首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
凝溶胶蛋白(gelsolin)是凝溶胶蛋白超家族的成员之一,是一种重要的肌动蛋白结合蛋白,其通过切断、封端肌动蛋白丝,或使肌动蛋白聚集成核等方式来控制肌动蛋白的结构.凝溶胶蛋白除了在重组肌动蛋白丝中发挥作用以外,还在细胞运动、控制细胞程序性死亡等细胞活动中发挥重要的作用.此外,肿瘤细胞中凝溶胶蛋白的表达量也发生变化.凝溶胶蛋白的变异还是某些遗传疾病的基础.最近的研究发现,凝溶胶蛋白可以作为转录辅激活蛋白,促进雄激素受体的转录活性.本文对凝溶胶蛋白的结构特点、参与调节细胞的功能和机制及其研究现状进行概述.  相似文献   

2.
肌动蛋白相关蛋白2/3复合体的结构、功能与调节   总被引:3,自引:0,他引:3  
微丝参与了细胞形态维持及细胞运动等多种重要的细胞过程。微丝由肌动蛋白单体组装而成 ,肌动蛋白相关蛋白 2 / 3(Arp2 /Arp3,Arp2 / 3)复合体在微丝形成过程中起重要作用。Arp2 / 3复合体由 7个亚单位组成 ,在细胞内受到多种核化促进因子的调节 ,并与这些因子协同作用来调节肌动蛋白的核化。Arp2 / 3复合体结构、功能及调节的研究对于阐明微丝形成机制及细胞骨架与某些信号分子的关系有重要意义。  相似文献   

3.
由球形肌动蛋白聚合而成的微丝骨架,又称肌动蛋白纤维,它在细胞运动、细胞形态建成以及物质运输等诸多生命活动中发挥重要作用。细胞内微丝的解聚和聚合动态特性是微丝骨架行使功能的重要基础,并受到如微丝结合蛋白、金属离子、小G蛋白等各种因素的严格控制。植物细胞微丝骨架的研究虽然晚于动物细胞,但也取得了飞速发展。本文对植物细胞内微丝骨架动态变化的作用机制及一些主要调节因子的最新研究进展做一介绍。  相似文献   

4.
Cofilin是一种肌动蛋白结合蛋白,属于肌动蛋白解聚因子家族成员,普遍存在于真核细胞。它与肌动蛋白微丝(F-actin)结合,调节F-actin的解聚和重构。Cofilin具有多种生物学功能,如参与肌动蛋白骨架重组、核转运、胞质分裂以及心血管生成等。在应激条件下,cofilin可通过相应作用通路进行调节,改变细胞的功能。Cofilin在多种疾病如肿瘤、神经系统性疾病、血管性疾病、感染性疾病等的发生与发展中都起到了非常重要的作用。  相似文献   

5.
磷脂酶D(phospholipase D,PLD)普遍存在于细菌,真菌以及哺乳动物中.在病原微生物中,PLD作为毒力决定因子在减数分裂、孢子形成等过程中起作用;在哺乳动物细胞中,PLD主要在胞膜转运、调节有丝分裂和细胞肌动蛋白骨架等一些信号转导中起作用.在病原菌感染宿主细胞的过程中,病原体和宿主细胞的PLD都被激活并发生级联反应,病原菌PLD可调节自身肌动蛋白丝的聚合和重排,并引起宿主细胞局部肌动蛋白丝的集聚,诱导宿主细胞对其吞噬.深入探讨PLD激活对感染发生的调控作用对透彻理解病原菌感染宿主细胞的分子机制具有重要意义.  相似文献   

6.
鲁宁  黄秉仁 《生命的化学》2001,21(5):386-389
细胞骨架由微丝、微管及中等纤维组成受不同蛋白因子调控以不同方式组装成不同直径的纤维 ,遍布于一切细胞 ,决定细胞的形状 ,赋予其抗压强度 ,对细胞器及大分子进行空间组织 ,实现胞内的能量转换。在肌动蛋白 (actin)组装成张力纤维和张力纤维解离成肌动蛋白单体过程中有多种蛋白因子参与调控 ,从而使细胞骨架处于一个生理的动态平衡中 ,执行和完成不同的生化反应。在众多的调控蛋白中 ,肌动蛋白集束调控蛋白因子 (actinbundlingprotein)不仅参与肌动蛋白结构调节 ,还与细胞内信号传导有密切关系。已发现的肌动蛋…  相似文献   

7.
α辅肌动蛋白的结构和功能   总被引:5,自引:0,他引:5  
α辅肌动蛋白是近年来在细胞骨架与细胞运动研究中的热点蛋白 .目前发现有α辅肌动蛋白 1、2、3和 4四种类型 ,呈细胞或组织特异性分布 .这四种蛋白的共同结构特征是在细胞内均为反向平行的二聚体 ,并具有N末端肌动蛋白结合结构域 (ABD)、血影蛋白样中央重复结构域和C末端“EF手”结构域 .作为细胞骨架中一种重要的肌动蛋白交联蛋白 ,α辅肌动蛋白通过与其相关蛋白包括整合素 (integrins)、钙粘素 (cadherin)以及细胞信号传导通路中的信号分子等的协同作用 ,在稳定细胞粘附、调节细胞形状及细胞运动中发挥着重要作用 .因此 ,肿瘤的发生、发展和恶化与α辅肌动蛋白的结构、功能密切相关 .本文结合本实验室的研究工作 ,综述了α辅肌动蛋白家族成员的结构、功能及其与肿瘤发生的相关性 .  相似文献   

8.
微丝骨架是细胞骨架的重要组成部分,在各种细胞活动中都发挥着重要作用。微丝骨架的主要组成部分是肌动蛋白和肌动蛋白结合蛋白,参与细胞形态建成、物质运输和信号转导等生命活动。通过鬼笔环肽标记或表达荧光融合蛋白等方法,国内外许多学者对植物微丝骨架的组成、功能等进行了大量的研究,并取得了一些成果。基于前人的研究,本研究从组成、功能及研究方法三个方面对植物微丝骨架的进行概述。  相似文献   

9.
ADF/cofilin分子家族的研究进展   总被引:2,自引:0,他引:2  
细胞骨架中的肌动蛋白参与了一系列重要生理活动,如肌肉收缩、胞质环流、细胞运动、胞质分裂等。这些过程的发生除了需要肌动蛋白以外,还需要一些与之结合的调节蛋白参与,现在已经发现了100多种肌动蛋白结合蛋白,其中有一类分子量为15—20KD的蛋白,如肌动蛋白解聚因子(actin depolymerizing factor,ADF)、cofilin、profilin、actophorin、depactin、de-strin、UNC-60)等,在一定条件下可以使肌动蛋白微丝解聚,统称为ADF/cofilin分子家族。  相似文献   

10.
肌动蛋白解聚因子丝切蛋白-1是普遍存在于真核生物的细胞骨架蛋白质。作为肌动蛋白动力学的关键调节因子,丝切蛋白-1参与了多种细胞活动,包括细胞凋亡、细胞运动及胞质分裂等。近年来的研究发现,丝切蛋白-1在肿瘤细胞中高表达,与肿瘤的发生、迁移及侵袭程度相关,对于肿瘤的发生及发展过程是必不可少的。丝切蛋白-1高表达的肿瘤细胞具有低放射敏感性。因此,丝切蛋白-1未来可用作肿瘤早期诊断、监测和决策治疗的生物标记分子。  相似文献   

11.
Scinderin, a novel Ca2+-activated actin filament-severing protein, has been purified to homogeneity from bovine adrenal medulla using a combination of several chromatographic procedures. The protein has an apparent mol. wt of 79,600 +/- 450 daltons, three isoforms (pIs 6.0, 6.1 and 6.2) and two Ca2+ binding sites (Kd 5.85 x 10(-7) M, Bmax 0.81 mol Ca2+/mol protein and Kd 2.85 x 10(-6) M, Bmax 1.87 mol Ca2+/mol protein). Scinderin interacts with F-actin in the presence of Ca2+ and produces a decrease in the viscosity of actin gels as a result of F-actin filament severing as demonstrated by electron microscopy. Scinderin is a structurally different protein from chromaffin cell gelsolin, another actin filament-severing protein described. Scinderin and gelsolin have different mol. wts, isoelectric points, amino acid composition and yield different peptide maps after limited proteolytic digestion by either Staphylococcus V8 protease or chymotrypsin. Moreover, scinderin antibodies do not cross-react with gelsolin and gelsolin antibodies fail to recognize scinderin. Immunofluorescence with anti-scinderin demonstrated that this protein is mainly localized in the subplasmalemma region of the chromaffin cell. Immunoblotting tests with the same antibodies indicated that scinderin is also expressed in brain and anterior as well as posterior pituitary. Presence of scinderin and gelsolin, two Ca2+-dependent actin filament-severing proteins in the same tissue, suggests the possibility of synergistic functions by the two proteins in the control of cellular actin filament networks. Alternatively, the actin filament-severing activity of the two proteins might be under the control of different transduction and modulating influences.  相似文献   

12.
Chromaffin cell secretion requires cortical F-actin disassembly and it has been suggested that scinderin, a Ca2+ dependent F-actin severing protein, controls cortical actin dynamics. An antisense oligodeoxynucleotide targeting the scinderin gene was used to decrease the expression of the protein and access its role in secretion. Treatment with 2 microM scinderin antisense oligodeoxynucleotide for 4 days produced a significant decrease in scinderin expression and its mRNA levels. The expression of gelsolin, another F-actin severing protein, was not affected. Scinderin decrease was accompanied by concomitant and parallel decreases in depolarization-evoked cortical F-actin disassembly and exocytosis. Similar treatment with a mismatched oligodeoxynucleotide produced no effects. Scinderin antisense oligodeoxynucleotide treatment was also a very effective inhibitor of exocytosis in digitonin-permeabilized cells stimulated with increasing concentrations of Ca2+. This ruled out scinderin antisense interference with stimulation-induced depolarization or Ca2+ channel activation. Scinderin antisense treatment decreased the maximum (B(max)) secretory response to Ca2+ without modifying the affinity (K(m)) of the cation for the exocytotic machinery. Moreover, the antisense treatment did not affect norepinephrine uptake or the expression of dopamine ss-hydroxylase, suggesting that the number and function of chromaffin vesicles was not modified. In addition, scinderin antisense treatment did not alter the expression of proteins involved in vesicle-plasma membrane fusion, such as synaptophysin, synaptotagmin or syntaxin, indicating a lack of effects on the fusion machinery components. These observations strongly suggest that scinderin is a key player in the events involved in the secretory process.  相似文献   

13.
We assessed the levels and localization of the actin filament-severing protein scinderin, in fetal and adult bovine testes, and in spermatozoa during and following the epididymal transit. We performed immunoblots on seminiferous tubules and interstitial cells isolated by enzymatic digestion, and on bovine chromaffin cells, spermatozoa, aorta, and vena cava. Immunoperoxidase labeling was done on Bouin's perfusion-fixed testes and epididymis tissue sections, and on spermatozoa. In addition, immunofluorescence labeling was done on spermatozoa. Immunoblots showed one 80-kDa band in chromaffin cells, fetal and adult tubules, interstitial cells, spermatozoa, aorta, and vena cava. Scinderin levels were higher in fetal than in adult seminiferous tubules but showed no difference between fetal and adult interstitial cells. Scinderin levels were higher in epididymal than in ejaculated spermatozoa. Scinderin was detected in a region corresponding with the subacrosomal space in the round spermatids and with the acrosome in the elongated spermatids. In epididymal spermatozoa, scinderin was localized to the anterior acrosome and the equatorial segment, but in ejaculated spermatozoa, the protein appeared in the acrosome and the post-equatorial segment of the head. In Sertoli cells, scinderin was detected near the cell surface and within the cytoplasm, where it accumulated near the base in a stage-specific manner. In the epididymis, scinderin was localized next to the surface of the cells; in the tail, it collected near the base of the principal cells. In Sertoli cells and epididymal cells, scinderin may contribute to the regulation of tight junctional permeability and to the release of the elongated spermatids by controlling the state of perijunctional actin. In germ cells, scinderin may assist in the shaping of the developing acrosome and influence the fertility of the spermatozoa.  相似文献   

14.
Dynamic changes in chromaffin cell cytoskeleton as prelude to exocytosis   总被引:2,自引:0,他引:2  
Earlier work by us as well as others has demonstrated that filamentous actin is mainly localized in the cortical surface of chromaffin cell. This F-actin network acts as a barrier to the chromaffin granules, impeding their contact with the plasma membrane. Chromaffin granules contain α-actinin, an anchorage protein that mediates F-actin association with these vesicles. Consequently, chromaffin granules crosslink and stabilize F-actin networks. Stimulation of chromaffin cell produces disassembly of F-actin and removal of the barrier. This interpretation is based on: (1) Cytochemical experiments with rhodamine-labeled phalloidin indicated that in resting chromaffin cells, the F-actin network is visualized as a strong cortical fluorescent ring; (2) Nicotinic receptor stimulation produced fragmentation of this fluorescent ring, leaving chromaffin cell cortical areas devoid of fluorescence; and (3) These changes are accompanied by a decrease in F-actin, a concomitant increase in G-actin, and a decrease in the F-actin associated with the chromaffin cell cytoskeleton (DNAse I assay). We also have demonstrated the presence in chromaffin cells of gelsolin and scinderin, two Ca2+-dependent actin filament-severing proteins, and suggested that chromaffin cell stimulation activates scinderin with the consequent disruption of F-actin networks. Scinderin, a protein recently isolated in our laboratory, is restricted to secretory cells and is present mainly in the cortical chromaffin cell cytoplasm. Scinderin, which is structurally different from gelsolin (different pIs, amino acid composition, peptide maps, and so on), decreases the viscosity of actin gels as a result of its F-actin-severing properties, as demonstrated by electron microscopy. Stimulation of chromaffin cells either by nicotine (10 μM) or high K+ (56 mM) produces a redistribution of subplasmalemmal scinderin and actin disassembly, which preceded exocytosis. The redistribution of scinderin and exocytosis is Ca2+-dependent and is not mediated by muscarinic receptors. Furthermore, our cytochemical experiments demonstrate that chromaffin cell stimulation produces a concomitant and similar redistribution of scinderin (fluorescein-labeled antibody) and F-actin (rhodamine phalloidin fluorescence), suggesting a functional interaction between these two proteins. Stimulation-induced redistribution of scinderin and F-actin disassembly would produce subplasmalemmal areas of decreased cytoplasmic viscosity and increased mobility for chromaffin granules. Exocytosis sites, evaluated by antidopamine-β-hydroxylase (anti-DβH) surface staining, are preferentially localized in plasma membrane areas devoid of F-actin.  相似文献   

15.
Scinderin是一种依赖Ca2+的肌动蛋白丝(F-actin)切割蛋白,在细胞分泌过程中发挥着重要作用。目前,针对scinderin在人类疾病尤其是肿瘤中的生物学功能研究报道的并不多。该实验通过构建scinderin—shRNA慢病毒载体并感染人胃癌细胞株SGC-7901,于荧光显微镜下观测感染效率,利用RT-qPCR和Western blot实验证实scinderin的沉默效果。运用实时细胞分析4K(RTCA)检测细胞的增殖能力,流式细胞术检测细胞周期变化,Transwell小室检测细胞的迁移能力。结果显示,将构建好的病毒载体成功转入了胃癌细胞SGC-7901。感染scinderin—shRNA病毒载体后,scinderin的mRNA和蛋白质表达水平均受到不同程度的抑制(P〈0.01),细胞的增殖和迁移能力均显著降低(P〈0.05),细胞周期阻滞在G2/M期。该研究表明,胃癌细胞SGC-7901中scinderin低表达能有效抑制细胞的增殖和转移能力,这也为scinderin在胃癌演化过程中的机制研究奠定了实验基础。  相似文献   

16.
Nicotinic stimulation and high K(+)-depolarization of chromaffin cells cause disassembly of cortical filamentous actin networks and redistribution of scinderin, a Ca(2+)-dependent actin filament-severing protein. These events which are Ca(2+)-dependent precede exocytosis. Activation of scinderin by Ca2+ may cause disassembly of actin filaments leaving cortical areas of low cytoplasmic viscosity which are the sites of exocytosis (Vitale, M. L., A. Rodríguez Del Castillo, L. Tchakarov, and J.-M. Trifaró. 1991. J. Cell. Biol. 113:1057-1067). It has been suggested that protein kinase C (PKC) regulates secretion. Therefore, the possibility that PKC activation might modulate scinderin redistribution was investigated. Here we report that PMA, a PKC activator, caused scinderin redistribution, although with a slower onset than that induced by nicotine. PMA effects were independent of either extra or intracellular Ca2+ as indicated by measurements of Ca2+ transients, and they were likely to be mediated through direct activation of PKC because inhibitors of the enzyme completely blocked the response to PMA. Scinderin was not phosphorylated by the kinase and further experiments using the Na+/H+ antiport inhibitors and intracellular pH determinations, demonstrated that PKC-mediated scinderin redistribution was a consequence of an increase in intracellular pH. Moreover, it was shown that scinderin binds to phosphatidylserine and phosphatidylinositol 4,5-biphosphate liposomes in a Ca(2+)-dependent manner, an effect which was modulated by the pH. The results suggest that under resting conditions, cortical scinderin is bound to plasma membrane phospholipids. The results also show that during nicotinic receptor stimulation both a rise in intracellular Ca2+ and pH are observed. The rise in intracellular pH might be the result of the translocation and activation of PKC produced by Ca2+ entry. This also would explain why scinderin redistribution induced by nicotine is partially (26-40%) inhibited by inhibitors of either PKC or the Na+/H+ antiport. In view of these findings, a model which can explain how scinderin redistribution and activity may be regulated by pH and Ca2+ in resting and stimulated conditions is proposed.  相似文献   

17.
Exposure of chromaffin cells to digitonin causes the loss of many cytosolic proteins. Here we report that scinderin (a Ca(2+)-dependent actin-filament-severing protein), but not gelsolin, is among the proteins that leak out from digitonin-permeabilized cells. Chromaffin cells that were exposed to increasing concentrations (15-40 microM) of digitonin for 5 min released scinderin into the medium. One-minute treatment with 20 microM digitonin was enough to detect scinderin in the medium, and scinderin leakage levelled off after 10 min of permeabilization. Elevation of free Ca2+ concentration in the permeabilizing medium produced a dose-dependent retention of scinderin. Results were confirmed by immunofluorescence microscopy of digitonin-permeabilized cells. Subcellular fractionation of permeabilized cells showed that scinderin leakage was mainly from the cytoplasm (80%); the remaining scinderin (20%) was from the microsomal fraction. Other Ca(2+)-binding proteins released by digitonin and also retained by Ca2+ were calmodulin, protein kinase C, and calcineurins A and B. Scinderin leakage was parallel to the loss of the chromaffin cell secretory response. Permeabilization in the presence of increasing free Ca2+ concentrations produced a concomitant enhancement in the subsequent Ca(2+)-dependent catecholamine release. The experiments suggest that: (1) scinderin is an intracellular target for Ca2+, (2) permeabilization of chromaffin cells with digitonin in the presence of micromolar Ca2+ concentrations retained Ca(2+)-binding proteins including scinderin, and (3) the retention of these proteins may be related to the increase in the subsequent Ca(2+)-dependent catecholamine release observed in permeabilized chromaffin cells.  相似文献   

18.
Immunofluorescence and cytochemical studies have demonstrated that filamentous actin is mainly localized in the cortical surface of the chromaffin cell. It has been suggested that these actin filament networks act as a barrier to the secretory granules, impeding their contact with the plasma membrane. Stimulation of chromaffin cells produces a disassembly of actin filament networks, implying the removal of the barrier. The presence of gelsolin and scinderin, two Ca(2+)-dependent actin filament severing proteins, in the cortical surface of the chromaffin cells, suggests the possibility that cell stimulation brings about activation of one or more actin filament severing proteins with the consequent disruption of actin networks. Therefore, biochemical studies and fluorescence microscopy experiments with scinderin and gelsolin antibodies and rhodamine-phalloidin, a probe for filamentous actin, were performed in cultured chromaffin cells to study the distribution of scinderin, gelsolin, and filamentous actin during cell stimulation and to correlate the possible changes with catecholamine secretion. Here we report that during nicotinic stimulation or K(+)-evoked depolarization, subcortical scinderin but not gelsolin is redistributed and that this redistribution precedes catecholamine secretion. The rearrangement of scinderin in patches is mediated by nicotinic receptors. Cell stimulation produces similar patterns of distribution of scinderin and filamentous actin. However, after the removal of the stimulus, the recovery of scinderin cortical pattern of distribution is faster than F-actin reassembly, suggesting that scinderin is bound in the cortical region of the cell to a component other than F-actin. We also demonstrate that peripheral actin filament disassembly and subplasmalemmal scinderin redistribution are calcium-dependent events. Moreover, experiments with an antibody against dopamine-beta-hydroxylase suggest that exocytosis sites are preferentially localized to areas of F-actin disassembly.  相似文献   

19.
Secretory vesicles are localized in specific compartments within neurosecretory cells. These are different pools in which vesicles are in various states of releasability. The transit of vesicles between compartments is controlled and regulated by Ca2+, scinderin and the cortical F-actin network. Cortical F-actin disassembly is produced by the filament severing activity of scinderin. This Ca2+-dependent activity of scinderin together with its Ca2+-independent actin nucleating activity, control cortical F-actin dynamics during the secretory cycle. A good understanding of the interaction of actin with scinderin and of the role of this protein in secretion has been provided by the analysis of the molecular structure of scinderin together with the use of recombinant proteins corresponding to its different domains.  相似文献   

20.
Scienderin is a Ca+-dependent actin filament severing protein present in chromaffin cells, platelets and a variety of secretory cells. It has been suggested that scinderin is involved in chromaffin cell F-actin dynamics and that this actin network controls the delivery of secretory vesicles to plasma membrane exocytotic sites. Moreover, scinderin redistribution and activity may be regulated by pH and Ca2+ in resting and stimulated cells. Here we describe the molecular cloning, the nucleotide sequence and the expression of bovine chromaffin cell scinderin cDNA. The fusion protein obtained cross-reacts with native scinderin antibodies and binds phosphatidylserine (PS), phosphatidylinositol 4,5-bisphosphate (PIP2) and actin in a Ca+-dependent manner. Antibodies raised against the fusion protein produced the same cellular staining patterns for scinderin as anti-native scinderin. Nucleotide and amino acid sequence analysis indicate that scinderin has six domains each containing three internal sequence motifs, two actin and two PIP2 binding sites and has 63 and 53% homology with gelsolin and villin. These data indicate that scinderin is a novel member of the family of Ca2+-dependent F-actin severing proteins which includes gelsolin and villin.Abbreviations PIP2 phosphatidylinositol 4,5 bisphosphate - PKC protein kinase C - Sc scinderin - PS phosphatidyl serine - F-Sc scinderin fusion protein - PCR polymerase chain reaction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号