-5, and Streptococcus sanguis NCTC 10904, with, respectively, high, moderate, and low levels of acid tolerance. Membranes containing F1F0 ATPases were isolated by means of salt lysis of cells treated with muralytic enzymes. Membrane-free F1F0 complexes were then isolated from membranes by detergent extraction with Triton X-100 or octylglucoside. Finally, F1 complexes free of the proton-conducting F0 sector were obtained by washing membranes with buffers of low ionic strength. The pH activity profiles of the membrane-associated enzymes reflected the general acid tolerances of the organisms from which they were isolated; for example, pH optima were approximately 5.5, 6.0, and 7.0, respectively, for enzymes from L. casei, S. mutans, and S. sanguis. Roughly similar profiles were found for membrane-free F1F0 complexes, which were stabilized by phospholipids against loss of activity during storage. However, profiles for F1 enzymes were distinctly narrower, indicating that association with F0 and possibly other membrane components enhanced tolerance to both acid and alkaline media. All of the enzymes were found to have similar sensitivities to Al-F complexes, but only F1F0 enzymes were highly sensitive to dicyclohexylcarbodiimide. The procedures described for isolation of membrane-free F1F0 forms of the enzymes from oral lactic acid bacteria will be of use in future studies of the characteristics of the enzymes, especially in studies with liposomes.  相似文献   

11.
Adaptive acid tolerance response of Streptococcus sobrinus   总被引:1,自引:0,他引:1  
Streptococcus mutans and Streptococcus sobrinus are the bacteria most commonly associated with human dental caries. A major virulence attribute of these and other cariogenic bacteria is acid tolerance. The acid tolerance mechanisms of S. mutans have begun to be investigated in detail, including the adaptive acid tolerance response (ATR), but this is not the case for S. sobrinus. An analysis of the ATR of two S. sobrinus strains was conducted with cells grown to steady state in continuous chemostat cultures. Compared with cells grown at neutral pH, S. sobrinus cells grown at pH 5.0 showed an increased resistance to acid killing and were able to drive down the pH through glycolysis to lower values. Unlike what is found for S. mutans, the enhanced acid tolerance and glycolytic capacities of acid-adapted S. sobrinus were not due to increased F-ATPase activities. Interestingly though, S. sobrinus cells grown at pH 5.0 had twofold more glucose phosphoenolpyruvate:sugar phosphotransferase system (PTS) activity than cells grown at pH 7.0. In contrast, glucose PTS activity was actually higher in S. mutans grown at pH 7.0 than in cells grown at pH 5.0. Silver staining of two-dimensional gels of whole-cell lysates of S. sobrinus 6715 revealed that at least 9 proteins were up-regulated and 22 proteins were down-regulated in pH 5.0-grown cells compared with cells grown at pH 7.0. Our results demonstrate that S. sobrinus is capable of mounting an ATR but that there are critical differences between the mechanisms of acid adaptation used by S. sobrinus and S. mutans.  相似文献   

12.
Cell-free D-glucosyltransferase of D-glucose-grown Streptococcus mutans AHT was completely inactivated in the presence of 0.002% of Methylene Blue at 25 degrees and pH 7.0 after illumination with a 150-W incandescent lamp. The rate of inactivation was decreased at pH values less than 7.0. Histidine was the only amino acid residue modified to a significant extent, and the rates of oxidation of histidine residues and loss of enzyme activity closely agreed. Production of both water-insoluble and -soluble D-glucan fractions from sucrose by the oxidized D-glucosyltransferase preparations was significantly inhibited. Photooxidation with 0.002% of Rose Bengal at pH 7.0 or higher also induced complete inactivation of the D-glucosyltransferase. These results strongly suggest that the imidazole portion of histidine may function as part of the active sites of both D-glucosyltransferase isozymes of S. mutans AHT, which are responsible for the synthesis of (1 goes to 3)- and (1 goes to 6)-alpha-D-glucosidic linkages. The D-glucosyltransferases from S. mutans 6715 and AHT-mutant M1, and Streptococcus sanguis ATCC 10558 were also almost completely inactivated by Methylene Blue-sensitized photooxidation.  相似文献   

13.
目的观察复方茶多酚含漱液对正畸儿童牙面菌斑中细菌总数和变形链球菌数的影响,以及牙菌斑内原位pH的改变。方法选择42例戴用固定矫治器的正畸儿童,随机分为2组,试验组用复方茶多酚含漱液漱口,对照组用蒸馏水漱口。分别于戴用矫治器前,戴入后1月采集上下颌牙唇颊面菌斑,测定菌斑中细菌总数及变形链球菌数,同时测定牙菌斑原位pH。结果对照组戴用后1月,细菌总数及变形链球菌数较戴用前明显增加(P0.01),牙菌斑原位pH较戴用前降低(P0.01)。试验组与对照组戴用后1个月相比,试验组细菌总数及变形链球菌数明显少于对照组(P0.01),牙菌斑原位pH高于对照组(P0.01)。结论戴用固定矫治器后,牙面菌斑内细菌总数及变形链球菌数较戴用前增加,牙菌斑原位pH较戴用前降低,应用茶多酚含漱液可明显抑制正畸儿童口腔内变形链球菌数,减少龋坏发生。  相似文献   

14.
A chemostat mixed culture system was used to produce two distinct ecological states, state-1 (caries-like microcosm) and state-2 (periodontal-like microcosm). Eleven bacterial species (Streptococcus gordonii, Strep. mitis I, Strep. mutans, Strep. oralis, Actinomyces naeslundii, Lactobacillus casei, Neisseria subflava, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella nigrescens, Veillonella dispar) were used to inoculate the planktonic system. A flow cell, designed to produce convergent flow with increasing shear stress, was attached to the chemostat system, and the resultant biofilms developed from the state-1 and state-2 microcosms along the shear stress gradient were examined and compared using image analysis and viable counts. The biofilm produced from state-1 showed a lower shear stress tolerance (0.146 Pa) than the state-2 biofilm (0.236 Pa). The biofilm compositions did not vary along the gradient of shear stress and were dependent on the initial inoculum conditions. Gram-positive species were predominant in the state-1 biofilm, while Gram-negative species were predominant in state-2.  相似文献   

15.
Glucosyltransferases (Gtfs) and fructosyltransferase (Ftf), and the exopolysaccharides they produce, facilitate bacterial adherence and biofilm formation, and enhance the virulence of Streptococcus mutans. In this study, we used continuous chemostat cultures and reporter gene fusions to study the expression of ftf and gtfBC in response to carbohydrate availability and pH, and to asses the role of a protein similar to catabolite control protein A (CcpA), RegM, in regulation of these genes. Expression of ftf was efficient at pH 7.0 and 6.0, but was repressed at pH 5.0 under glucose-excess conditions. At pH 7.0, ftf expression was 5-fold lower under glucose-limiting conditions than in cells growing with an excess of glucose. Expression of gtfBC was also sensitive, albeit to a lesser extent, to pH and glucose availability. Inactivation of regM resulted in decreases of as much as 10-fold in both ftf and gtfBC expression, depending on growth conditions. These findings reinforce the importance of pH and carbohydrate availability for expression of two primary virulence attributes of S. mutans and reveal a critical role for RegM in regulation of expression of both gtfBC and ftf.  相似文献   

16.
Streptococcus mutans 6715-15 and Streptococcus sanguis 10558 were grown together in continuous culture with glucose as the limiting carbon source. The relationship of growth rate to substrate concentration was determined for pure cultures of each organism in continuous and batch cultures. A model based on competition for a growth-limiting substrate (glucose) was used to predict the proportions of each organism when grown in binary cultures. The results indicate that interactions other than competition for glucose carbon exist between S. mutans and S. sanguis grown under these conditions.  相似文献   

17.
Streptococcus mutans 6715-15 and Streptococcus sanguis 10558 were grown together in continuous culture with glucose as the limiting carbon source. The relationship of growth rate to substrate concentration was determined for pure cultures of each organism in continuous and batch cultures. A model based on competition for a growth-limiting substrate (glucose) was used to predict the proportions of each organism when grown in binary cultures. The results indicate that interactions other than competition for glucose carbon exist between S. mutans and S. sanguis grown under these conditions.  相似文献   

18.
Abstract Pure cultures of Streptococcus mutans NCTC 10499 and Streptococcus sanguis ATCC10556 were grown in a glucose-limited chemostat under varying concentrations of oxygen in the gas phase. Both streptococci consumed large amounts of oxygen by the partial oxidation of sugars, thus maintaining an anaerobic environment. With increasing oxygen concentrations the degradation products from glucose become more oxidized. Ethanol gradually disappeared from the culture fluid while the acetate concentration increased. In the case of S. sanguis , the products became even more oxidized at higher oxygen concentrations, and carbon dioxide was formed instead of formate. Sudden increase in the oxygen concentration in the gas phase caused elevated oxygen tensions in the cultures, which led to a decrease in the growth rate of the streptococci.  相似文献   

19.
Oral streptococci utilize an F-ATPase to regulate cytoplasmic pH. Previous studies have shown that this enzyme is a principal determinant of aciduricity in the oral streptococcal species Streptococcus sanguis and Streptococcus mutans. Differences in the pH optima of the respective ATPases appears to be the main reason that S. mutans is more tolerant of low pH values than S. sanguis and hence pathogenic. We have recently reported the genetic arrangement for the S. mutans operon. For purposes of comparative structural biology we have also investigated the F-ATPase from S. sanguis. Here, we report the genetic characterization and expression in Escherichia coli of the S. sanguis ATPase operon. Sequence analysis showed a gene order of atpEBFHAGDC and that a large intergenic space existed upstream of the structural genes. Activity data demonstrate that ATPase activity is induced under acidic conditions in both S. sanguis and S. mutans; however, it is not induced to the same extent in the nonpathogenic S. sanguis. Expression studies with an atpD deletion strain of E. coli showed that S. sanguis-E. coli hybrid enzymes were able to degrade ATP but were not sufficiently functional to permit growth on succinate minimal media. Hybrid enzymes were found to be relatively insensitive to inhibition by dicyclohexylcarbodiimide, indicating loss of productive coupling between the membrane and catalytic subunits.  相似文献   

20.
The membrane-bound, sugar-specific enzyme II (EII) component of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Streptococcus mutans Ingbritt is repressed by growth on glucose under various conditions in continuous culture. Compared with optimal PTS conditions (i.e., glucose limitation, dilution rate [D] of 0.1 h-1, and pH 7.0), EII activity for glucose (EIIGlc) and mannose (EIIMan) in cells grown at a D of 0.4 h-1 and pH 5.5 with the same glucose concentration was reduced 24- to 27-fold. EII activity with methyl alpha-glucoside and 2-deoxyglucose was reduced 6- and 26-fold, respectively. Growth with excess glucose (i.e., nitrogen limitation) resulted in 26- to 88-fold repression of EII activity with these substrates. The above conditions of low pH, high dilution rate, and excess glucose also repressed EII activity for fructose (EIIFru), but to a lesser extent (two- to fivefold). Conversely, growth of S. mutans DR0001 at a D of 0.2 h-1 and pH 5.5 resulted in increased EIIGlc and EIIMan activity. Unlike the EII component, the HPr concentration in S. mutans Ingbritt varied only twofold (5.5 to 11.4 nmol/mg of protein) despite growth at pH 5.5 with limiting and excess glucose. The HPr concentrations in S. mutans DR0001 and the glucose-PTS-defective mutant DR0001/6 were similar. In a companion study, the soluble components of the PTS (i.e., HPr, EI, and EIIILac) in Streptococcus sobrinus grown on limiting lactose in a chemostat were not influenced significantly by growth at various pHs (7.0 and 5.0) and growth rates (D of 0.1, 0.54, and 0.8 h-1). However, growth on lactose resulted in repression of both EIIGlc and EIIFru, confirming earlier results with batch-grown cells. Thus, the glucose-PTS in some strains of S. mutans is regulated at the level of EII synthesis by certain environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号