首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
硝化抑制剂对不同旱地农田土壤N2O排放的影响   总被引:7,自引:0,他引:7  
通过室内培养法,研究了硝化抑制剂双氰胺(DCD)和3,4-二甲基吡唑磷酸盐(DMPP)对施加尿素的沈阳草甸棕壤、运城褐土、美国明尼苏达州粉砂壤土的N2O排放、氮素转化速率和微生物群落结构的影响.结果表明:抑制剂DCD和DMPP对草甸棕壤的N2O减排率为54.1% ~75.9%,但对速效氮含量影响不显著,约24%的硝化潜势被DCD所抑制,而在高含水量下DMPP却对硝化潜势无抑制作用;在褐土中,DMPP抑制效果显著,其在两种含水量下的N2O减排率为85.5%和66.7%、对硝化作用潜势抑制率为97.2%和96.4%,但DCD只在低含水量下有少许抑制效果(24.6% ~57.5%),而在高含水量下则失效;DMPP对粉砂壤土在两种含水量下的N2O减排率为42.9%和53.1%,而DCD在高含水量下未能减排N2O;在草甸棕壤和褐土中,施氮肥有效促进氨氧化细菌(AOB)的生长繁殖,DCD与DMPP使AOB amoA数量减少了4.1% ~63.5%,有显著抑制作用,而对氨氧化古菌(AOA)和反硝化菌则影响不大;与AOB相比,AOA在数量上占优势,但AOB amoA基因丰度与硝化潜势显著正相关,表明AOB在硝化过程中起了更重要的作用.  相似文献   

2.
采用15N库稀释-原位培养法研究了硝化抑制剂DCD、DMPP对华北盐碱性褐土氮总矿化速率和硝化速率的影响.试验在山西省运城市种植玉米的盐碱性土壤上进行,设单施尿素、尿素+DCD、尿素+DMPP 3个处理.结果表明:施肥后2周,DCD、DMPP分别使氮总矿化速率和氮总硝化速率减少了25.5%、7.3%和60.3%、59.1%,DCD对氮总矿化速率的影响显著高于DMPP,两者对氮总硝化速率的影响无显著差异;而在施肥后7周,不同硝化抑制剂对氮总硝化速率的影响存在差异.施肥后2周,3个处理的土壤氮总矿化速率和硝化速率分别是施肥前的7.2 ~10.0倍和5.5 ~21.5倍;NH4+和NO3-消耗速率分别是施肥前的9.1 ~12.2倍和5.1 ~8.4倍,这是由氮肥对土壤的激发效应所致.硝化抑制剂使氮肥更多地以NH4+形式保持在土壤中,减少了NO3-的积累.土壤氮总矿化速率和总硝化速率受硝化抑制剂的抑制是N2O减排的主要原因.  相似文献   

3.
本试验研究脲酶/硝化抑制剂不同组合在黑土和褐土中对尿素水解和硝化作用的调控效果,旨在筛选出适合东北黑土、褐土的高效抑制剂组合。采用室内恒温、恒湿培养试验,以不施氮肥(CK)和施用普通尿素肥料(U)为对照,研究分别添加脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)及其与硝化抑制剂双氰胺(DCD)、3,4-二甲基吡唑磷酸盐(DMPP)、2-氯-6(三氯甲基)-吡啶(CP)、2-氨基-4-氯-6-甲基嘧啶(AM)、3-甲基吡唑(MP)组合制成的6种高效稳定性尿素在黑土和褐土中的尿素水解和氨氧化特征。在培养125 d内分别取土壤样品15次,通过测定2种土壤中尿素态氮、铵态氮和硝态氮含量,及氨氧化作用强度,计算硝化抑制率,确定最适合2种土壤的抑制剂或组合。结果表明: 尿素在黑土和褐土中水解时间约7 d,添加NBPT以及其与不同硝化抑制剂组合均能将尿素水解时间延长21 d以上。与U处理相比,添加抑制剂可显著增加土壤NH4+-N含量,降低NO3--N生成量,维持土壤中高NH4+-N含量的时间更久。黑土中,添加硝化抑制剂的处理均能显著抑制土壤硝化作用,有效硝化抑制时间超过125 d;DMPP、CP与NBPT配施使黑土NH4+-N含量提高1.6~1.8倍,培养125 d时其硝化抑制率分别为47.9%和24.1%。褐土中,U处理培养80 d左右基本完成硝化过程,而添加硝化抑制剂使硝化过程延长至少30 d;DCD、DMPP与NBPT配施使土壤NH4+-N含量提高2.1~3.4倍,培养125 d时其硝化抑制率分别为25.3%和23.2%。因此,尿素与NBPT+DMPP和NBPT+DCD制成的高效稳定性尿素分别在黑土和褐土中施用效果最好,其次分别是NBPT+CP和NBPT+DMPP。  相似文献   

4.
高效稳定性硫酸铵氮肥在黑土中的施用效果   总被引:1,自引:0,他引:1  
为筛选高效稳定性氮肥,采用盆栽试验,通过监测施用不同处理的稳定性硫酸铵对黑土铵态氮和硝态氮含量、表观硝化率、硝化抑制率、玉米生长指标、产量和氮素效率等指标的影响,研究添加不同生化抑制剂配方的稳定性硫酸铵态氮肥在吉林黑土玉米栽培中的施用效果。本试验以不施氮肥(CK)和施硫酸铵(N)为对照,在硫酸铵中分别添加硝化抑制剂3,4-二甲基吡唑磷酸盐(DMPP)、2-氯-6-三甲基吡啶(CP),氮保护剂(N-GD)和肥料增效剂(HFJ)及其组合,制成9种稳定性硫酸铵氮肥。结果表明: 与单施硫酸铵氮肥处理相比,在黑土中添加DMPP和DMPP组合显著影响土壤中铵态氮和硝态氮含量及土壤表观硝化率,铵态氮含量提高1.4~2.0倍,硝态氮含量降低13.6%~17.9%,土壤表观硝化率降低55.3%~59.8%;添加DMPP、DMPP+HFJ和DMPP+N-GD组合硝化抑制率最高,达到16.5%以上;添加DMPP+HFJ+N-GD和HFJ的硫酸铵处理玉米叶片叶绿素含量增加最显著,增加4.5~5.3倍;硫酸铵添加硝化抑制剂和肥料增效剂对株高无显著影响;添加HFJ的硫酸铵处理玉米生物量、籽粒产量、经济系数、收获指数、氮肥农学利用率、氮素吸收利用率、肥料贡献率和氮肥偏生产力增加最显著,分别增加1.2、2.5、0.7、0.6、2.7、2.1、1.3和2.5倍。添加HFJ和DMPP、DMPP+HFJ、DMPP+N-GD处理的硫酸铵处理在黑土中施用效果最好,但是DMPP成本较高,因此,兼顾成本和氮肥利用率,建议稳定性硫酸铵态氮肥生化抑制剂首选氮肥增效剂HFJ,其次选择DMPP+HFJ或者DMPP+N-GD。  相似文献   

5.
本研究分析添加不同种硝化抑制剂及其组合的高效稳定性氯化铵氮肥对红壤硝化作用、玉米产量和氮肥利用率的影响,旨在筛选出适合酸性红壤的高效稳定性氯化铵态氮肥。在氯化铵中分别添加硝化抑制剂2-氯-6-三甲基吡啶(CP)、3,4-二甲基吡唑磷酸盐(DMPP)和双氰胺(DCD)及其组合,制成6种高效稳定性氯化铵态氮肥,以不施氮肥(CK)和施氯化铵(N)为对照,进行等氮量玉米盆栽试验。结果表明: 与N处理相比,CP+DMPP和DMPP+DCD处理红壤中铵态氮含量提高56%~62%,显著高于CP、DMPP和DCD处理;土壤表观硝化率显著降低33%~34%。添加硝化抑制剂及其组合的6个处理均显著提高了玉米生物量和氮肥吸收利用率。与N处理相比,单独添加硝化抑制剂处理生物量均显著高于硝化抑制剂组合处理,平均提高1.3倍;添加DCD处理效果最显著,玉米籽粒产量、吸氮量和氮肥吸收利用率分别显著提高4.1、6.3和4.4倍。为了达到既能低成本又能提高产量和氮肥利用率的效果,在红壤上添加硝化抑制剂DCD是最佳选择。  相似文献   

6.
3,5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响   总被引:3,自引:0,他引:3  
采用好气培养法,以双氰胺(DCD)为参比对象研究了新型吡唑类硝化抑制剂3,5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响.结果表明,DMPZP对土壤中的铵氧化作用有较强的抑制效果,在施用量为1.0%(纯N含量)时能显著提高土壤中的NH4+-N浓度,降低NO3--N浓度.DMPZP的硝化抑制效应随用量的增加而增强,相同质量的DMPZP的硝化抑制效果不及DCD,而DCD又不及2倍质量的DMPZP,但等摩尔数(物质量)的DMPZP硝化抑制效果明显优于DCD. DMPZP在施用后的第7天至第14天的硝化抑制作用最强,与不添加抑制剂的处理相比,DMPZP添加量为1.0%和2.0%(纯N含量)时的表观硝化率在第7天和第14天分别降低了29.3%、41.7%和18.6%、34.3%;在此期间,添加DMPZP处理的硝化抑制率均高于30%.DMPZP的施用还可减缓土壤pH的降低速率,但施用DMPZP和DCD对土壤pH的影响差异不显著.  相似文献   

7.
章燕    徐慧  夏宗伟  郭彦玲   《生态学杂志》2012,23(1):166-172
采用15N库稀释-原位培养法研究了硝化抑制剂DCD、DMPP对华北盐碱性褐土氮总矿化速率和硝化速率的影响.试验在山西省运城市种植玉米的盐碱性土壤上进行,设单施尿素、尿素+DCD、尿素+DMPP 3个处理.结果表明:施肥后2周,DCD、DMPP分别使氮总矿化速率和氮总硝化速率减少了25.5%、7.3%和60.3%、59.1%,DCD对氮总矿化速率的影响显著高于DMPP,两者对氮总硝化速率的影响无显著差异;而在施肥后7周,不同硝化抑制剂对氮总硝化速率的影响存在差异.施肥后2周,3个处理的土壤氮总矿化速率和硝化速率分别是施肥前的7.2~10.0倍和5.5~21.5倍;NH4+和NO3-消耗速率分别是施肥前的9.1~12.2倍和5.1~8.4倍,这是由氮肥对土壤的激发效应所致.硝化抑制剂使氮肥更多地以NH4+形式保持在土壤中,减少了NO3-的积累.土壤氮总矿化速率和总硝化速率受硝化抑制剂的抑制是N2O减排的主要原因.  相似文献   

8.
稳定性铵态氮肥在黑土和褐土中的氮素转化特征   总被引:2,自引:0,他引:2  
以稳定性氯化铵为氮源,采用室内培养的方法,研究0.20、0.50、1.00 g N·kg-1干土3种浓度的稳定性铵态氮肥在黑土、褐土中的氮素转化特征.结果表明: 在褐土中,随着氯化铵添加量的增加,土壤中发生硝化作用的时间逐渐推迟,添加0.20、0.50 g N·kg-1干土处理开始发生明显硝化反应的时间分别为第3、7天,在高浓度氮量(1.00 g N·kg-1干土)添加下硝化作用受到明显抑制;在黑土中,各浓度氮量添加处理开始发生硝化反应的时间相同,均为第3天,且随着添加量的增加,硝化作用潜势逐渐减弱.只加铵态氮肥的处理中,添加0.20 g N·kg-1干土的氯化铵氮肥在褐土和黑土中的硝化反应时间分别可维持3周和2周左右;添加0.50 g N·kg-1干土的氯化铵氮肥在褐土和黑土中的硝化反应时间分别可维持4周和3周左右.与单施氯化铵相比,黑土和褐土在0.20、0.50 g N·kg-1干土添加浓度下,按纯氮量的1.0%添加3,4-二甲基吡唑磷酸盐(DMPP)、4.0%添加二氰二胺(DCD)均能显著抑制硝化作用,降低硝态氮的含量,抑制硝化作用潜势.综上,在褐土中,随着氯化铵添加浓度增加,土壤硝化作用受到抑制效果大于黑土.在0.20、0.50 g N·kg-1干土外源铵态氮时,添加抑制剂可以显著抑制铵态氮的硝化作用.因此室内硝化抑制剂培养试验时,建议铵态氮添加量不超过1.00 g N·kg-1干土,以0.50 g N·kg-1干土效果最好.  相似文献   

9.
污水土地生态处理脱氮技术的中型试验研究   总被引:2,自引:0,他引:2  
地沟式污水土地生态处理工艺,是自然生态净化与人工工艺相结合的小规模污水处理回用技术。它是采用土壤毛细管浸润扩散原理的浅型土壤处理技术,在人工可控条件下,将污水科学、合理地投配到设计定型的装置内,利用污水的能量,把其所携带的污染物,通过人工基质(土壤、砂、碎石等,填料-水-微生物-植物系统)的物质循环和能量流动,逐级降解;在不同的污染负荷、水力负荷下,完成一系列物理、化学、物理化学和微生物化学、生物化学的反应。通过以贵州典型的黄壤土为主配比的人工土作为处理系统填料的现场中型试验,探讨地沟式污水土地处理系统的脱氮效果及其影响因素。地沟式污水土地生态系统对氨氮和总氮去除效果良好,去除率分别达到84 .7%和70 .7% ,出水氨氮(14 .0 mg/L )和总氮(2 4 .7mg/L ) ,达到建设部颁发的生活杂用水水质标准。对处理系统微生物数量及分布的研究表明:处理系统中氮转化细菌丰富,氨化细菌为10 3~10 6 cfu MPN/g(土壤) (cfu:形成菌落数:MPN:最大可能数量) ,亚硝化菌为10 3~10 6 MPN/g(土壤) ,硝化菌10 4~10 6 MPN/g(土壤) ,反硝化细菌为10 3~10 6 MPN/g(土壤)。由硝化/反硝化实现生物脱氮是土地生态处理系统去除总氮的主要途径;建立土壤、土壤微生物、土壤植被环境以促进硝化作用是提高总  相似文献   

10.
 采用气压过程分离(Barometric process separation, BaPS)技术对川西亚高山针叶林不同恢复 阶段土壤的总硝化和反硝化作用速率进行了测定,结果表明:川西亚高山针叶林不同恢复阶段土壤的总硝化和反硝化速率差异不显著(p<0.05),不同恢复阶段土壤总硝化作用的 Q10值 差异不显著(p<0.05);总硝化作用速率与土壤含水量呈显著正相关(p<0.05),与土 壤pH值、 土壤有机质、全氮及C/N相关不显著;不同恢复阶段土壤反硝化速率均维持在一个较低的水 平,反硝化速率与土壤中的C/N显著正相关(p<0.05),与土壤含水量、pH值、有机质及全氮相关不显著。与反硝化作用相比,硝化作用对亚高山针叶林土壤氮损失的影响可能更大  相似文献   

11.
植物、土壤及土壤管理对土壤微生物群落结构的影响   总被引:26,自引:2,他引:24  
土壤微生物是土壤生态系统的重要组成部分,对土壤微生物群落结构多样性的研究是近年来土壤生态学研究的热点。本文综述了有关植物、土壤类型以及土壤管理措施对土壤微生物群落结构影响的最新研究结果,指出植物的作用因植物群落结构多样性、植物种类、同种植物不同的基因型,甚至同一植物不同根的区域而异;而土壤的作用与土壤质地和有机质含量等因素有关;植物和土壤类型在对土壤微生物群落结构影响上的作用存在互作关系。不同的土壤管理措施对土壤微生物群落结构影响较大,长期连作、大量的外援化学物质的应用降低了土壤微生物的多样性;而施用有机肥、免耕可以增加土壤微生物群落结构多样性,有利于维持土壤生态系统的功能。  相似文献   

12.
Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of short-term fluctuations of these three environmental factors on the relation between actual and observed root respiration rates. We designed an automated, open, gas-exchange system that allows continuous measurements on 12 chambers with intact roots in soil. By using three distinct chamber designs with each a different path for the air flow, we were able to measure root respiration over a 50-fold range of soil CO2 concentrations (400 to 25000 ppm) and to separate the effect of irrigation on observed vs. actual root respiration rate. All respiration measurements were made on one-year-old citrus seedlings in sterilized sandy soil with minimal organic material.Root respiration was strongly affected by diurnal fluctuations in temperature (Q10 = 2), which agrees well with the literature. In contrast to earlier findings for Douglas-fir (Qi et al., 1994), root respiration rates of citrus were not affected by soil CO2 concentrations (400 to 25000 ppm CO2; pH around 6). Soil CO2 was strongly affected by soil water content but not by respiration measurements, unless the air flow for root respiration measurements was directed through the soil. The latter method of measuring root respiration reduced soil CO2 concentration to that of incoming air. Irrigation caused a temporary reduction in CO2 diffusion, decreasing the observed respiration rates obtained by techniques that depended on diffusion. This apparent drop in respiration rate did not occur if the air flow was directed through the soil. Our dynamic data are used to indicate the optimal method of measuring root respiration in soil, in relation to the objectives and limitations of the experimental conditions.  相似文献   

13.
生物质炭对水稻土团聚体微生物多样性的影响   总被引:9,自引:0,他引:9  
生物质炭施用对土壤微生物群落结构的影响已有报道,但土壤团聚体粒组中微生物群落对生物质炭施用的响应的研究还相对不足。以施用玉米秸秆生物质炭两年后的水稻土为对象,采用团聚体湿筛法,通过高通量测序对土壤团聚体的微生物群落结构与多样性进行分析,结果表明:(1)与对照相比,生物质炭施用显著促进了大团聚体(2000—250μm)的形成,并提高了团聚体的稳定性。(2)不同粒径团聚体间微生物相对丰度存在显著差异。在未施生物质炭的处理(C0)中,随着团聚体粒径增大,变形菌门、子囊菌门、β-变形杆菌目、格孢腔菌目的相对丰度逐渐降低,而酸杆菌门、担子菌门、粘球菌目、类球囊霉目的相对丰度逐渐升高。(3)生物质炭施用显著改变了团聚体间的微生物群落结构。与C0处理相比,生物质炭施用处理的大团聚体中变形菌门、鞭毛菌门和β-变形杆菌目的相对丰度分别显著提高了14.37%、33.28%和33.82%;微团聚体(250—53μm)中酸杆菌门、子囊菌门和粘球菌目的相对丰度分别显著降低了20.15%、19.93%和17.66%;粉、黏粒组分(53μm)中担子菌门的相对丰度升高90.25%,而子囊菌门和鞭毛菌门的相对丰度分别降低12.15%和12.58%。由此可见,生物质炭不仅改变土壤团聚体组成和分布,同时伴随着土壤微生物群落结构的改变。  相似文献   

14.
Summary Total porosity and pore-size distribution (p.s.d.) were determined in soil aggregates taken in plots planted with maize and treated with farmyard manure and three rates of compost. Soil aggregates were collected from the soil adherent to the maize roots (root soil aggregates) and from bulk soil (bulk soil aggregates). Mercury intrusion porosimetry was used to evaluate the total porosity and the p.s.d. Treatments did not affect the total porosity of the bulk soil aggregates. The same was observed for the root soil aggregates. However the total porosity of the root soil aggregates was always lower than that of the bulk soil aggregates. The loss of total porosity was found to be due to a decrease in the percentage of larger pores with respect to the total.  相似文献   

15.
Warren  G. P.  Whitehead  D. C. 《Plant and Soil》1988,112(2):155-165
The available N of 27 soils from England and Wales was assessed from the amounts of N taken up over a 6-month period by perennial ryegrass grown in pots under uniform environmental conditions. Relationships between availability and the distribution of soil N amongst various fractions were then examined using multiple regression. The relationship: available soil N (mg kg–1 dry soil)=(Nmin×0.672)+(Ninc×0.840)+(Nmom×0.227)–5.12 was found to account for 91% of the variance in available soil N, where Nmin=mineral N, Ninc=N mineralized on incubation and Nmom=N in macro-organic matter. The N mineralized on incubation appeared to be derived largely from sources other than the macro-organic matter because these two fractions were poorly correlated. When availability was expressed in terms of available organic N as % of soil organic N (Nao) the closest relationship with other soil characteristics was: Nao=[Ninc×(1.395–0.0347×CNmom]+[Nmom×0.1416], where CNmom=CN ratio of the macro-organic matter. This relationship accounted for 81% of the variance in the availability of the soil organic N.The conclusion that the macro-organic matter may contribute substantially to the available N was confirmed by a subsidiary experiment in which the macro-organic fraction was separated from about 20 kg of a grassland soil. The uptake of N by ryegrass was then assessed on two subsamples of this soil, one without the macro-organic matter and the other with this fraction returned: uptake was appreciably increased by the macro-organic matter.  相似文献   

16.
Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this ‘priming'' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability.Substrate inputs can stimulate decomposition of native soil organic carbon (SOC; Kuzyakov et al., 2000), a phenomenon known as the ‘priming effect'' (Kuzyakov, 2010), and is considered large enough to influence ecosystem C balance (Wieder et al., 2013). Two functionally distinct groups of microorganisms are postulated to mediate priming: one that grows rapidly utilizing labile C, and one that grows slowly, breaking down recalcitrant SOC (Fontaine et al., 2003; Blagodatskaya et al., 2007). However, distinguishing these groups is technically challenging. Here, we used dual-stable isotope probing with 13C-glucose and 18O-water to identify bacteria in these two groups growing in response to single and repeated pulses of glucose. Organisms that utilize labile C for growth assimilate both 13C-glucose and 18O-water into their DNA, whereas organisms that grow using SOC incorporate only 18O-water. Differential isotope incorporation leads to a range of DNA densities separable through isopycnic centrifugation, which can then be characterized by sequencing (Radajewski et al., 2000).We sequenced fragments of bacterial 16S rRNA genes following single and repeated glucose pulses. We hypothesized that the single pulse of labile C would stimulate growth of opportunistic organisms, thus immobilizing nutrients and suppressing growth and diversity of the SOC-utilizing community, decreasing SOC decomposition (negative priming), a response analogous to that observed in plant communities in response to chronic N additions (Tilman, 1987; Clark and Tilman, 2008). We hypothesized that multiple glucose additions would stimulate growth of a more diverse bacterial community, including more native SOC-utilizing organisms that possess enzymes to decompose recalcitrant compounds, causing positive priming (Fontaine et al., 2003; Kuzyakov, 2010).Soil from a ponderosa pine ecosystem was amended weekly for 7 weeks with 500 μg C-glucose per gram soil (2.65 atom % 13C) in 100 μl deionized water or with 100 μl deionized water (n=5). Measurements of δ13C–CO2 and [CO2] enabled the partitioning of CO2 into that derived from added glucose or from native SOC (CSOC):where Ctotal is CO2–C from glucose-amended samples, δtotal is the δ13C–CO2 from glucose-amended samples, δglucose is the δ13C of the added glucose and δSOC is the δ13C–CO2 evolved from the non-amended samples. Priming was calculated as the difference between SOC oxidation of the amended and non-amended samples. With this approach, any evolved CO2 carrying the 13C signature of the added glucose is considered respiration of glucose, including 13C-labeled biomass and metabolites derived from prior glucose additions. Thus, this approach quantifies priming as the oxidation of SOC present at the beginning of the experiment, consistent with many other studies of priming (Cheng et al., 2003; De Graaff et al., 2010).In a parallel incubation for dual-stable isotope probing, the repeated-pulse samples received unlabeled glucose (500 μg C-glucose per gram soil) for 6 weeks while the non-amended and single-pulse samples received sterile deionized water. In week 7, samples received one of four isotope treatments (n=3): 97 atom % H2 18O (non-amended soil), 99 atom % 13C-glucose and 97 atom % H2 18O (single- and repeated-pulse soil), 12C-glucose and 97 atom % H2 18O (repeated-pulse soil) or 12C-glucose and H2 16O (repeated-pulse soil). After incubating for 7 days, soil was frozen at −40 °C. DNA was extracted, separated through isopycnic centrifugation, and two density ranges were sequenced for the bacterial 16S rRNA gene (Supplementary Figure 1): 1.731–1.746 g ml−1 (hereafter called the SOC-utilizing community) and 1.759–1.774 g ml−1 (hereafter called the glucose-utilizing community).Amplicons of the V3–V6 16S rRNA region were bar coded with broad-coverage fusion PCR primers and pooled before sequencing on a Genome Sequencer FLX instrument. These sequence data have been submitted to the GenBank database under accession number SRP043371. Data were checked for chimeras (Edgar et al., 2011), demultiplexed and quality checked (Caporaso et al., 2010). Taxonomy was assigned to genus at the ⩾80% bootstrap confidence level (Cole et al., 2009).We used the Shannon''s diversity index (H′), commonly used in microbial systems (Fierer and Jackson, 2006), to assess changes in microbial diversity. Analysis of variance was used to compare the amount of DNA within densities between isotope treatments (Supplementary Figure 2) and to test the effects of the treatments on the Shannon''s diversity (Figure 2) and Pielou''s evenness (Supplementary Figure 3) of the active bacterial communities, with post hoc Student''s t-tests, α=0.05. PRIMER 6 and PERMANOVA were used to create the nonmetric multidimensional scaling ordination and to compare bacterial communities between glucose treatments and the two sequenced density ranges.The single pulse of glucose suppressed SOC oxidation, whereas repeated pulses increased SOC oxidation (Figure 1). Few experiments to date have examined priming in response to repeated substrate amendments (Hamer and Marschner, 2005; Qiao et al., 2014), even though in nature soil receives repeated substrate pulses from litterfall and rhizodeposition. Our results demonstrate the dynamic response of SOC decomposition to repeated labile C inputs.Open in a separate windowFigure 1Weekly priming rates calculated as the difference in SOC respired between glucose-amended and non-amended soil (n=5).Dual-stable isotope probing was able to separate the growing bacteria into two groups with distinct DNA densities (P<0.001, PERMANOVA; Figure 3a), indicating differential uptake of 13C-glucose and 18O-water. In response to the initial glucose addition, the diversity of the growing glucose- and SOC-utilizing bacterial communities declined compared with the non-amended community (P<0.001, t-tests; Figure 2), driven by a strong decrease in evenness (Supplementary Figure 3). In the SOC-utilizing community, where DNA was labeled with 18O only, the relative abundance of Bacillus increased 4.9-fold compared with the non-amended control to constitute 31.6% of the community (Figure 3b). Bacillus survives well under low-nutrient conditions (Panikov, 1995), and is able to synthesize a suite of extracellular enzymes capable of degrading complex substrates (Priest, 1977), traits that are conducive for using SOC for growth. In the glucose-utilizing community, where DNA was labeled with both 13C and 18O, Arthrobacter increased 67.7-fold relative to the non-amended control to constitute 75.5% of the growing bacteria (Figure 3b). In culture experiments, Arthrobacter can rapidly take up and store glucose for later use (Panikov, 1995) and here we find it dominating the high-density DNA fractions, signifying that it is using the labeled glucose to grow. The increased biomass of Arthrobacter may have resulted in greater resource competition, thus reducing the diversity of the growing community, as is frequently found in plant communities (Bakelaar and Odum, 1978; Clark and Tilman, 2008).Open in a separate windowFigure 2Shannon''s diversity index (H′) of the non-amended, single-pulse, and repeated-pulse treatments (n=3) in the SOC- (mid-density) and glucose-utilizing (high-density) communities. Treatments with the same letter are not significantly different from each other (Student''s t, α=0.05).Open in a separate windowFigure 3(a) Nonmetric multidimensional scaling ordination showing differences in growing bacterial communities at the genus taxonomic level in the SOC-utilizing (mid-density; open symbols) and glucose-utilizing (high-density; closed symbols) groups of non-amended (Δ), single-pulse (○) and repeated-pulse (□) treatments (n=3). (b) Pie charts of genera in the SOC- and glucose-utilizing communities of the single- and repeated-pulse treatments (n=3). Genera with relative abundances >5% are listed in the figure legend.After repeated glucose amendments, the diversity of the growing community recovered to non-amendment levels (Figure 2) without strongly dominant organisms (Figure 3b and Supplementary Figure 3). The higher diversity found after repeated glucose pulses may be explained by trophic interactions where predators graze on prey populations that have been enlarged by resource addition, suppressing competition between prey species and causing secondary mobilization of nutrients (Clarholm, 1985). The decrease in total bacterial 16S rRNA gene copies in the repeated-pulse—compared with the single-pulse—treatment (Supplementary Figure 4) supports predation as a potential mechanism explaining the observed diversity increase after repeated glucose pulses.The recovery of diversity after repeated glucose pulses contrasts with resource competition theory (Tilman, 1987). When chronic additions of a limiting resource are applied, species diversity and evenness typically decrease (Bakelaar and Odum, 1978; Clark and Tilman, 2008) because competitive organisms become dominant. We observed this after the single glucose pulse, but not after repeated pulses. This diversity response may be the result of community shifts facilitated by short bacterial life cycles and the tens to hundreds of generations expected during the 7-week incubation (Behera and Wagner, 1974). In contrast, systems on which most ecological theory is based (for example, plants) might achieve perhaps 20 generations in a multi-decadal field experiment (Bakelaar and Odum, 1978; Clark and Tilman, 2008). With more generations, more community dynamics can occur, including increased resource cascades in which extracellular enzymes, metabolites or lysed cells of one functional group increase substrates for another (Blagodatskaya and Kuzyakov, 2008). Our results highlight the opportunity to test ecological theories in microbial ecosystems (Prosser et al., 2007), particularly as the short life cycles of microbes makes them well suited for pursuing ecological questions in an evolutionary framework (Jessup et al., 2004).The priming effect is ubiquitous, yet its drivers remain elusive. Our results suggest that changes in the diversity and composition of the growing bacterial community contribute to priming, and thus that ecosystem properties such as soil C storage may be sensitive to soil microbial biodiversity.  相似文献   

17.
耕作方式对潮土土壤团聚体微生物群落结构的影响   总被引:1,自引:0,他引:1  
为探究不同耕作方式对潮土土壤团聚体微生物群落结构和多样性的影响,采用磷脂脂肪酸(PLFA)法测定了土壤团聚体中微生物群落。试验设置4个耕作处理,分别为旋耕+秸秆还田(RT)、深耕+秸秆还田(DP)、深松+秸秆还田(SS)和免耕+秸秆还田(NT)。结果表明:与RT相比,DP处理显著提高了原状土壤和>5 mm粒级土壤团聚体中真菌PLFAs量和真菌/细菌,为真菌的繁殖提供了有利条件,有助于土壤有机质的贮存,提高了土壤生态系统的缓冲能力;提高了5~2 mm粒级土壤团聚体中细菌PLFAs量,降低了土壤革兰氏阳性菌/革兰氏阴性菌,改善了土壤营养状况;提高了<0.25 mm粒级土壤团聚体中微生物丰富度指数。总的来说,深耕+秸秆还田(DP)对土壤团聚体细菌和真菌生物量有一定的提高作用,并且在一定程度上改善了土壤团聚体微生物群落结构,有利于增加土壤固碳能力和保持土壤微生物多样性。冗余分析结果表明,土壤团聚体总PLFAs量、细菌、革兰氏阴性菌和放线菌PLFAs量与土壤有机碳相关性较强,革兰氏阳性菌PLFAs量与总氮相关性较强。各处理较大粒级土壤团聚体微生物群落主要受碳氮比、含水量、pH值和团聚体质量分数的影响,较小粒级土壤团聚体微生物群落则主要受土壤有机碳和总氮的影响。  相似文献   

18.
酸性硫酸盐土水改旱后土壤化学性状的变异初报   总被引:2,自引:1,他引:1  
探讨了酸性硫酸盐水稻土改为旱作后土壤化学性状的变异以及比较不同利用方式之间的经济效益.结果表明,酸性硫酸盐水稻土改种甜玉米和蔬菜后,土壤化学性状发生显著变化.耕层土壤酸度、水溶性硫酸根含量、土壤活性铝和活性铁含量均显著降低.经济效益得到显著提高.建议对水改旱后的环境效应进行深入研究以及进行定位观测,以便合理利用这一特殊的土壤资源  相似文献   

19.
Metabolism of soil invertebrates in relation to soil fertility   总被引:1,自引:0,他引:1  
  相似文献   

20.
Soil bacteria are diverse and form complicated ecological networks through various microbial interactions, which play important roles in soil multi-functionality. However, the seasonal effects on the bacterial network, especially the relationship between bacterial network topological features and soil resistomes remains underexplored, which impedes our ability to unveil the mechanisms of the temporal-dynamics of antibiotic resistance genes (ARGs). Here, a field investigation was conducted across four seasons at the watershed scale. We observed significant seasonal variation in bacterial networks, with lower complexity and stability in autumn, and a wider bacterial community niche in summer. Similar to bacterial communities, the co-occurrence networks among ARGs also shift with seasonal change, particularly with respect to the topological features of the node degree, which on average was higher in summer than in the other seasons. Furthermore, the nodes with higher betweenness, stress, degree, and closeness centrality in the bacterial network showed strong relationships with the 10 major classes of ARGs. These findings highlighted the changes in the topological properties of bacterial networks that could further alter antibiotic resistance in soil. Together, our results reveal the temporal dynamics of bacterial ecological networks at the watershed scale, and provide new insights into antibiotic resistance management under environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号