首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Spermine oxidase (SMO) was discovered much more recently than other enzymes involved in polyamine metabolism; this review summarizes 10?years of researches on this enzyme. Spermine oxidase (SMO) is a FAD-dependent enzyme that specifically oxidizes spermine (Spm) and plays a dominant role in the highly regulated mammalian polyamines catabolism. SMO participates in drug response, apoptosis, response to stressful stimuli and etiology of several pathological conditions, including cancer. SMO is a highly inducible enzyme, its deregulation can alter polyamine homeostasis, and dysregulation of polyamine catabolism is often associated with several disease states. The oxidative products of SMO activity are spermidine, and the reactive oxygen species H2O2 and the aldehyde 3-aminopropanal each with the potential to produce cellular damages and pathologies. The SMO substrate Spm is a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signaling, nitric oxide synthesis and inhibition of immune responses. The goal of this review is to cover the main biochemical, cellular and physiological processes in which SMO is involved.  相似文献   

3.
The recent discovery of the direct oxidation of spermine via spermine oxidase (SMO) as a mechanism through which specific antitumor polyamine analogues exert their cytotoxic effects has fueled interest in the study of the polyamine catabolic pathway. A major byproduct of spermine oxidation is H2O2, a source of toxic reactive oxygen species. Recent targeted small interfering RNA studies have confirmed that SMO-produced reactive oxygen species are directly responsible for oxidative stress capable of inducing apoptosis and potentially mutagenic DNA damage. In the present study, we describe a second catalytically active splice variant protein of the human spermine oxidase gene, designated SMO5, which exhibits substrate specificities and affinities comparable to those of the originally identified human spermine oxidase-1, SMO/PAOh1, and, as such, is an additional source of H2O2. Importantly, overexpression of either of these SMO isoforms in NCI-H157 human non-small cell lung carcinoma cells resulted in significant localization of SMO protein in the nucleus, as determined by confocal microscopy. Furthermore, cell lines overexpressing either SMO/PAOh1 or SMO5 demonstrated increased spermine oxidation in the nucleus, with accompanying alterations in individual nuclear polyamine concentrations. This increased oxidation of spermine in the nucleus therefore increases the production of highly reactive H2O2 in close proximity to DNA, as well as decreases nuclear spermine levels, thus altering the protective roles of spermine in free radical scavenging and DNA shielding, and resulting in an overall increased potential for oxidative DNA damage in these cells. The results of these studies therefore have considerable significance both with respect to targeting polyamine oxidation as an antineoplastic strategy, and in regard to the potential role of spermine oxidase in inflammation-induced carcinogenesis.  相似文献   

4.
5.
6.
7.
In the present work, we have analyzed the expression and subcellular localization of all the members of inositide-specific phospholipase C (PLCbeta) family in muscle differentiation, given that nuclear PLCbeta1 has been shown to be related to the differentiative process. Cell cultures of C2C12 myoblasts were induced to differentiate towards the phenotype of myotubes, which are also indicated as differentiated C2C12 cells. By means of immunochemical and immunocytochemical analysis, the expression and subcellular localization of PLCbeta1, beta2, beta3, beta4 have been assessed. As further characterization, we investigated the localization of PLCbeta isoenzymes in C2C12 cells by fusing their cDNA to enhanced green fluorescent protein (GFP). In myoblast culture, PLCbeta4 was the most expressed isoform in the cytoplasm, whereas PLCbeta1 and beta3 exhibited a lesser expression in this cell compartment. In nuclei of differentiated myotube culture, PLCbeta1 isoform was expressed at the highest extent. A marked decrease of PLCbeta4 expression in the cytoplasm of differentiated C2C12 cells was detected as compared to myoblasts. No relevant differences were evidenced as regards the expression of PLCbeta3 at both cytoplasmatic and nuclear level, whilst PLCbeta2 expression was almost undetectable. Therefore, we propose that the different subcellular expression of these PLC isoforms, namely the increase of nuclear PLCbeta1 and the decrease of cytoplasmatic PLCbeta4, during the establishment of myotube differentiation, is related to a spatial-temporal signaling event, involved in myogenic differentiation. Once again the subcellular localization appears to be a key step for the diverse signaling activity of PLCbetas.  相似文献   

8.
Diacylglycerol kinases (DGKs) catalyze phosphorylation of diacylglycerol (DG) to yield phosphatidic acid (PA). Previous evidence has shown that the nucleus contains several DGK isoforms. In this study, we have analyzed the expression and subnuclear localization of DGK-zeta employing C2C12 mouse myoblasts. Immunocytochemistry coupled to confocal laser scanning microscopy showed that both endogenous and green fluorescent protein-tagged overexpressed DGK-zeta localized mostly to the nucleus. In contrast, overexpressed DGK-alpha, -beta, -delta, and -iota did not migrate to the nucleus. DGK-zeta was present in the nuclear speckle domains, as also revealed by immuno-electron microscopy analysis. Moreover, DGK-zeta co-localized and interacted with phosphoinositide-specific phospholipase Cbeta1 (PLCbeta1), that is involved in inositide-dependent signaling pathways important for the regulation of cell proliferation and differentiation. Furthermore, we report that DGK-zeta associated with nuclear matrix, the fundamental organizing principle of the nucleus where many cell functions take place, including DNA replication, gene expression, and protein phosphorylation. Nuclear DGK-zeta increased during myogenic differentiation of C2C12 cells, while DGK-zeta down-regulation by siRNA markedly impaired differentiation. Overall, our findings further support the importance of speckles and nuclear matrix in lipid-dependent signaling and suggest that nuclear DGK-zeta might play some fundamental role during myogenic differentiation of C2C12 cells.  相似文献   

9.
Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N 1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N 1-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.  相似文献   

10.
11.
12.
13.
In mammals, the polyamines affect cell growth, differentiation, and apoptosis; their levels are increased in malignant and proliferating cells, thus justifying an interest in a chemotherapeutic approach to cancer. The flavoprotein SMO is the most recently characterized catabolic enzyme, preferentially oxidizing SPM to SPD, 3-aminopropanal and H(2)O(2). In this report, we describe a novel functional characterization of the recently cloned splice variant isoforms from mouse brain, encoding, among others, the nuclear co-localized spermine oxidase mSMOmu. The over-expression of the active isoforms mSMOalpha and mSMOmu, and the inactive mSMOdelta and mSMOgamma in mouse neuroblastoma cells, demonstrated the first evidence of the direct oxidative DNA damage by the SMO activities, either alone or, in a higher extent, when associated with radiation exposure, thus working as radio sensitizer. These effects were reverted by treatment with 50 muM and 100 muM doses of the inhibitor of SMO activity MDL 72,527. The over-expression of all SMO isoforms failed to influence the expression of the regulating enzymes of polyamines metabolism ODC and SSAT. Dealing with the unbalanced tissue specific SMO activities, these results could indicate a new direction to tailor chemotherapy-associated radiotherapy, improving dose-rate protocol and allowing the modulation of deleterious side effects on healthy tissues.  相似文献   

14.
The transforming growth factor (TGF)-β inducible early gene (TIEG)-1 is implicated in the control of cell proliferation, differentiation, and apoptosis in some cell types. Since TIEG1 functioning may be associated with TGF-β, a suppressor of myogenesis, TIEG1 is also likely to be involved in myogenesis. Therefore, we investigated the function of TIEG1 during myogenic differentiation in vitro using the murine myoblasts cell line, C2C12. TIEG1 expression increased during differentiation of C2C12 cells. Constitutive expression of TIEG1 reduced survival and decreased myotube formation. Conversely, knocking down TIEG1 expression increased the number of viable cells during differentiation, and accelerated myoblast fusion into multinucleated myotubes. However, expression of the myogenic differentiation marker, myogenin, remained unaffected by TIEG1 knockdown. The mechanism underlying these events was investigated by focusing on the regulation of myoblast numbers after induction of differentiation. The knockdown of TIEG1 led to changes in cell cycle status and inhibition of apoptosis during the initial stages of differentiation. Microarray and real-time PCR analyses showed that the regulators of cell cycle progression were highly expressed in TIEG1 knockdown cells. Therefore, TIEG1 is a negative regulator of the myoblast pool that causes inhibition of myotube formation during myogenic differentiation.  相似文献   

15.
目的:原核表达和分离纯化小鼠精胺氧化酶(SMO)。方法:采用RT-PCR法从小鼠胚胎干细胞(ES细胞)RNA中克隆小鼠SMOcDNA,构建SMO原核表达质粒并转染大肠杆菌BL21(DE3)菌株,经IPTG诱导,将表达的小鼠SMO重组蛋白在变性条件下经Ni-NTA树脂亲和层析纯化和透析复性。结果:在大肠杆菌中高表达出小鼠SMO重组蛋白;纯化并透析复性后的重组SMO具备快速氧化特异性底物精胺的酶活性。结论:建立了原核表达和纯化有活性小鼠SMO的实验方法。  相似文献   

16.
MicroRNAs (miRNAs) 是一类小非编码RNA,近年研究发现其在骨骼肌发育调控中发挥重要作用.为探明miR-143-3p在C2C12成肌细胞分化中的调控作用,采用 real-time PCR 检测了miR-143-3p在小鼠各组织及C2C12成肌细胞分化过程中的表达;使用miR-143-3p 的模拟物和特异性抑制剂分别处理细胞,采用 real-time PCR 和 Western印迹分别检测成肌因子 MyoG和成肌标志基因 MyHC mRNA和蛋白水平的变化;用免疫荧光染色的方法观察肌管的形成.结果显示,miR-143-3p在小鼠各组织中均有表达,并且随着细胞分化表达量逐渐增加;C2C12成肌细胞过表达 miR-143-3p,与对照组相比,成肌调控因子MyoG和成肌标志基因MyHC 的mRNA和蛋白表达均显著升高,肌管数量明显增多;抑制剂处理结果显示,细胞分化被显著抑制.检测miR-143-3p对MyHC各亚型表达的影响发现,miR-143-3p表达的变化并不直接影响MyHC各亚型的表达.以上结果说明, miR-143-3p在骨骼肌和成肌细胞中均有表达,能够促进C2C12成肌细胞分化,但并不直接调控MyHCs的表达.  相似文献   

17.
18.
Properties of purified recombinant human polyamine oxidase,PAOh1/SMO   总被引:4,自引:0,他引:4  
The discovery of an inducible oxidase whose apparent substrate preference is spermine indicates that polyamine catabolism is more complex than that originally proposed. To facilitate the study of this enzyme, the purification and characterization of the recombinant human PAOh1/SMO polyamine oxidase are reported. Purified PAOh1/SMO oxidizes both spermine (K(m)=1.6 microM) and N(1)-acetylspermine (K(m)=51 microM), but does not oxidize spermidine. The purified human enzyme also does not oxidize eight representative antitumor polyamine analogues; however, specific oligamine analogues were found to be potent inhibitors of the oxidation of spermine by PAOh1/SMO. The results of these studies are consistent with the hypothesis that PAOh1/SMO represents a new addition to the polyamine metabolic pathway that may represent a new target for antineoplastic drug development.  相似文献   

19.
The expression of acetylcholinesterase (AChE) is markedly increased during myogenic differentiation of C2C12 myoblasts to myotubes; the expression is mediated by intrinsic factor(s) during muscle differentiation. In order to analyze the molecular mechanisms regulating AChE expression during myogenic differentiation, a approximately 2.2-kb human AChE promoter tagged with a luciferase reporter gene, namely pAChE-Luc, was stably transfected into C2C12 cells. The profile of promoter-driven luciferase activity during myogenic differentiation of C2C12 myotubes was found to be similar to that of endogenous expression of AChE catalytic subunit. The increase of AChE expression was reciprocally regulated by a cAMP-dependent signaling pathway. The level of intracellular cAMP, the activity of cAMP-dependent protein kinase, the phosphorylation of cAMP-responsive element binding protein and the activity of cAMP- responsive element (CRE) were down-regulated during the myotube formation. Mutating the CRE site of human AChE promoter altered the original myogenic profile of the promoter activity and its suppressive response to cAMP. In addition, the suppressive effect of the CRE site is dependent on its location on the promoter. Therefore, our results suggest that a cAMP-dependent signaling pathway serves as a suppressive element in regulating the expression of AChE during early myogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号