首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel strategy for the fabrication of sensitive immunosensor to detect α-fetoprotein (AFP) in human serum has been proposed. The immunosensor was prepared by immobilizing AFP antigen onto the glassy carbon electrode (GC) modified by gold nanoparticles and carbon nanotubes doped chitosan (GNP/CNT/Ch) film. GNP/CNT hybrids were produced by one-step synthesis based on the direct redox reaction. The electrochemical properties of GNP/CNT/Ch films were characterized by impedance spectroscopy and cyclic voltammetry. It was indicated that GNP/CNT nanohybrid acted as an electron promoter and accelerated the electron transfer. Sample AFP, immobilized AFP, and alkaline phosphatase (ALP)-labeled antibody were incubated together for the determination based on a competitive immunoassay format. After the immunoassay reaction, the bound ALP label on the modified GC led to an amperometric response of 1-naphthyl phosphate (1-NP), which was changed with the different antigen concentrations in solution. Under the optimized experimental conditions, the resulting immunosensor could detect AFP in a linear range from 1 to 55 ng ml−1 with a detection limit of 0.6 ng ml−1. The proposed immunosensor, by using GNP/CNT/Ch as the immobilization matrix of AFP, offers an excellent amperometric response of ALP-anti-AFP to 1-NP. The immunosensor provided a new alternative to the application of other antigens or other bioactive molecules.  相似文献   

2.
A novel amperometric immunosensor for the detection of the p24 antigen (p24Ag) from HIV-1 was constructed using gold nanoparticles (GNP), multi-walled carbon nanotubes (MWCNTs), and an acetone-extracted propolis film (AEP). First, amino-functionalized MWCNTs (MWCNTNH?) were prepared and dispersed in an HAuCl? solution to synthesize GNPs in situ. Next, the GNP/CNT/AEP nanocomposite was prepared by mixing an AEP solution and the GNP/CNT powder. The nanocomposite was dripped onto a gold electrode (GE), and then p24 antibody (anti-p24 Ab) was immobilized on the resulting modified gold electrode to construct the immunosensor. The assembly process was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors that were likely to influence the performance of the proposed immunosensor were studied in detail. Under optimal conditions, the proposed immunosensor exhibited good electrochemical sensitivity to the presence of p24 in a concentration range of 0.01 to 60.00 ng/mL, with a relatively low detection limit of 0.0064 ng/mL (S/N = 3). Moreover, the proposed immunosensor showed a rapid (≤ 18 s) and highly sensitive amperometric response (0.018 and 1.940 μA/ng/mL) to p24 with acceptable stability and reproducibility.  相似文献   

3.
In this article, a conspicuously simple and highly sensitive amperometric immunosensor based on the sequential electrodeposition of Prussian blue (PB) and gold nanoparticles (GNPs) on multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (GCE) surface is proposed for the detection of α-fetoprotein (AFP). By comparison with PB, the MWCNT/PB composite film had been proven to show much better electrochemical stability and a larger response current. The electrodeposited GNP film can be used not only to immobilize biomolecules but also to avoid the leakage of PB and to prevent shedding of MWCNT/PB composite film from the electrode surface. The performance and factors influencing the performance of the immunosensor were investigated. Under optimal experimental conditions, the proposed immunosensor for AFP was observed with an ultralow limit of detection (LOD) equal to 3 pg/ml (at 3δ), and the linear working range spanned the concentrations of AFP from 0.01 to 300 ng/ml. Moreover, the immunosensor, as well as a commercially available kit, was examined for use in the determination of AFP in real human serum specimens. More significant, the assay mentioned here is simpler than the traditional enzyme-linked immunosorbent assay (ELISA), and an excellent correlation of levels of AFP measured was obtained, indicating that the developed immunoassay could be a promising alternative approach for detection of AFP and other tumor markers in the clinical diagnosis.  相似文献   

4.
A sensitive amperometric immunosensor for carcinoembryonic antigen (CEA) was prepared. Firstly, a porous nano-structure gold (NG) film was formed on glassy carbon electrode (GCE) by electrochemical reduction of HAuCl4 solution, then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, and finally the anti-CEA was adsorbed onto the surface of the bilayer gold nanoparticles to construct an anti-CEA/nano-Au/Chit/NG/GCE immunosensor. The characteristics of the modified electrode at different stages of modification were studied by cyclic voltammetry (CV). The gold colloid, chitosan and nano-Au/Chit were characterized by transmission electron microscopy and UV–vis spectroscopy. In addition, the performances of the immunosensor were studied in detail. The resulting immunosensor offers a high-sensitivity (1310 nA/ng/ml) for the detection of CEA and has good correlation for detection of CEA in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.06 ng/ml estimated at a signal-to-noise ratio of 3. The proposed method can detect the CEA through one-step immunoassay and would be valuable for clinical immunoassay.  相似文献   

5.
A novel multi-array immunoassay device based on the insert-plug model of piezoelectric (Pz) immunosensor fabricated with the screw clamp apparatus has been developed for quantitative detection of tumor markers such as alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), prostate specific antigen (PSA), and carcinoma antigen 125 (CA125) in serum, in which single immunosensor can oscillate independently with the frequency stability of +/-1 Hz (hertz) in air phase and +/-2 Hz in liquid phase. These response characteristics of Pz tumor marker multi-array immunoassay device such as time-cost, reproducibility and specificity, etc. were also investigated, respectively. The detection range for AFP, CEA, PSA and CA125 obtained by multi-array Pz immunosensor were 20-640 ng/ml, 1.5-30 microg/ml, 1.5-40 ng/ml and 5-150 IU/ml, respectively, with the coefficient of variance (CV) less than 5% and no cross-reactivates with other tumor markers in serum were observed. Application of the multi-array immunosensor to clinical samples demonstrated that results were in good agreement with chemiluminescence immunoassay (CLIA). Moreover, the multi-array Pz immunosensor could be regenerated to be reused for three cycles without appreciable loss of response activity. Therefore, the proposed multi-array immunoassay device based on Pz immunosensor provides a rapid, sensitive, specific, reusable, convenient and reliable alternative for the detection of tumor markers in clinical laboratory.  相似文献   

6.
Yu H  Yan F  Dai Z  Ju H 《Analytical biochemistry》2004,331(1):98-105
A screen-printed three-electrode system is fabricated to prepare a novel disposable screen-printed immunosensor for rapid determination of alpha-1-fetoprotein (AFP) in human serum. The immunosensor is prepared by entrapping horseradish peroxidase (HRP)-labeled AFP antibody in chitosan membrane to modify the screen-printed carbon electrode. The membrane is characterized with scanning electron microscope and electrochemical methods. After the immunosensor is incubated with AFP at 30 degrees C for 35 min, the access of the active center of HRP catalyzing the oxidation reaction of thionine by H(2)O(2) is partly inhibited. In presence of 1.2 mM thionine and 6 mM H(2)O(2), the electrocatalytic current decreases linearly in two concentration ranges of AFP from 0 to 20 and from 20 to 150 ng/mL with a detection limit of 0.74 ng/mL. The immunosensor shows an acceptable accuracy compared with those obtained from immunoradiometric assays. The interassay coefficients of variation are 6.6 and 4.2% at 10 and 100 ng/mL, respectively. The storage stability is acceptable in pH 7.0 phosphate buffer solution at 4 degrees C for more than 10 days. The proposed method can detect the AFP through one-step immunoassay and would be valuable for clinical immunoassay.  相似文献   

7.
A novel immunoaffinity column used as an immunosensor for flow-injection chemiluminescent (CL) immunoassay was prepared by immobilizing antibody on carboxylic resin beads. The immunosensor could fast recognize and trap the immunocomplex of horseradish peroxidase (HRP)-labeled antibody and antigen, which was firstly formed with a micro-bubble accelerated pre-incubation process, to produce a sandwich immunocomplex. The HRP introduced in the immunoaffinity column could catalyze the CL reaction to produce enzyme-enhanced emission. With alpha-fetoprotein (AFP) as a mode, a flow-injection CL immunoassay was proposed. The whole assay for one sample, including the pre-incubation and the regeneration of immunoaffinity column, could be performed within 16min. The linear range was 1.0-80ng/ml with a correlation coefficient of 0.998 and a detection limit of 0.1ng/ml at a signal/noise ratio of 3. The intra- and inter-assay coefficients of variation at 20ng/ml AFP were 1.2% and 8.5%, respectively. The storage stability of the immunoaffinity column and the accuracy for sample detection were acceptable. This flexible, sensitive, low-cost, and rapid method is valuable for clinical immunoassay.  相似文献   

8.
A label-free immunosensor for the detection of α-fetoprotein (AFP) is proposed based on controlled fabrication of monoclonal antibodies of AFP (anti-AFP) and gold nanoparticles (GNPs) inside the pores of mesoporous silica (MPS). The silanol groups on the internal pore walls were grafted by aminopropyltriethoxyl silane, whereas the silanol groups on the external surface of MPS were blocked by trimethylchlorosilane (TMCS). Thus, anti-AFP and GNPs could be confined inside the mesopores of TMCS-MPS by the covalent linking with the amino groups. The prepared anti-AFP/GNPs/TMCS-MPS particles were used to modify glassy carbon electrode (GCE) to construct a label-free immunosensor. After incubating the sample AFP with the anti-AFP/GNPs/TMCS-MPS/GCE, the immunoconjugates were formed on the surface of GCE and the spatial block increased. Thus, the peak current decreased with increasing concentrations of AFP. GNPs inside the mesopores could promote the electron transportation through the pore channel. Under the optimal experimental conditions, the fabricated immunosensor could detect AFP in a linear range from 1.0 to 90 ng ml(-1) with a detection limit of 0.2 ng ml(-1) (3σ). It provided a novel alternative method for the label-free determination of other antigens.  相似文献   

9.
A new simple immunoassay method for carcinoembryonic antigen (CEA) detection using a disposable immunosensor coupled with a flow injection system was developed. The immunosensor was prepared by coating CEA/colloid Au/chitosan membrane at a screen-printed carbon electrode (SPCE). Using a competitive immunoassay format, the immunosensor inserted in the flow system with an injection of sample and horseradish peroxidase (HRP)-labeled CEA antibody was used to trap the labeled antibody at room temperature for 35 min. The current response obtained from the labeled HRP to thionine-H(2)O(2) system decreased proportionally to the CEA concentration in the range of 0.50-25 ng/ml with a correlation coefficient of 0.9981 and a detection limit of 0.22 ng/ml (S/N=3). The immunoassay system could automatically control the incubation, washing and current measurement steps with good stability and acceptable accuracy. Thus, the proposed method proved its potential use in clinical immunoassay of CEA.  相似文献   

10.
A novel potentiometry immunoassay with amplified sensitivity has been developed for the detection of diphtheria antigen (Diph) via immobilizing diphtheria antibody (anti-Diph) on a platinum electrode based on Nafion, colloidal Ag (Ag), and polyvinyl butyral (PVB) as matrixes in this study. The modified procedure was further characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The influence and factors influencing the performance of resulting immunosensor were studied in detail. The resulting immunosensor exhibited sigmoid curve with log Diph concentrations, high sensitivity (51.4 mV/decade), wide linear range from 8 to 800 ng ml(-1) with a detection limit of 1.5 ng ml(-1), rapid potentiometric response (<3 min) and long-term stability (>6 months). Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme-linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting diphtheria antigen in the clinical diagnosis.  相似文献   

11.
An amperometric immunosensor for polycyclic aromatic hydrocarbons (PAHs) was developed. The immunosensor was based on disposable screen-printed carbon electrodes. The coating antigen used was phenanthrene-9-carboxaldehyde coupled to bovine serum albumin (BSA) via adipic acid dihydrazide. Antibodies were monoclonal mouse anti-phenanthrene. The enzyme alkaline phosphatase (AP) was used in combination with the substrate p-aminophenyl phosphate (pAPP) for detection at +300 mV (vs. Ag/AgCl). Various assay types were compared. Good results were achieved with an indirect co-exposure competition assay with a LOD of 0.8 ng/ml (800 ppt) and an IC(50) of 7.1 ng/ml (7.1 ppb) for phenanthrene. An indirect competition assay could detect phenanthrene with a LOD of 2 ng/ml (IC(50): 15 ng/ml) and an indirect displacement assay with a LOD of 2 ng/ml (IC(50): 11 ng/ml) at a 5 microl surface coating of 8.8 microg/ml phenanthrene-BSA conjugate. A coating concentration of 2.2 microg/ml allowed detection with a LOD of 0.25 ng/ml (250 ppt) with the indirect competition assay. The influence of the coating concentration on the sensor performance was investigated. Cross-reactivities were tested for 16 important PAHs. Anthracene and chrysene showed strong cross-reactivity, whereas benzo[g,h,i]perylene and dibenzo[a,h]anthracene showed no cross-reactivity.  相似文献   

12.
An amperometric immunosensor specific to the protein A of Staphylococcus aureus, was developed using the direct electrochemical detection of phenol produced by alkaline phosphatase from phenylphosphate. The immunosensor could detect protein A at 0.01 ng/ml and could reliably detect and quantify pure cultures of protein A-bearing Staph. aureus above 10(3) cfu/ml. A similar sensitivity of detection was obtained with samples of beef and milk.  相似文献   

13.
A disposable amperometric immunosensor was studied for the rapid detection of carp (Carassius auratus) Vitellogenin (Vtg). The sensor was fabricated based on screen-printed carbon arrays (SPCAs) containing eight carbon working and an integrated carbon counter electrodes. To construct the sensor, a conducting polymer (poly-terthiophene carboxylic acid) was electropolymerized on the surface of working electrodes and the polymer-coated SPCAs was characterized by SEM. Horseradish peroxidase (HRP) and a monoclonal antibody (anti-Vtg) specific to carp Vtg were covalently attached onto the polymer modified SPCAs. The immobilization of HRP and anti-Vtg onto the polymer-coated SPCAs was examined using cyclic voltammetry and quartz crystal microbalance studies. In order to detect the amount of Vtg, glucose oxidase (GOx)-labelled Vtg bound to the sensor surface under competition with the Vtg analyte was quantified amperometrically using glucose as a substrate. The performance of the eight sensors in arrays was evaluated by obtaining the calibration plots for Vtg. The sensor arrays exhibit a linear range of the Vtg concentration from 0.25 to 7.8 ng/ml and the detection limit was determined to be 0.09 ng/ml. Furthermore, the performance of the immunosensor for the determination of Vtg was evaluated by a standard addition method performed in fish serum samples.  相似文献   

14.
An electrochemical biosensor for cow's milk progesterone has been developed and used in a competitive immunoassay under thin-layer, continuous-flow conditions. Single-use biosensors were fabricated by depositing anti-progesterone monoclonal antibody (mAb) onto screen-printed carbon electrodes (SPCEs). Three operational steps could be identified: (1) Competitive binding of sample/conjugate (alkaline-phosphatase-labelled progesterone, AP-prog) mixture, (2) establishment of a steady-state amperometric baseline current and (3), measurement of an amperometric signal in the presence of enzyme substrate (1-naphthyl phosphate, 1-NP). In the thin-layer cell, the enzyme product, 1-naphthol, showed electrochemical behaviour consistent with bulk conditions and gave a linear amperometric response under continuous-flow conditions (Eapp=+0.3 V vs. Ag/AgCl) over the range 0.1–1.0 μg/ml. After pre-incubating biosensors with progesterone standards, signal generation within the cell (substrate CONCENTRATION=5 mM) was recorded amperometrically as rate (nA/s) or maximum current (imax, nA). Response values for milk standards were approximately 50% of those prepared in buffer. In both cases, calibration plots over the range 0–50 ng/ml progesterone were obtained. By conducting sample binding under flowing conditions, only 7% of the previous response was obtained, even at a substrate concentration of 50 mM, resulting in low signal:noise ratio. Using a stop-flow arrangement (i.e. quiescent sample binding, followed by continuous flow), low-noise amperograms were obtained at [1-NP]=5 mM. Calibration plots were obtained over the range 0–25 ng/ml, with a coefficient of variation of 12.5% for five replicate real milk samples.  相似文献   

15.
The development of a voltammetric immunosensor for determination of alpha-fetoprotein (AFP) in serum is presented. ELISA assays with voltammetric reading were carried out exploiting the peculiar properties of nanobiocomposite materials based on gold nanoparticles for the immobilization of Antibody (Ab)/Antigen/Antibody-HRP (Horseradish Peroxidase) sandwich on the glassy carbon (GC) electrode surface. The electrochemical transduction was mediated by thionin, which was used in its monomeric form dissolved in the reading solution, so avoiding critical immobilization procedures. The study was aimed at the development and validation of an immunosensor able to provide results in short time, simple to use, rugged and cost-effective for AFP monitoring purposes. A crucial aspect of the study was the development of an experimental protocol leading to highly standardized and consequently reproducible sensors. Two-way analysis of variance (ANOVA) was applied to study the effect of the concentration of the solutions used for the incubation of the antibodies. The sensor was validated in serum assessing stability of the immunocomplex, linearity of response, limit of detection (3.7 ng/ml) and limit of quantitation (11 ng/ml), precision (intra- and inter-sensor repeatability) and recovery rate (103%). The stability of the GC/Ab functionalized substrate was demonstrated over one month, showing variation coefficients below 5%. Experiments carried out with real samples of clinical interest evidenced that the developed immunosensor can be considered as powerful tool in cancer screening programmes.  相似文献   

16.
The long-term stability of sensing interfaces is an important issue in biosensor fabrication. A novel stable gold nanoparticle (AuNP)-modified glassy carbon (GC) electrode interface (GC-Ph-AuNP)-based biosensor for detecting carcinoembryonic antigen (CEA) was developed. GC electrodes were modified with 1,4-phenylenediamine to form a stable layer, and then AuNPs were bound onto the GC electrodes through CAu bonds. Anti-CEA was directly adsorbed on AuNPs fixed on the GC electrode. The linear range of the immunosensor was from 10 fg to 100 ng mL(-1) with a detection limit of 3 fg mL(-1) (S/N=3). The current of the immunosensor was increased by 4% after one month. The GC-Ph-AuNP immunosensor showed high sensitivity, a wide linear range, low detection limit, and good selectivity and stability. The immobilization method of the immunosensor could be widely applied to construct other immunosensors.  相似文献   

17.
Quartz crystal microbalance immunosensors for environmental monitoring   总被引:1,自引:0,他引:1  
This paper presents discussion of quartz crystal microbalance (QCM) immunosensors for environmental monitoring. Factors limiting the practical application of antibodies to analytical problems are also presented. Among several candidates for the QCM immunosensor device, selected QCM devices and oscillating circuits were tested thoroughly and developed to obtain highly stable and sensitive frequency signals. The biointerface of QCM immunosensor was designed and controlled to immobilize antibody on the QCM surface, to reduce non-specific binding and to suppress denaturation of immobilizing antibody by self-assembled monolayer technique and artificial phospholipid (2-methacryloyloxyethyl phosphorylcholine (MPC)) polymer. MPC polymer as a antibody-stabilizing reagent was added to reduce non-specific binding of the antigen solution and stabilize the immunologic activity of the antibody-immobilized QCM. In addition, it provides examples for detection and quantitation of environmental samples using QCM immunosensors. The analytical results for fly ash extracted samples of dioxins using the QCM immunosensor indicated a good relationship with GC/MS methods. The integrating protocols of the competitive immunoassay and signal-enhancing step are for detecting low molecular analytes with extremely low detection limits using an QCM immunosensor. Furthermore, its detect limitation was extended from 0.1 to 0.01 ng/ml by the signal-enhancing step when the anti-bisphenol-A antibody conjugated MPC polymeric nanoparticles was used. The QCM immunosensor method has demonstrated its effectiveness as an alternative screening method for environmental monitoring because these results were compared with results obtained through environmental monitoring methods such as ELISA and GC/MS.  相似文献   

18.
Dai Y  Cai Y  Zhao Y  Wu D  Liu B  Li R  Yang M  Wei Q  Du B  Li H 《Biosensors & bioelectronics》2011,28(1):112-116
A sandwich electrochemical immunosensor for the sensitive determination of alpha fetoprotein (AFP) has been fabricated. Prussian blue modified hydroxyapatite (PB@HAP) was firstly prepared and used as electrochemical label due to the wonderful conductivity and good biocompatibility of HAP. The results proved that the immunosensor fabricated using the label based on PB@HAP loaded with horse radish peroxidase (HRP) and secondary anti-AFP antibody (Ab(2)) (PB@HAP-HRP-Ab(2)) had high sensitivity, and the sensitivity of the label PB@HAP-HRP-Ab(2) was much higher than labels of PB@HAP-Ab(2), PB-HRP-Ab(2) and HAP-HRP-Ab(2). The mixture of graphene sheet (GS) and thionine (TH) was not only used to immobilize anti-AFP antibody (Ab(1)) but also took part in the signal amplification. The amperometric signal increased linearly with AFP concentration in the range of 0.02-8 ng/mL with a low detection limit of 9 pg/mL. The immunosensor had the advantages of high sensitivity, good selectivity and good stability, and was applied to the analysis of AFP in serum sample with satisfactory results. Due to the low-cost and easy synthesis of PB@HAP, the screen-printed electrodes could be used instead of the bare glass carbon electrode in order to achieve mass production. In addition, it had potential application in the detection of other tumor markers.  相似文献   

19.
An amperometric enzyme-linked immunosensor was developed to detect and quantify levels of Staphylococcus aureus electrically in pure cultures and in foods. The assay was a modification of a 'sandwich' ELISA for the protein A of Staph. aureus, employing catalase-labelled anti-protein A antibody. On addition of hydrogen peroxide to the assay system the catalase released O2 which was monitored using an amperometric oxygen electrode. The rate of current increase was proportional to the antigen concentration (protein A or Staph. aureus). Protein A was detected reliably at 0.1 ng/ml representing a 20-fold increase in sensitivity over the conventional ELISA that used horseradish peroxidase. Pure cultures of Staph. aureus were detected at 10(-3)-10(-4) cfu/ml with the amperometric electrode (cf greater than 10(5)/ml for conventional ELISA). The same level of sensitivity was achieved for inoculated food samples. Low levels of contamination (1 cfu/g) of Staph. aureus were detected after incubation at 37 degrees C for 18 h, and the immunosensor could from the basis of a test for screening and identification of protein A-bearing Staph. aureus in 24 h, although natural variations in protein A content between different strains could make the system unreliable in accurate quantification of cell numbers.  相似文献   

20.
A new amperometric immunosensor for the determination of carcinoembryonic antigen (CEA) was constructed. First, the uniform nanomultilayer film was fabricated via layer-by-layer (LBL) assembly of positively charged carbon nanotubes wrapped by poly(diallyldimethylammonium chloride) and negatively charged poly(sodium-p-styrene-sulfonate), which could provide a high accessible surface area and a biocompatible microenvironment. Subsequently, gold nanoclusters were electrodeposited on the electrode to immobilize anti-CEA. The fabricated process and electrochemical behaviors of the immunosensor were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Under optimal conditions, the proposed immunosensor could detect CEA in two linear ranges from 0.1 to 2.0 ng mL−1 and from 2.0 to 160.0 ng mL−1, with a detection limit of 0.06 ng mL−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号