首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G S Vince  R T Dean 《FEBS letters》1987,216(2):253-256
Intracellular proteolysis was measured in cultured cells during and after free radical attack. Radicals were generated firstly, throughout the aqueous phase by gamma irradiation and secondly, selectively, either extracellularly or intracellularly by chemical and enzymic methods. With both approaches, stimulation of proteolysis was observed in certain circumstances. Phenylhydrazine stimulated proteolysis at low concentration but inhibited at higher. Depletion of the antioxidant glutathione and inhibition of catalase also increased proteolysis.  相似文献   

2.
Dihydropyrimidine dehydrogenase (DPD) constitutes the first step of the pyrimidine degradation pathway in which the pyrimidine bases uracil and thymine are catabolised to beta-alanine and beta-aminoisobutyric acid (beta-AIB), respectively. The mean concentration of beta-AIB was approximately 5- to 8-fold lower in urine of patients with a DPD deficiency, when compared to age-matched controls. Comparable levels of 8-hydroxydeoxyguanosine (8-OHdG) were present in urine from controls and DPD patients at the age <2 year. In contrast, slightly elevated levels of 8-OHdG were detected in urine from DPD patients with an age >2 year, suggesting the presence of increased oxidative stress.  相似文献   

3.
It was found that pike parvalbumins pI 4.2 and 5.0 bind amphiphilic peptide melittin extracted from bee venom in an extraordinary Ca-dependent manner: in apo-state the protein forms a tight equimolar complex with melittin (Ka = 10(6) M-1 at 18 degrees C); in Ca- (and Mg-) loaded state it does not take place. Heating of the protein up to temperatures above the denaturation temperature of apo-parvalbumin does not change the stoichiometry of the complex but increases its association constant by an order of magnitude (Ka = 1.2.10(7) M-1 at 44 degrees C). Isolated Ca-binding domain of parvalbumin, 38-108, retains the ability for Ca-inhibited binding of equimolar quantities of melittin. The possible function of parvalbumin in vivo is suggested: Ca-inhibited interactions with some intracellular components.  相似文献   

4.
The radiation-induced bystander effect challenges the accepted paradigm of direct DNA damage in response to energy deposition driving the biological consequences of radiation exposure. With the bystander response, cells which have not been directly exposed to radiation respond to their neighbours being targeted. In our own studies we have used novel targeted microbeam approaches to specifically irradiate parts of individual cells within a population to quantify the bystander response and obtain mechanistic information. Using this approach it has become clear that energy deposited by radiation in nuclear DNA is not required to trigger the effect, with cytoplasmic irradiation required. Irradiated cells also trigger a bystander response regardless of whether they themselves live or die, suggesting that the phenotype of the targeted cell is not a determining factor. Despite this however, a range of evidence has shown that repair status is important for dealing with the consequences of a bystander signal. Importantly, repair processes involved in the processing of dsb appear to be involved suggesting that the bystander response involves the delayed or indirect production of dsb-type lesions in bystander cells. Whether these are infact true dsb or complexes of oxidised bases in combination with strand breaks and the mechanisms for their formation, remains to be elucidated.  相似文献   

5.
A resource acquisition-allocation model is developed to examine the trade-off between reproduction and somatic protection. Unlike previous studies, resource intake is not assumed to be constrained: instead, resource intake is free to vary, with increased intake being associated with an increased risk of somatic damage. This gives rise to an optimal resource intake as well as an optimal allocation strategy. This paper studies the relative importance of acquisition and allocation strategies in regulating acquisition-related mortality. Under the optimal allocation strategy mortality rate increases with age, in accordance with the disposable soma theory of aging. Contrary to the usual interpretation of the disposable soma theory, this increase in mortality can arise from an increase in the resource acquisition effort rather than a decrease in the resources allocated to protection. At early ages resource acquisition is found to be the primary path for regulating life history costs, whilst allocating resources to protection becomes more important later in life. Models for targeted and non-targeted damage repair are considered and the robustness of our results to the structure and parameterization of the model is discussed. The results from our models are discussed in light of published data. Resource acquisition is shown to be a potentially important mechanism for controlling somatic damage which deserves further study.  相似文献   

6.
A1 toxicity in yeast. A role for Mg?   总被引:1,自引:0,他引:1       下载免费PDF全文
We have established conditions in which soluble Al is toxic to the yeast Saccharomyces cerevisiae. The major modifications to a standard synthetic medium were lowering the pH and the concentration of Mg ions. Alterations to the PO4, Ca, or K concentration had little effect on toxicity. Organic acids known to chelate Al reduced its toxicity, suggesting that Al3+ is the toxic Al species. The unique ability of Mg ions to ameliorate Al toxicity led us to investigate the hypothesis that Al inhibits Mg uptake by yeast. Yeast cells accumulate Mg, Co, Zn, Ni, and Mn ions via the same transport system (G.F. Fuhrmann, A. Rothstein [1968] Biochim Biophys Acta 163: 325-330). Al3+ inhibited the accumulation of 57Co2+ by yeast cells more effectively than Ga, La, or Mg. In addition, a mutant yeast strain with a defect in divalent cation uptake proved to be more sensitive to Al than a wild-type strain. Taken together, these results suggest that Al may cause Mg deficiency in yeast by blocking Mg transport. We discuss the relevance of yeast as a model for the study of Al toxicity in plant systems.  相似文献   

7.
Previous studies have demonstrated that supplemental alpha-tocopherol inhibited calcium-induced cytosolic enzyme efflux from normal rat skeletal muscles incubated in vitro and suggested that the protective action was mediated by the phytyl chain of alpha-tocopherol [1]. In order to investigate this further a number of hydrocarbon chain analogues of tocopherol (7,8-dimethyl tocol, 5,7-dimethyl tocol, tocol, alpha-tocotrienol, alpha-tocopherol [10], vitamin K1, vitamin K1 [10], vitamin K1 diacetate, vitamin K2 [20], phytyl ubiquinone and retinol) were tested for any ability to inhibit calcium ionophore, A23187, induced creatine kinase (CK) enzyme efflux. Some compounds were found to be very effective inhibitors and comparison of their structures and ability to inhibit TBARS production in muscle homogenates revealed that the effects did not appear related to antioxidant capacity or chromanol methyl groups, but rather the length and structure of the hydrocarbon chain was the important mediator of the effects seen.  相似文献   

8.
Oxidative stress and cancer: have we moved forward?   总被引:2,自引:0,他引:2  
'Reactive species' (RS) of various types are formed in vivo and many are powerful oxidizing agents, capable of damaging DNA and other biomolecules. Increased formation of RS can promote the development of malignancy, and the 'normal' rates of RS generation may account for the increased risk of cancer development in the aged. Indeed, knockout of various antioxidant defence enzymes raises oxidative damage levels and promotes age-related cancer development in animals. In explaining this, most attention has been paid to direct oxidative damage to DNA by certain RS, such as hydroxyl radical (OH*). However, increased levels of DNA base oxidation products such as 8OHdg (8-hydroxy-2'-deoxyguanosine) do not always lead to malignancy, although malignant tumours often show increased levels of DNA base oxidation. Hence additional actions of RS must be important, possibly their effects on p53, cell proliferation, invasiveness and metastasis. Chronic inflammation predisposes to malignancy, but the role of RS in this is likely to be complex because RS can sometimes act as anti-inflammatory agents.  相似文献   

9.
Oxidative stress and neurodegeneration: where are we now?   总被引:1,自引:0,他引:1  
The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.  相似文献   

10.
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder expressed as four disease variants characterized by adrenal insufficiency and graded damage in the nervous system. X-ALD is caused by a loss of function of the peroxisomal ABCD1 fatty-acid transporter, resulting in the accumulation of very long chain fatty acids (VLCFA) in the organs and plasma, which have potentially toxic effects in CNS and adrenal glands. We have recently shown that treatment with a combination of antioxidants containing α-tocopherol, N-acetyl-cysteine and α-lipoic acid reversed oxidative damage and energetic failure, together with the axonal degeneration and locomotor impairment displayed by Abcd1 null mice, the animal model of X-ALD. This is the first direct demonstration that oxidative stress, which is a hallmark not only of X-ALD, but also of other neurodegenerative processes, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), contributes to axonal damage. The purpose of this review is, first, to discuss the molecular and cellular underpinnings of VLCFA-induced oxidative stress, and how it interacts with energy metabolism and/or inflammation to generate a complex syndrome wherein multiple factors are contributing. Particular attention will be paid to the dysregulation of redox homeostasis by the interplay between peroxisomes and mitochondria. Second, we will extend this analysis to the aforementioned neurodegenerative diseases with the aim of defining differences as well as the existence of a core pathogenic mechanism that would justify the exchange of therapeutic opportunities among these pathologies. This article is part of a Special Issue entitled: Metabolic functions and biogenesis of peroxisomes in health and disease.  相似文献   

11.
Zheng L  Marcusson J  Terman A 《Autophagy》2006,2(2):143-145
Intraneuronal accumulation of amyloid beta-protein (Abeta) is believed to be responsible for degeneration and apoptosis of neurons and consequent senile plaque formation in Alzheimer disease (AD), the main cause of senile dementia. Oxidative stress, an early determinant of AD, has been recently found to induce intralysosomal Abeta accumulation in cultured differentiated neuroblastoma cells through activation of macroautophagy. Because Abeta is known to destabilize lysosomal membranes, potentially resulting in apoptotic cell death, this finding suggests the involvement of oxidative stress-induced macroautophagy in the pathogenesis of AD.  相似文献   

12.
13.
The thrust of this presentation takes a more programmatic approach and gives an overview of the programs at the NIH and the NCI that have a broad nutritional and basic science undercurrent and outline. Also discussed briefly are some areas of general concern that are under investigation in the nutrition group and are included in the group's outreach efforts among professional and academic organizations. The overarching focus of these efforts is to stress the importance of nutrition as a potential modulator of health/disease risks associated with genetic predisposition and environmentally induced disease from diet, lifestyle and exposure to pollutants.  相似文献   

14.
Leptin, the ob gene product, is involved in the regulation of body weight in rodents, primates and humans. It provides a molecular basis for the lipostatic theory of the regulation of energy balance. White adipose tissue and placenta are the main sites of leptin synthesis. There is also evidence of ob gene expression in brown fat. Leptin seems to play a key role in the control of body fat stores by coordinated regulation of feeding behaviour, metabolic rate, autonomic nervous system regulation and body energy balance. Apart from the function of leptin in the central nervous system on the regulation of energy balance, it may well be one of the hormonal factors that signal to the brain the body's readiness for sexual maturation and reproduction. During late pregnancy and at birth when maternal fat stores have been developed, leptin levels are high. During these developmental stages leptin could be a messenger molecule signalling the adequacy of the fat stores for reproduction and maintenance of pregnancy. At later stages of gestation leptin could signal the expansion of fat stores in order to prepare the expectant mother for the energy requirements of full-term gestation, labour and lactation. Leptin serum concentrations change during pubertal development in rodents, primates and humans. In girls, leptin serum concentrations increase dramatically as pubertal development proceeds. The pubertal rise in leptin levels parallels the increase in body fat mass. In contrast, leptin levels increase shortly before and during the early stages of puberty in boys and decline thereafter. Testosterone has been found to suppress leptin synthesis by adipocytes both in vivo and in vitro. The decline of leptin levels in late puberty in boys accompanies increased androgen production during that time and most likely reflects suppression of leptin by testosterone and a decrease in fat mass and relative increase in muscle mass during late puberty in males. This overview focuses on those topics of leptin research which are of particular interest in reproductive and adolescent medicine.  相似文献   

15.
16.
Chronic alcohol abuse has deleterious effects on several organs in the body including the brain. Neuroradiological studies have demonstrated that the brains of chronic alcoholics undergo loss of both gray and white matter volumes. Neuropathological studies using unbiased stereological methods have provided evidence for loss of neurons in specific parts of the brain in chronic alcoholics. The purpose of this paper is to propose a mechanism for this alcohol related neuronal loss. The hypothesis is based on the neurodegeneration observed in patients with the genetic disorder xeroderma pigmentosum (XP), who lack the capacity to carry out a specific type of DNA repair called nucleotide excision repair (NER). Some XP patients develop a progressive atrophic neurodegeneration, termed XP neurological disease, indicating that endogenous DNA damage that is normally repaired by NER has the capacity to cause neuronal death. Accumulating evidence indicates that the neurodegenerative DNA damage that is responsible for neuronal loss in XP patients results from reactive oxygen species (ROS) and lipid peroxidation products, and has the capacity to inhibit gene expression by RNA polymerase II. Therefore, the following model is proposed: chronic alcohol abuse results in increased levels of ROS and lipid peroxidation products in neurons, which results in an overwhelming burden on the NER pathway, and increased steady state levels of DNA lesions that inhibit gene expression. This results in neuronal death either by reduction in the levels of essential gene products or by apoptosis. The implications of this model for future studies are discussed.  相似文献   

17.
Exposure of insulin-producing cells to elevated levels of the free fatty acid (FFA) palmitate results in the loss of β-cell function and induction of apoptosis. The induction of endoplasmic reticulum (ER) stress is one mechanism proposed to be responsible for the loss of β-cell viability in response to palmitate treatment; however, the pathways responsible for the induction of ER stress by palmitate have yet to be determined. Protein palmitoylation is a major posttranslational modification that regulates protein localization, stability, and activity. Defects in, or dysregulation of, protein palmitoylation could be one mechanism by which palmitate may induce ER stress in β-cells. The purpose of this study was to evaluate the hypothesis that palmitate-induced ER stress and β-cell toxicity are mediated by excess or aberrant protein palmitoylation. In a concentration-dependent fashion, palmitate treatment of RINm5F cells results in a loss of viability. Similar to palmitate, stearate also induces a concentration-related loss of RINm5F cell viability, while the monounsaturated fatty acids, such as palmoleate and oleate, are not toxic to RINm5F cells. 2-Bromopalmitate (2BrP), a classical inhibitor of protein palmitoylation that has been extensively used as an inhibitor of G protein-coupled receptor signaling, attenuates palmitate-induced RINm5F cell death in a concentration-dependent manner. The protective effects of 2BrP are associated with the inhibition of [(3)H]palmitate incorporation into RINm5F cell protein. Furthermore, 2BrP does not inhibit, but appears to enhance, the oxidation of palmitate. The induction of ER stress in response to palmitate treatment and the activation of caspase activity are attenuated by 2BrP. Consistent with protective effects on insulinoma cells, 2BrP also attenuates the inhibitory actions of prolonged palmitate treatment on insulin secretion by isolated rat islets. These studies support a role for aberrant protein palmitoylation as a mechanism by which palmitate enhances ER stress activation and causes the loss of insulinoma cell viability.  相似文献   

18.
Previous studies have demonstrated that supplemental α-tocopherol inhibited calcium-induced cytosolic enzyme efflux from normal rat skeletal muscles incubated in vitro and suggested that the protective action was mediated by the phytyl chain of α-tocopherol [1]. In order to investigate this further a number of hydrocarbon chain analogues of tocopherol (7.8-dimethyl tocol, 5,7-dimethyl tocol, tocol, α-tocotrienol, α-tocopherol [10], vitamin K1, vitamin K1 [10], vitamin K1 diacetate, vitamin K2 [20], phytyl ubiquinone and retinol) were tested for any ability to inhibit calcium ionophore, A23187, induced creatine kinase (CK) enzyme efflux. Some compounds were found to be very effective inhibitors and comparison of their structures and ability and to inhibit TBARS production in muscle homogenates revealed that the effects did not appear related to antioxidant capacity or chromanol methyl groups, but rather the length and structure of the hydrocarbon chain was the important mediator of the effects seen.  相似文献   

19.
Molybdenum sequestration in Brassica species. A role for anthocyanins?   总被引:1,自引:0,他引:1  
To elucidate plant mechanisms involved in molybdenum (Mo) sequestration and tolerance, Brassica spp. seedlings were supplied with molybdate, and the effects on plant physiology, morphology, and biochemistry were analyzed. When supplied with (colorless) molybdate Indian mustard (Brassica juncea) seedlings accumulated water-soluble blue crystals in their peripheral cell layers. Energy dispersive x-ray analysis showed that Mo accumulated predominantly in the vacuoles of the epidermal cells. Therefore, the blue crystals are likely to be a Mo compound. The x-ray absorption spectrum of the plant-accumulated Mo was different than that for molybdate, indicating complexation with a plant molecule. Because the blue compound was water soluble and showed a pH-dependent color change, possible involvement of anthocyanins was investigated. An anthocyanin-less mutant of Brassica rapa ("fast plants") was compared with varieties containing normal or high anthocyanin levels. The anthocyanin-less mutant did not show accumulation of a blue compound when supplied with molybdate. In the anthocyanin-containing varieties, the blue compound colocalized with anthocyanins in the peripheral cell layers. Mo accumulation by the three B. rapa varieties was positively correlated with anthocyanin content. Addition of molybdate to purified B. rapa anthocyanin resulted in an in vitro color change from pink to blue. Therefore, Mo appears to be sequestered in vacuoles of the peripheral cell layers of Brassica spp. as a blue compound, probably a Mo-anthocyanin complex.  相似文献   

20.
This overview presents data showing that glucose use increases and that excitatory amino acids (i.e., glutamate, aspartate), taurine and ascorbate increase in the extracellular fluid during seizures. During the cellular hyperactive state taurine appears to serve as an osmoregulator and ascorbate may serve as either an antioxidant or as a pro-oxidant. Finally, a unifying hypothesis is given for seizure-induced brain damage. This unifying hypothesis states that during seizures there is a release of excitatory amino acids which act on glutamatergic receptors, increasing neuronal activity and thereby increasing glucose use. This hyperactivity of cells causes an influx, of calcium (i.e. calcium stress) and water movements (i.e., osmotic stress) into the cells that culminate in brain damage mediated by reactive oxygen species.Special issue dedicated to Dr. Frederick E. Samson  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号