首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon γ (IFNγ) plays a central role in the immune response against infection and tumur immune surveillance. Its functions include not only activation of the host immune system to control microbial infections but also repression of autoimmune responses by turning on T-regulatory cells and increasing T effector cell apoptosis. Defects in IFNγ and IFNγ receptor genes have been associated with autoimmune diseases such as rheumatoid arthritis, type 1 diabetes and multiple sclerosis. However, treatment of autoimmune diseases by supplementing with IFNγ has been satisfactory due to its broad biological effects. Instead, its target T-regulatory cells may be used for the clinical treatment of autoimmune diseases. Future study could also focus on promotion of the beneficial effects of IFNγ and blocking those unwanted IFNγ-induced activities.  相似文献   

2.
Helicobacter pylori gastritis: a Th1 mediated disease?   总被引:3,自引:0,他引:3  
Helicobacter pylori is now considered to be the main cause for most stomach diseases including ulcer, MALT lymphoma, adenocarcinoma and gastritis. The infection with this bacterium is chronic despite a local and systemic immune response towards it. Among the cellular infiltrate that arises during H. pylori-mediated gastritis, there is a considerable frequency of CD4+ Th1 cells producing IFNgamma, but not of Th2 cells producing IL-4. Since IFNgamma may induce binding of H. pylori to gastric epithelial cells followed by apoptosis of these cells, one may speculate that H. pylori-mediated diseases are in part autoimmune diseases initiated by H. pylori-specific Th1 cells infiltrating the gastric mucosa. Recent support for this hypothesis comes from an animal model in which mice are infected with H. pylori and display strongly reduced gastritis in the absence of IFNgamma.  相似文献   

3.
Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.  相似文献   

4.
Lymphocytes are important in the pathogenesis of many autoimmune diseases. Blocking co-stimulatory signals for T-cell activation has been widely used as an approach to treating autoimmunity, but it has encountered limited clinical success. Some agonistic monoclonal antibodies to co-stimulatory molecules greatly enhance immune responses mediated by T cells, such as antiviral, anti-tumor and alloresponses. Surprisingly, recent studies have demonstrated that these agonists have profound therapeutic effects on autoimmune diseases by potentially depleting autoreactive lymphocytes or by inhibiting their function. These findings imply that signaling through co-stimulatory molecules can have diametric outcomes in modulating immune responses, thereby providing a novel approach to the treatment of autoimmune diseases.  相似文献   

5.
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues, such as bone marrow, skeletal muscle, dental pulp, bone, umbilical cord and adipose tissue. MSCs are used in regenerative medicine mainly based on their capacity to differentiate into specific cell types and also as bioreactors of soluble factors that will promote tissue regeneration from the damaged tissue cellular progenitors. In addition to these regenerative properties, MSCs hold an immunoregulatory capacity, and elicit immunosuppressive effects in a number of situations. Not only are they immunoprivileged cells, due to the low expression of class II Major Histocompatibilty Complex (MHC-II) and costimulatory molecules in their cell surface, but they also interfere with different pathways of the immune response by means of direct cell-to-cell interactions and soluble factor secretion. In vitro, MSCs inhibit cell proliferation of T cells, B-cells, natural killer cells (NK) and dendritic cells (DC), producing what is known as division arrest anergy. Moreover, MSCs can stop a variety of immune cell functions: cytokine secretion and cytotoxicity of T and NK cells; B cell maturation and antibody secretion; DC maturation and activation; as well as antigen presentation. It is thought that MSCs need to be activated to exert their immunomodulation skills. In this scenario, an inflammatory environment seems to be necessary to promote their effect and some inflammation-related molecules such as tumor necrosis factor-α and interferon-γ might be implicated. It has been observed that MSCs recruit T-regulatory lymphocytes (Tregs) to both lymphoid organs and graft. There is great controversy concerning the mechanisms and molecules involved in the immunosuppressive effect of MSCs. Prostaglandin E2, transforming growth factor-β, interleukins- 6 and 10, human leukocyte antigen-G5, matrix metalloproteinases, indoleamine-2,3-dioxygenase and nitric oxide are all candidates under investigation. In vivo studies have shown many discrepancies regarding the immunomodulatory properties of MSCs. These studies have been designed to test the efficacy of MSC therapy in two different immune settings: the prevention or treatment of allograft rejection episodes, and the ability to suppress abnormal immune response in autoimmune and inflammatory diseases. Preclinical studies have been conducted in rodents, rabbits and baboon monkeys among others for bone marrow, skin, heart, and corneal transplantation, graft versus host disease, hepatic and renal failure, lung injury, multiple sclerosis, rheumatoid arthritis, diabetes and lupus diseases. Preliminary results from some of these studies have led to human clinical trials that are currently being carried out. These include treatment of autoimmune diseases such as Crohn's disease, ulcerative colitis, multiple sclerosis and type 1 diabetes mellitus; prevention of allograft rejection and enhancement of the survival of bone marrow and kidney grafts; and treatment of resistant graft versus host disease. We will try to shed light on all these studies, and analyze why the results are so contradictory.  相似文献   

6.
Superantigens (SAgs) are known to play a role in food poisoning, toxic shock syndrome and have been identified as a potential mediator of autoimmunity. Although much is known about the effects of SAgs on T cells, by comparison few studies have investigated how SAgs influence innate immune cells. In particular no study has examined how SAgs affect murine plasmacytoid dendritic cells (pDC). We report that in vivo administration of staphylococcal enterotoxin A (SEA) increased the number of pDCs in secondary lymphoid organs, and induced CD86 and CD40 expression. Similar to SEA activation of conventional DCs (cDCs), pDCs relied on T cells, but not on CD40. Nonetheless, pDCs strictly required IFNgamma for upregulation of CD86 and CD40, but cDCs did not depend upon IFNgamma for activation. Further, even though IFNgamma deficient pDCs were not activated by SEA, they were still capable of producing wild-type levels of IFNalpha in response to CpG oligodeoxynucleotide (ODN). The source of IFNgamma for pDC activation was not T cells, nor did pDCs themselves have to synthesize or bind IFNgamma, but the presence of IFNgamma was essential. After SEA stimulation, IFNgamma deficient mice fail to induce expression of the pDC dependent chemokines CXCL9, and demonstrated a defect in recruitment of pDCs to marginal zones of lymphoid organs. Thus, SEA exerts its combined effect on pDC activation, recruitment and chemokine induction through the action of IFNgamma. This fundamental dichotomy of the effects of SAgs on pDCs versus cDCs show how a non-PAMP from bacteria, can selectively and indirectly stimulate innate cell subpopulations much in the same way that differential TLR expression influences cells of the innate immune system.  相似文献   

7.
An imbalance between the Th1 and Th2 arms of the cellular immune system has been reported in several autoimmune diseases but not in chronic idiopathic urticaria (CIU). Peak, total secretion and secretory pattern of the Th1 cytokines (IFNgamma and IL-2) and Th2 cytokines (IL-4 and IL-10) were determined in resting and stimulated peripheral blood mononuclear cells (PBMC) from nineteen CIU patients, six acute urticaria patients and twelve controls. Stimulated IL-4 secretion was significantly reduced in CIU patients as indicated by their five- and three-fold lower peak levels and total IL-4 secretion, respectively. The IL-4 secretory pattern overtime was also markedly different in patients and controls. The late secretion of IFNgamma at 144 h was also reduced in CIU patients. These aberrations were not detectable in AU patients. Secretion of IL-2 was lower in CIU and AU patients as compared to controls while IL-10 secretion was comparable in the three groups. Our data demonstrate for the first time a predominantly reduced IL-4 secretion in CIU patients. This is associated with reduced secretion of both IL-2 and IFNgamma. These findings indicate a generalized down-regulation of both Th1 and Th2 cytokines' secretion in CIU.  相似文献   

8.
Interleukin-10 (IL-10) is an immunoregulatory cytokine that plays a crucial role in inflammatory and immune reactions. It has potent anti-inflammatory and immunosuppressive activities on myeloid cell functions which forms a solid basis for its use in acute and chronic inflammatory diseases. Here, we discuss the role of IL-10 in autoimmune diseases and examine its beneficial effects in cellular-based autoimmune diseases such as multiple sclerosis (MS) or its involvement in humoral-based autoimmune diseases such as systemic lupus erythematosus (SLE). Inhibition of the immune stimulatory activities of IL-10 may provide novel approaches in the treatment of humoral autoimmune diseases, infectious diseases and cancer.  相似文献   

9.
We have previously shown that T cells can be activated through cell-surface C1q receptors, resulting in secretion of interferon-gamma (IFN-gamma) and tumor necrosis factor alpha (TNFalpha), further demonstrating the intimate linkage between innate and adaptive immunity. In this current report, we sought to determine whether: (1) T cell responses to C1q-bearing immune complexes are dependent on the maturational status of the T cells and (2) whether signaling through the C1q receptor on T cells modulates conventional activation mediated through the conventional T cell receptor (TCR)/CD3 signaling complex. We first examined the capacity of neonatal T cells to respond to C1q-bearing immune complexes using IFNgamma, IL-2, and MIF secretion as measures of activation (MIF was chosen because of its crucial role in coordinating innate and adaptive immunity). Neonatal T cells produced significantly less IFNgamma but not IL-2, when stimulated by C1q immune complexes compared with adult T cells. MIF levels did not exceed background levels in these experiments. Next, we examined the capacity of C1q-bearing immune complexes to regulate signaling through the conventional TCR/CD3 signaling complex. Pre-incubating adult T cells with C1q-bearing immune complexes significantly reduced IFNgamma secretion when those same cells were subsequently stimulated with anti-CD3 and anti-CD28 monoclonal antibodies. Pre-incubation of neonatal T-cells with C1q-bearing immune complexes had no effect on IFNgamma secretion, although IFNgamma secretion was lower than that found in adult T cells for each experimental condition. We speculate that reduced IFNgamma secretion after pre-incubation with C1q immune complexes may be due to IL-10 secretion, which was observed in C1q-stimulated adult (but not neonatal) T cells. Conclusions: C1q-bearing immune complexes exert complex effects on mature T cells that include both pro- and anti-inflammatory responses. Immunologic maturation is required for these effects, as cord blood T cells are relatively hyporesponsive to C1q-bearing immune complexes compared with adult T cells.  相似文献   

10.
Death receptor-mediated apoptosis has been implicated in target organ destruction in chronic autoimmune thyroiditis. Depending on the circumstances, inflammatory cytokines such as IL-1, TNF and IFNgamma have been shown to contribute to either the induction, progression or inhibition of this disease. Here we demonstrate that the death ligand TRAIL can induce apoptosis in primary, normal, thyroid epithelial cells under physiologically relevant conditions, specifically, treatment with the combination of inflammatory cytokines IL-1beta and TNFalpha. In contrast, IFNgamma is capable of blocking TRAIL-induced apoptosis in these cells. This regulation of TRAIL-mediated apoptosis by inflammatory cytokines appears to be due to alterations of cell surface expression of TRAIL receptor DR5 and not DR4. We also show the in vivo presence of TRAIL and TRAIL receptors DR5 and DcR1 in both normal and inflamed thyroids. Our data suggests TRAIL-mediated apoptosis may contribute to target organ destruction in chronic autoimmune thyroiditis.  相似文献   

11.
Vitiligo puzzle: the pieces fall in place   总被引:11,自引:0,他引:11  
Over the years, the role of biochemical, immunological, genetic, and other biological aspects in the pathogenesis of vitiligo has been studied. So far, no convincing model describing the interplay of these contributing factors has been formulated. Based on existing research, we propose that vitiligo has a multi-factorial etiology, characterized by multiple steps, but always involving an increase of external or internal phenol/catechol concentration, serving as a preferred surrogate substrate of tyrosinase, competing with its physiological substrate tyrosine. The conversion of these substrates into reactive quinones is reinforced by a disturbed redox balance (increasing hydrogen peroxide). Such reactive quinones can be covalently bound to the catalytic centre of tyrosinase (haptenation). This could give rise to a new antigen, carried by Langerhans cells to the regional lymph node, stimulating the proliferation of cytotoxic T cells. However, the activation of such cytotoxic cells is only a first step in skin melanocyte killing, which also depends on a shift in the balance between immune defence and tolerance, e.g. resulting from a decrease in properly functioning T-regulatory cells. With this new model, based on a synthesis of several of the existing theories, in mind, the external and internal factors involved in the etiopathogenesis of vitiligo are reviewed, against the background of reported clinical data, experimental studies and existing and potential new therapies. A similar complex mechanism may also lead to some other autoimmune diseases.  相似文献   

12.
Paclitaxel, a representative of taxanes, exhibits cytotoxic effects against a broad range of tumors. Strikingly, an emerging body of data suggests that paclitaxel also exerts effects on immune system by stimulating anti-tumor and anti-autoimmunity effects, supporting the idea that paclitaxel suppresses tumor through several mechanisms and not solely through inhibiting cell division. Based on the accumulating data, we hypothesized that paclitaxel may inhibit autoimmune diseases by sparing or actively increasing the number of CD4(+) CD25(+) Treg cells. The hypothesis, if proved to be correct, will significantly improve our understanding of the tumor immunity, autoimmunity and its related pathological effects. It will influence our choice on immunosuppressive drugs for cancer patients with autoimmune diseases. It will also impact the immunotherapy for tumors.  相似文献   

13.
ObjectivesAutoimmune diseases are a heterogeneous group of diseases which lose the immunological tolerance to self‐antigens. It is well recognized that irregularly provoked T cells participate in the pathological immune responses. As a novel nanomaterial with promising applications, tetrahedral framework nucleic acid (TFNA) nanostructure was found to have immune regulatory effects on T cells in this study.Materials and MethodsTo verify the successful fabrication of TFNA, the morphology of TFNA was observed by atomic force microscopy (AFM) and dynamic light scattering. The regulatory effect of TFNA was evaluated by flow cytometry after cocultured with CD3+ T cells isolated from healthy donors. Moreover, the associated signaling pathways were investigated. Finally, we verified our results on the T cells from patients with neuromyelitis optica spectrum disorder (NMOSD), which is a typical autoimmune disease induced by T cells.ResultsWe revealed the alternative regulatory functions of TFNA in human primary T cells with steady status via the JNK signaling pathway. Moreover, by inhibiting both JNK and ERK phosphorylation, TFNA exhibited significant suppressive effects on IFNγ secretion from provoking T cells without affecting TNF secretion. Similar immune regulatory effects of TFNA were also observed in autoreactive T cells from patients with NMOSD.ConclusionsOverall, our results revealed a potential application of TFNA in regulating the adaptive immune system, as well as shed a light on the treatment of T cell–mediated autoimmune diseases.  相似文献   

14.
Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion.  相似文献   

15.
Therapeutic antibodies directed against tumor necrosis factor alpha (TNF-alpha) for the treatment of rheumatoid arthritis, and against the human EGF receptor-2 (HER2) receptor for the treatment of breast cancer have provided significant clinical benefit for the patients. The success of these antibodies has also provided strong support for the possibility that increased activity of cytokines or growth factors is causally implicated in a variety of human diseases. Interferon alpha (IFN-alpha) is induced by viruses (linked by epidemiological studies to autoimmune diseases), has significant direct effects on both epithelial cells and the immune system, and then can be further induced by the autoantibodies and apoptotic cells generated by the actions of IFN-alpha. The direct and deleterious impact on target tissues, the ability to induce an autoimmune response, and the potential for a self-sustaining cycle of induction and damage suggests that IFN-alpha could be a pivotal factor in the development of autoimmune diseases. This review will evaluate the rationale for, possible approaches to, and safety concerns associated with, targeting interferon alpha (IFN-alpha) as a therapeutic strategy for the treatment of autoimmune diseases. While the approach may be applicable to several autoimmune diseases, there will be an emphasis on systemic lupus erythematosus and insulin dependent diabetes mellitus.  相似文献   

16.
The role of CD40-CD154 interaction in cell immunoregulation   总被引:8,自引:0,他引:8  
CD40, a member of the nerve growth factor/tumor necrosis factor receptor superfamily, and its ligand, CD154, play essential roles in cell immune responses. The results of many studies have indicated that CD40-CD154 interaction can upregulate costimulatory molecules, activate antigen-presenting cells (APCs), influence T-cell priming and T-cell-mediated effector functions as well as participate in the pathogenic processing of chronic inflammatory diseases, such as autoimmune diabetes, graft rejection, atherosclerosis, and cancer. Ligation of CD40 on cancer cells was also found to produce a direct growth-inhibitory effect through cell cycle blockage and/or apoptosis with no overt side effects on normal cells and treatment with CD154 can heighten tumor rejection immune response as well. However, systemic treatment with CD154 has some potential risks. Therefore, searching for efficient and safe strategies of CD154-based cancer therapy has been a hot topic in human cancer research. This review focuses on the latest discovered functions of CD40-CD154 interaction in cell immune responses and on the new findings of CD154-based human cancer therapy.  相似文献   

17.
Dimethyl fumarate (DMF) is an important oral treatment option for various autoimmune diseases, such as multiple sclerosis (MS) and psoriasis. DMF and its dynamic metabolite, monomethyl fumarate (MMF) are the major compounds that exert therapeutic effects on several pathologic conditions in part, through downregulation of immune responses. The exact mechanism of DMF is yet to be fully understood even though its beneficial effects on the immune system are extensively studied. It has been shown that DMF/MMF can affect various immune cells, which can get involved in both the naive and adaptive immune systems, such as T cells, B cells, dendritic cells, macrophages, neutrophils, and natural killer cells. It is suggested that DMF/MMF may exert their effect on immune cells through inhibition of nuclear factor-κB translocation, upregulation of nuclear factor erythroid-derived 2(E2)-related factor antioxidant pathway, and activation of hydroxyl carboxylic acid receptor 2. In this review, the mechanisms underlying the modulatory functions of DMF or MMF on the main immune cell populations involved in the immunopathogenesis of MS are discussed.  相似文献   

18.
We discuss current information on the ability of extracts and isolated metabolites from mushrooms to modulate immune responses. This can result in a more enhanced innate and acquired disease resistance. The major immunomodulating effects of these active substances derived from mushrooms include mitogenicity and activation of immune effector cells, such as lymphocytes, macrophages, and natural killer cells, resulting in the production of cytokines, including interleukins (ILs), tumor necrosis factor alpha (TNF)-alpha, and interferon gamma (INF)-gamma. In particular, the ability of selective mushroom extracts to modulate the differentiation capacity of CD4(+) T cells to mature into T(H)1 and/or T(H)2 subsets will be discussed. As a consequence these extracts will have profound effects in particular diseases, like chronic autoimmune T(H)1-mediated or allergic T(H)2-mediated diseases. Immunosuppressive effects by mushroom components have also been observed. The therapeutic effects of mushrooms, such as anticancer activity, suppression of autoimmune diseases, and allergy have been associated with their immunomodulating effects. However, further studies are needed to determine the molecular mechanisms of the immunomodulating effects of mushrooms metabolites both individually and in complex mixtures, for example, extracts.  相似文献   

19.
Interleukin (IL-)17 is a potent proinflammatory cytokine for which an important role in the immune response against infections and in autoimmune diseases has been demonstrated. Recently, it has been shown that - in addition to mature T cells which are primed in the immune periphery - this cytokine can also be produced by T cells in the thymus, so-called naturally occurring IL-17-producing T cells (nT17 cells). In this study we demonstrate that the generation and activation of nT17 cells in the thymus do not depend on the cytokine IL-6. In addition, nT17 cells are not regulated by IL-2. These properties of nT17 cells significantly differ from induced IL-17-producing T cells primed in the immune periphery (iT17 cells). Given the strong association of IL-17-producing T cells with immune responses against infections and human autoimmune diseases, closer characterization of nT17 cells is warranted.  相似文献   

20.
Converging evidence that G-CSF, the hemopoietic growth factor of the myeloid lineage, also exerts anti-inflammatory and pro-Th2 effects, prompted us to evaluate its direct therapeutic potential in autoimmune diseases. Here we report a novel activity of G-CSF in experimental allergic encephalomyelitis, a murine model for multiple sclerosis, driven by Th1-oriented autoaggressive cells. A short 7-day treatment with G-CSF, initiated at the onset of clinical signs, provided durable protection from experimental autoimmune encephalomyelitis. G-CSF-treated mice displayed limited demyelination, reduced recruitment of T cells to the CNS, and very discrete autoimmune inflammation, as well as barely detectable CNS mRNA levels of cytokines and chemokines. In the periphery, G-CSF treatment triggered an imbalance in the production by macrophages as well as autoreactive splenocytes of macrophage inflammatory protein-1alpha and monocyte chemoattractant protein-1, the prototypical pro-Th1 and pro-Th2 CC chemokines, respectively. This chemokine imbalance was associated with an immune deviation of the autoreactive response, with reduced IFN-gamma and increased IL-4 and TGF-beta1 levels. Moreover, G-CSF limited the production of TNF-alpha, a cytokine also associated with early CNS infiltration and neurological deficit. These findings support the potential application of G-CSF in the treatment of human autoimmune diseases such as multiple sclerosis, taking advantage of the wide clinical favorable experience with this molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号