首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of a species’ ranging patterns is vital for understanding its behavioral ecology and vulnerability to extinction. Given the abundance and even distribution of leaves in forested habitats, folivorous primates generally spend less time feeding; more time resting; have shorter day ranges; and require smaller home ranges than frugivorous primates. To test the influence of frugivory on ranging behavior, we established the activity budget and home-range size and use in a highly frugivorous population of the Borneo-endemic colobine, Presbytis rubicunda, within Sabangau tropical peat-swamp forest, Central Kalimantan, and examined relationships between fruit availability and ranging patterns. We collected 6848 GPS locations and 10,702 instantaneous focal behavioral scans on a single group between January and December 2011. The group had the largest home-range size recorded in genus Presbytis (kernel density estimates: mean = 108.3 ± SD 3.8 ha, N = 4 bandwidths). The annual activity budget comprised 48 ± SD 4.0% resting; 29.3 ± SD 3.9% feeding, 14.2 ± SD 2.5% traveling, and 0.4 ± SD 0.4% social behaviors. Mean monthly day-range length was the highest recorded for any folivorous primate (1645 ± SD 220.5 m/d). No significant relationships existed between ranging variables and fruit availability, and ranging behaviors did not vary significantly across seasons, potentially owing to low fluctuations in fruit availability. Our results suggest that colobine monkeys maintain larger than average ranges when high-quality food resources are available. Their extensive range requirements imply that protecting large, contiguous tracts of habitat is crucial in future conservation planning for Presbytis rubicunda.  相似文献   

2.
Knowledge on the home range size of a species or population is important for understanding its behavioral and social ecology and improving the effectiveness of conservation strategies. We studied the home range size of two different-sized groups of golden snub-nosed monkeys(Rhinopithecus roxellana) in Shennongjia, China. The larger group(236 individuals)had a home range of 22.5 km2 from September2007 to July 2008, whereas the smaller group(62 individuals) occupied a home range of 12.4 km2 from November 2008 to July 2009. Both groups exhibited considerable seasonal variation in their home range size, which was likely due to seasonal changes in food availability and distribution. The home range in any given season(winter, spring, summer, or winter+spring+summer) of the larger group was larger than that of the smaller group. As the two groups were studied in the same area, with the confounding effects of food availability thus minimized, the positive relationship between home range size and group size suggested that scramble feeding competition increased within the larger group.  相似文献   

3.
Aim Island taxa often attain forms outside the range achieved by mainland relatives. Body size evolution of vertebrates on islands has therefore received much attention, with two seemingly conflicting patterns thought to prevail: (1) islands harbour animals of extreme size, and (2) islands promote evolution towards medium body size (‘the island rule’). We test both hypotheses using body size distributions of mammal, lizard and bird species. Location World‐wide. Methods We assembled body size and insularity datasets for the world’s lizards, birds and mammals. We compared the frequencies with which the largest or smallest member of a group is insular with the frequencies expected if insularity is randomly assigned within groups. We tested whether size extremes on islands considered across mammalian phylogeny depart from a null expectation under a Brownian motion model. We tested the island rule by comparing insular and mainland members of (1) a taxonomic level and (2) mammalian sister species, to determine if large insular animals tend to evolve smaller body sizes while small ones evolve larger sizes. Results The smallest species in a taxon (order, family or genus) are insular no more often than would be expected by chance in all groups. The largest species within lizard families and bird genera (but no other taxonomic levels) are insular more often than expected. The incidence of extreme sizes in insular mammals never departs from the null, except among extant genera, where gigantism is marginally less common than expected under a Brownian motion null. Mammals follow the island rule at the genus level and when comparing sister species and clades. This appears to be driven mainly by insular dwarfing in large‐bodied lineages. A similar pattern in birds is apparent for species within orders. However, lizards follow the converse pattern. Main conclusions The popular misconception that islands have more than their fair share of size extremes may stem from a greater tendency to notice gigantism and dwarfism when they occur on islands. There is compelling evidence for insular dwarfing in large mammals, but not in other taxa, and little evidence for the second component of the island rule – gigantism in small‐bodied taxa.  相似文献   

4.
Size evolution in island lizards   总被引:2,自引:0,他引:2  
Aim  The island rule, small animal gigantism and large animal dwarfism on islands, is a topic of much recent debate. While size evolution of insular lizards has been widely studied, whether or not they follow the island rule has never been investigated. I examined whether lizards show patterns consistent with the island rule.
Location  Islands worldwide.
Methods  I used literature data on the sizes of island–mainland population pairs in 59 species of lizards, spanning the entire size range of the group, and tested whether small insular lizards are larger than their mainland conspecifics and large insular lizards are smaller. I examined the influence of island area, island isolation, and dietary preferences on lizard size evolution.
Results  Using mean snout–vent length as an index of body size, I found that small lizards on islands become smaller than their mainland conspecifics, while large ones become larger still, opposite to predictions of the island rule. This was especially strong in carnivorous lizards; omnivorous and herbivorous species showed a pattern consistent with the island rule but this result was not statistically significant. No trends consistent with the island rule were found when maximum snout–vent length was used. Island area had, at best, a weak effect on body size. Using maximum snout–vent length as an index of body size resulted in most lizard populations appearing to be dwarfed on islands, but no such pattern was revealed when mean snout–vent length was used as a size index.
Main conclusions  I suggest that lizard body size is mostly influenced by resource availability, with large size allowing some lizard populations to exploit resources that are unavailable on the mainland. Lizards do not follow the island rule. Maximum snout–vent length may be biased by sampling effort, which should be taken into account when one uses this size index.  相似文献   

5.
It is a well-known phenomenon that islands can support populations of gigantic or dwarf forms of mainland conspecifics, but the variety of explanatory hypotheses for this phenomenon have been difficult to disentangle. The highly venomous Australian tiger snakes (genus Notechis) represent a well-known and extreme example of insular body size variation. They are of special interest because there are multiple populations of dwarfs and giants and the age of the islands and thus the age of the tiger snake populations are known from detailed sea level studies. Most are 5000-7000 years old and all are less than 10,000 years old. Here we discriminate between two competing hypotheses with a molecular phylogeography dataset comprising approximately 4800 bp of mtDNA and demonstrate that populations of island dwarfs and giants have evolved five times independently. In each case the closest relatives of the giant or dwarf populations are mainland tiger snakes, and in four of the five cases, the closest relatives are also the most geographically proximate mainland tiger snakes. Moreover, these body size shifts have evolved extremely rapidly and this is reflected in the genetic divergence between island body size variants and mainland snakes. Within south eastern Australia, where populations of island giants, populations of island dwarfs, and mainland tiger snakes all occur, the maximum genetic divergence is only 0.38%. Dwarf tiger snakes are restricted to prey items that are much smaller than the prey items of mainland tiger snakes and giant tiger snakes are restricted to seasonally available prey items that are up three times larger than the prey items of mainland tiger snakes. We support the hypotheses that these body size shifts are due to strong selection imposed by the size of available prey items, rather than shared evolutionary history, and our results are consistent with the notion that adaptive plasticity also has played an important role in body size shifts. We suggest that plasticity displayed early on in the occupation of these new islands provided the flexibility necessary as the island's available prey items became more depauperate, but once the size range of available prey items was reduced, strong natural selection followed by genetic assimilation worked to optimize snake body size. The rate of body size divergence in haldanes is similar for dwarfs (h(g) = 0.0010) and giants (h(g) = 0.0020-0.0025) and is in line with other studies of rapid evolution. Our data provide strong evidence for rapid and repeated morphological divergence in the wild due to similar selective pressures acting in different directions.  相似文献   

6.
The assessment of how primates divide their daily activities is one of the foundations of primate behavioral ecology but the activity patterns and social behavior of the Pitheciines, including bearded sakis (genus Chiropotes), are poorly understood. During a 15-mo study, I collected 560 h of data on subgrouping, activity patterns, social behavior, and intergroup encounters of a group of free-ranging Guianan bearded sakis (Chiropotes sagulatus) in Guyana. The study group consisted of at least 65 individuals but showed a high degree of flexibility in grouping patterns (mean group size 39 ± 10). They were highly active, spending ca. 70% of their diurnal activity budget traveling and feeding. Activity patterns were relatively consistent throughout the year, although time spent feeding correlated significantly with fruit availability. The most common social behaviors were social resting and grooming. Agonism was rare (2.56% of social behavior) but did occur in the context of intergroup encounters, with males from the same group cooperating in intergroup agonism. Bearded sakis showed a high level of within group male affiliation, with male–male partners making up 65% of grooming dyads and males having another male as their nearest-neighbor 66% of the time. These results show that bearded sakis are characterized by egalitarian male–male and male–female relationships, highly fluid group sizes, and high levels of male affiliation. Similarities in the social behavior of bearded sakis and muriquis suggest several possible explanations for male–male bonding including cooperative defense of females from other groups, kinship, and maintenance of social cohesion after subgroup coalescence.  相似文献   

7.
The 'Resources Dispersion Hypothesis' (RDH, Macdonald, 1983) suggests that, for solitary foragers such as the red fox Vulpes vulpes , group formation is dependent on resource distribution heterogeneity. Our data are compatible with this hypothesis. Rodents, which constituted the main fox prey, were heterogeneously distributed in time and space. Six foxes (three males and three females) were radiotracked continuously from February 1989 to October 1990 (20 months) and we observed spatial sharing between one male and two or three females, considered as members of a 'spatial group'. Even though their home ranges overlapped between 30 and 100%, members of the group foraged alone and had very few contacts with conspecifics during the night. Furthermore, they partitioned the common home range so that each fox made exclusive use of foraging patches. In contrast, during the daytime, two to four members of the group were frequently in association in a communal resting place. Such associations were observed all year round; they were durable and dynamic. Their advantages were examined. We suggest that they play a role in the maintenance of social cohesion within the group in providing the opportunity for direct contact between foxes. They might also permit increased security through mutual vigilance during resting.  相似文献   

8.
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.  相似文献   

9.
Group size influences many aspects of mammalian social life, including stress levels, disease transmission, reproductive rates, and behavior. However, much of what is known about the effects of group size on behavioral ecology has come from comparisons across multiple groups of different sizes. These findings may be biased because behavioral differences across groups may be more indicative of how environmental variation influences animal behavior, rather than group size itself. To partially circumvent this limitation, we used longitudinal data to examine how changes in group size across time affect the behavior of folivorous red colobus monkeys (Procolobus rufomitratus) of Kibale National Park, Uganda. Controlling for food availability, we demonstrated that increasing group size resulted in altered activity budgets, based on 6 yr of data on a group that increased from 57 to 98 members. Specifically, as group size increased, individuals spent less time feeding and socializing, more time traveling, and increased the diversity of their diet. These changes appear to allow the monkeys to compensate for greater scramble competition apparent at larger group sizes, as increasing group size did not show the predicted relationship with lower female fecundity. Our results support recent findings documenting feeding competition in folivorous primates. Our results also document behavioral flexibility, an important trait that allows many social mammals to maximize the benefits of sociality (e.g., increased vigilance), while minimizing the costs (e.g., increased feeding competition).  相似文献   

10.
We compared resource utilization of two insular endemic mammalian carnivores, the island spotted skunk and island fox, along niche dimensions of space, food, and time on Santa Cruz Island. We predicted that resource use by foxes and skunks would differ along one or more niche dimensions, and that both species would have broader niches or higher densities compared with mainland relatives. Island foxes and island spotted skunks differed to some extent in habitat use, diets, and circadian activity, which may account for their long-term coexistence. Nonetheless, substantial overlap between skunks and foxes in spatial, dietary, and temporal dimensions suggests that competition between the two species does occur. Moreover, competition may be asymmetric, affecting skunks more than foxes. Compared with mainland foxes, island foxes have smaller body size, smaller home range, increased population density, increased diurnal activity, and behavior that is more highly inquisitive and less flightprone all common features of insular faunas. Island skunks, however, apparently have not developed these changes, perhaps due to asymmetric competition with foxes in conjunction with severe ecosystem disturbances caused by feral sheep.  相似文献   

11.
Spix's disc-winged bats, Thyroptera tricolor, roost in young, rolled leaves of Heliconia or Calathea plants. In this paper, we examined how the combination of high habitat availability, low occupancy rate and short longevity of those roosts may affect the pattern of interactions among individuals in the population. We regularly censused a 5.69-ha study area in northeastern Costa Rica and examined patterns of association using mark-recapture data. Thyroptera tricolor formed behaviourally cohesive social groups of mixed sex, ranging in size from four to 14 individuals. Approximately 85% of dyads maintained associations over time periods of up to 100 days, and 40% of dyads maintained longer-term associations of at least 420 days across sex classes. Individuals within social groups did not always roost together, but they shared a small common roosting home range, which averaged just 0.19 ha. Members of different social groups rarely associated, although limited associations between members of select social groups in one subunit were observed. However, roosting home ranges of adjacent social groups often overlapped (up to 39% of home ranges, and up to 92% of the area of the smaller home range), and home range centres were situated less than 100 m apart. Thus, social groups rarely interacted but overlapped in space. The features of this social system are unique among bats and mammals in general, and point to groupings based on kinship or cooperation.  相似文献   

12.
The per capita home range area of Japanese macaques,Macaca fuscata, is significantly smaller in evergreen forest than in deciduous forest, though a corresponding difference in food resource utilization patterns has never been described. The present study compared the home range utilization pattern of Japanese macaques living in two habitats: the Yakushima population inhabits an evergreen forest, while the Kinkazan population inhabits a deciduous forest. We found that in the Yakushima population, (1) food density was higher; (2) inter-feeding bout sites distance was shorter; (3) daily travel distance was shorter; (4) home range size was smaller; and (5) the unit value of the main home range was higher, than in the Kinkazan population. Yakushima groups utilized a small home range area intensively, compared to Kinkazan groups. We also found that a Yakushima group shared 24% of its main home range with neighboring groups, though a Kinkazan group shared only 10% with other groups. It is supposed that food distribution affects daily ranging pattern, and ultimately the social relationships between groups in Japanese macaques.  相似文献   

13.
It is often essential to understand historical selection regimes to explain current traits. We studied antipredator behavior of three Tasmanian macropodid marsupials – Forester kangaroos Macropus giganteus , Bennett's wallabies M. rufogriseus , and Tasmanian pademelons Thylogale billardierii – to understand how antipredator behavior functions in a relatively intact predator community. We also compared behavior of the kangaroos and wallabies on a predator-free island where they were translocated from mainland Tasmania 30 yr ago. Both species allowed humans to get closer to them on the predator-free island; a finding consistent with a reduced risk of predation on the island. Neither kangaroos, nor wallabies, exhibited group size effects – they did not modify time allocated to foraging or antipredator vigilance as a function of group size at either site. Nor did overall time allocation vary in any consistent way. In contrast, mainland Australian sibling-species of Forester kangaroos and Bennett's wallabies have both been reported to have group size effects. It is possible either that the extinction of the thylacine Thylacinus cynocephalus in the last century has led to an evolutionary loss of group size effects and other antipredator behavior, or that thylacines were never that important a predator on Tasmanian subspecies. In contrast, Tasmanian pademelons studied on the Tasmanian mainland modified time allocation as a function of group size suggesting that they perceived safety in numbers. Pademelons, because of their body size, are relatively more vulnerable than larger-bodied macropodids to the rich community of marsupial carnivores in Tasmania, and used a mix of social and individual strategies to manage predation risk.  相似文献   

14.
Elevated rates of nonsynonymous substitution in island birds   总被引:4,自引:0,他引:4  
Slightly deleterious mutations are expected to fix at relatively higher rates in small populations than in large populations. Support for this prediction of the nearly-neutral theory of molecular evolution comes from many cases in which lineages inferred to differ in long-term average population size have different rates of nonsynonymous substitution. However, in most of these cases, the lineages differ in many other ways as well, leaving open the possibility that some factor other than population size might have caused the difference in substitution rates. We compared synonymous and nonsynonymous substitutions in the mitochondrial cyt b and ND2 genes of nine closely related island and mainland lineages of ducks and doves. We assumed that island taxa had smaller average population sizes than those of their mainland sister taxa for most of the time since they were established. In all nine cases, more nonsynonymous substitutions occurred on the island branch, but synonymous substitutions showed no significant bias. As in previous comparisons of this kind, the lineages with smaller populations might differ in other respects that tend to increase rates of nonsynonymous substitution, but here such differences are expected to be slight owing to the relatively recent origins of the island taxa. An examination of changes to apparently "preferred" and "unpreferred" synonymous codons revealed no consistent difference between island and mainland lineages.  相似文献   

15.
The nearly neutral theory predicts that the rate and pattern of molecular evolution will be influenced by effective population size (Ne), because in small populations more slightly deleterious mutations are expected to drift to fixation. This important prediction has not been widely empirically tested, largely because of the difficulty of comparing rates of molecular evolution in sufficient numbers of independent lineages which differ only in Ne. Island endemic species provide an ideal test of the effect of Ne on molecular evolution because species restricted to islands frequently have smaller Ne than closely related mainland species, and island endemics have arisen from mainland lineages many times in a wide range of taxa. We collated a dataset of 70 phylogenetically independent comparisons between island and mainland taxa, including vertebrates, invertebrates and plants, from 19 different island groups. The rate of molecular evolution in these lineages was estimated by maximum likelihood using two measures: overall substitution rate and the ratio of non-synonymous to synonymous substitution rates. We show that island lineages have significantly higher ratios of non-synonymous to synonymous substitution rates than mainland lineages, as predicted by the nearly neutral theory, although overall substitution rates do not differ significantly.  相似文献   

16.
Previous research has shown that both ecological and social factors influence mountain gorilla habitat use. New data on habitat use by a male gorilla and by a group confirm that male mating competition influences short- and long-term habitat use patterns, and show that its influence can supersede that of ecological factors on a long-term basis. When solitary, the male regularly approached and sometimes followed groups. His monthly home range size and equitability of home range use were directly proportional to the number of such interactions per month. His relationships with other groups became more conservative after he gained females, and, contrary to expectations based on metabolic needs, he used a much smaller area. The group considered here gradually expanded its home range and shifted its areas of intensive use throughout a three-year period. It then made a complete home range shift after three dramatic interactions, during which it was temporarily fragmented and two females emigrated. The group shared its home range with many other social units; overlap with most of these decreased after the shift. The degree of overlap and the lack of site fidelity by males and their groups support the argument that transfer is not ecologically costly to mountain gorilla females.  相似文献   

17.
We monitored one group of muriquis, or woolly spider monkeys (Brachyteles arachnoides), over a 9-year period at Fazenda Montes Claros, Minas Gerais, Brazil. The group grew from 22 to 42 individuals due to the births of 21 surviving infants. Eight immigrations involving immature females were offset by emigrations and disappearances. The home range of the group expanded as the group size increased. The group traveled as a cohesive unit during the first 6 years of the study, but recently it has begun to show greater tendencies to fission temporarily into smaller subgroups. Six adult males from the other muriqui group at this site have simultaneously increased their associations with the main study group. These observations indicate that the group is in a state of transition which may lead, ultimately, either to its division into two smaller units or to a more fluid social structure.  相似文献   

18.
报道中国大陆1新纪录种,美洲棘脊蓟马Echinothrips americanus Morgan,1913(缨翅目,蓟马科,蓟马亚科),这也是棘蓟马属Echinothrips Moulton,1911在中国大陆的首次纪录.目前该种仅在我国北京海淀区的辣椒上发现.棘蓟马属以头、前胸背板和后胸背板具网状刻纹与针蓟马亚科Panchaetothripinae特征十分相近,但以发达的中胸内叉骨刺与之相区别.美洲棘蓟马系检疫性害虫,本文列出了它的世界分布和寄主植物种类.实证标本保存在浙江大学昆虫科学研究所.  相似文献   

19.
The island biogeography theory is one of the major theories in ecology, and its applicability to natural systems is well documented. The core model of the theory, the equilibrium model of island biogeography, predicts that species diversity on an island is positively related to the size of the island, but negatively related by the island's distance to the mainland. In recent years, ecologists have begun to apply this model when investigating genetic diversity, arguing that genetic and species diversity might be influenced by similar ecological processes. However, most studies have focused on oceanic islands, but knowledge on how the theory applies to islands located on the mainland (e.g., mountain islands, forest islands) is scarce. In this study, we examined how the size and degree of isolation of mountain islands would affect the genetic diversity of an alpine bird, the rock ptarmigan (Lagopus muta). Within our study area, we defined the largest contiguous mountain area as the mainland, while smaller mountains surrounding the mainland were defined as islands. We found that the observed heterozygosity (Ho) was significantly higher, and the inbreeding coefficient (Fis) significantly lower, on the mainland compared to islands. There was a positive significant relationship between the unbiased expected heterozygosity (Hn.b.) and island size (log km2), but a negative significant relationship between Ho and the cost distance to the mainland. Our results are consistent with the equilibrium model of island biogeography and show that the model is well suited for investigating genetic diversity among islands, but also on islands located on the mainland.  相似文献   

20.
A cascade of morphological, ecological, demographical and behavioural changes operates within island communities compared to mainland. We tested whether metabolic rates change on islands. Using a closed circuit respirometer, we investigated resting metabolic rate (RMR) of three species of Crocidurinae shrews: Suncus etruscus, Crocidura russula, and C. suaveolens. For the latter, we compared energy expenditure of mainland and island populations. Our measurements agree with those previously reported for others Crocidurinae: the interspecific comparison (ANCOVA) demonstrated an allometric relation between energy requirements and body mass. Energy expenditure also scaled with temperature. Island populations (Corsica and Porquerolles) of C. suaveolens differed in size from mainland (gigantism). A GLM showed a significant relationship between energy expenditure, temperature, body mass and locality. Mass specific RMR allometrically scales body mass, but total RMR does not significantly differ between mainland and island, although island shrews are giant. Our results are consistent with other studies: that demonstrated that the evolution of mammalian metabolism on islands is partially independent of body mass. In relation to the insular syndrome, we discuss how island selective forces (changes in resource availability, decrease in competition and predation pressures) can operate in size and physiological adjustments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号