首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid turnover of mannitol-1-phosphate in Escherichia coli.   总被引:2,自引:1,他引:2       下载免费PDF全文
The phosphate moiety of D-mannitol-1-phosphate in Escherichia coli is subject to rapid turnover and is in close equilibrium with Pi and the phosphorus of fructose-1,6-bisphosphate. These three compounds account for the bulk of 32P label found in cells after several minutes of uptake of 32Pi and mannitol-1-phosphate represents some 30% of this label. Mannitol-1-phosphate occurs in E. coli grown on a variety of carbon sources, in the absence of D-mannitol, and is synthesized de novo even in mutants lacking mannitol-1-phosphate dehydrogenase. The mannitol moiety of mannitol-1-phosphate was not affected during the total chase of the P moiety, which exchanged with a half-life of about 30 s. These findings suggest that the rapid equilibration of the phosphorus is a function of an enzyme, possibly a component of the phosphotransferase system, capable of forming a complex that allows the exchange of the phosphate without the equilibration of the mannitol moiety with free mannitol.  相似文献   

2.
3.
D-Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and D-glucitol-6-phosphate dehydrogenase (EC 1.1.1.140) were purified to apparent homogeneity in good yields from Escherichia coli. The amino acid compositions, N-terminal amino acid sequences, sensitivities to chemical reagents, and catalytic properties of the two enzymes were determined. Both enzymes showed absolute specificities for their substrates. The subunit molecular weights of mannitol-1-phosphate and glucitol-6-phosphate dehydrogenases were 40,000 and 26,000, respectively; the apparent molecular weights of the native proteins, determined by gel filtration, were 40,000 and 117,000, respectively. It is therefore concluded that whereas mannitol-1-phosphate dehydrogenase is a monomer, glucitol-6-phosphate dehydrogenase is probably a tetramer. These two proteins differed in several fundamental respects.  相似文献   

4.
Vibrio cholerae utilizes mannitol through an operon of the phosphoenolpyruvate-dependent phosphotransferase (PTS) type. A gene, mtlD, encoding mannitol-1-phosphate dehydrogenase was identified within the 3.9 kb mannitol operon of V. cholerae. The mtlD gene was cloned from V. cholerae O395, and the recombinant enzyme was functionally expressed in E. coli as a 6×His-tagged protein and purified to homogeneity. The recombinant protein is a monomer with a molecular mass of 42.35 kDa. The purified recombinant MtlD reduced fructose 6-phosphate (F6P) using NADH as a cofactor with a K(m) of 1.54 +/- 0.1 mM and V(max) of 320.8 +/- 7.81 micronmol/min/mg protein. The pH and temperature optima for F6P reduction were determined to be 7.5 and 37°C, respectively. Using quantitative real-time PCR analysis, mtlD was found to be constitutively expressed in V. cholerae, but the expression was up-regulated when grown in the presence of mannitol. The MtlD expression levels were not significantly different between V. cholerae O1 and non-O1 strains.  相似文献   

5.
Coenzyme and substrate interactions with mannitol-1-phosphate dehydrogenase fromEscherichia coli (a dimer of MW 45,000) have been studied by fluorescence spectroscopy. NAD+ quenches the fluorescence emission of the protein tryptophan residues; shifting the excitation wavelength from 280 to 290 nm results in an increase in this quenching and a red shift in the emission maximum. NAD+ also quenches the fluorescence of covalently attached pyridoxyl phosphate, and this quenching is accompanied by a spectral broadening above 425 nm. Fructose-6-phosphate increases the binding of NAD+, but causes a slight reduction in the quenching of the tryptophan fluorescence observed at saturating levels of coenzyme, and reverses the NAD+-induced broadening in the pyridoxyl phosphate emission spectrum. NADH quenches the protein emission much less than NAD+; this quenching is not changed by shifting the excitation wavelength and is not affected by the presence of bound mannitol-1-phosphate. Titrations monitoring the quenching by NADH indicate a single class of NADH binding sites, while titrations monitoring NADH fluorescence suggest that coenzyme fluorescence is more enhanced when NADH is bound to less than half of the total enzyme subunits, with the emission per NADH molecule bound decreasing as the number of NADH molecules bound increases. In the absence of coenzyme, neither fructose-6-phosphate nor mannitol-1-phosphate have any effect on the protein tryptophan emission; however, both substrates induce specific changes in the emission spectrum of covalently attached pyridoxyl phosphate. These results suggest that the different coenzymes and substrates cause specific conformational changes in mannitol-1-phosphate dehydrogenase.  相似文献   

6.
Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) has been purified from Aspergillus parasiticus, a filamentous fungus which produces the polyketide mycotoxin, versicolorin A. Its kinetic properties have been compared with those of mannitol-1-phosphate dehydrogenase from the related non-toxin-producing fungus, A. niger. Both enzymes are inhibited by divalent transition metals, especially Zn2+ and Cd2+, but only the enzyme from A. parasiticus exhibits inhibitor-induced cooperative binding of the substrate, fructose-6 phosphate. Double reciprocal plots (1/v versus 1/Fru-6-P) are linear in the absence of Zn2+ but in the presence of Zn2+ are concave upward, with Hill coefficients of 1.5. The extent of cooperativity is inversely related to ionic strength, disappearing at 100 mM KCl. The enzymes from both organisms are relatively stable to incubation at 30 degrees C, but only the enzyme from A. parasiticus is rendered thermally unstable by the addition of divalent transition metals. A model is proposed to explain how binding of transition metal ions affects substrate binding and thermal stability of the enzyme.  相似文献   

7.
The interaction of Rose Bengal with mannitol-1-phosphate dehydrogenase has been investigated. Binding of this aromatic anionic dye causes a quenching of the protein fluorescence and various changes in the spectral properties of the dye. As is the case with other dehydrogenases, the titration of the enzyme with Rose Bengal, monitoring enhancement in the dye fluorescence at 590 nm, or quenching of the protein fluorescence, can be described by a simple binding model: one dye binding site per enzyme subunit with a dissociation constant of ~2 µM. However, kinetic studies indicate a more complex scheme, since Rose Bengal induces a biphasic time-dependent inhibition of the enzyme. The first phase is over in 1–5 min and is partially reversible, while the second phase is essentially irreversible and continues beyond 1 h. The dyes 8-anilino-1-naphthalene sulfonate and 2-p-toluidinylnaphthalene-6-sulfonate also cause biphasic time-dependent inhibitions of the enzyme. Only mannitol-1-phosphate, and fructose-6-phosphate in the presence of NAD+, show high levels of protection against these inhibitory processes. The different effects of coenzymes and substrates on the dye-induced inhibitions support earlier observations from fluorescence studies (preceding paper). A binding scheme describing the interactions of Rose Bengal with the enzyme that is consistent with the experimental results is presented.  相似文献   

8.
9.
T Chase  Jr 《The Biochemical journal》1986,239(2):435-443
Mannitol-1-phosphate dehydrogenase was purified to homogeneity, and some chemical and physical properties were examined. The isoelectric point is 4.19. Amino acid analysis and polyacrylamide-gel electrophoresis in presence of SDS indicate a subunit Mr of about 22,000, whereas gel filtration and electrophoresis of the native enzyme indicate an Mr of 45,000. Thus the enzyme is a dimer. Amino acid analysis showed cysteine, tyrosine, histidine and tryptophan to be present in low quantities, one, three, four and four residues per subunit respectively. The zinc content is not significant to activity. The enzyme is inactivated (greater than 99%) by reaction of 5,5'-dithiobis-(2-nitrobenzoate) with the single thiol group; the inactivation rate depends hyperbolically on reagent concentration, indicating non-covalent binding of the reagent before covalent modification. The pH-dependence indicated a pKa greater than 10.5 for the thiol group. Coenzymes (NAD+ and NADH) at saturating concentrations protect completely against reaction with 5,5'-dithiobis-(2-nitrobenzoate), and substrates (mannitol 1-phosphate, fructose 6-phosphate) protect strongly but not completely. These results suggest that the thiol group is near the catalytic site, and indicate that substrates as well as coenzymes bind to free enzyme. Dissociation constants were determined from these protective effects: 0.6 +/- 0.1 microM for NADH, 0.2 +/- 0.03 mM for NAD+, 9 +/- 3 microM for mannitol 1-phosphate, 0.06 +/- 0.03 mM for fructose 6-phosphate. The binding order for reaction thus may be random for mannitol 1-phosphate oxidation, though ordered for fructose 6-phosphate reduction. Coenzyme and substrate binding in the E X NADH-mannitol 1-phosphate complex is weaker than in the binary complexes, though in the E X NADH+-fructose 6-phosphate complex binding is stronger.  相似文献   

10.
11.
1. Glyceraldehyde-3-phosphate dehydrogenase was isolated from the ordinary muscle of red sea bream Pagrus major, Pacific mackerel Scomber japonicus and carp Cyprinus carpio by ammonium sulfate fractionation, followed by DEAE-Sepharose CL-6B and DEAE-cellulose column chromatography and Sephadex G-150 gel filtration, and examined for enzymatic properties. 2. Their optimum pH values in the backward reaction ranged from 7.8 to 8.2, and Km values from 1.56 to 1.90 mM. 3. Irrespective of the species of fish, the enzymatic activity was non-competitively inhibited by inorganic phosphate in the backward reaction. Divalent metal ions were not necessary to activate these glyceraldehyde-3-phosphate dehydrogenases. In the presence of 1 mM Zn(2+), these enzymes showed relative activities of 42-64% the activities measured in the absence of those ions. 5. Thermal stability of carp enzyme was higher than those of red sea bream and Pacific mackerel; the enzyme activity of the latter two species was almost lost on incubation at 45 degrees C for 10-20 min, whereas carp enzyme retained half the activity even when incubated at 60 degrees C for 30 min.  相似文献   

12.
Mannitol-1-phosphate (M1P) dehydrogenase (M1PDH; EC 1.1.1.17), an enzyme catalyzing the reduction of Fru-6-phosphate (F6P) to M1P in algal mannitol biosynthesis, was purified to homogeneity from a cell homogenate of the eulittoral red alga Caloglossa continua (Okamura) King et Puttock. The enzyme was a monomer with an apparent molecular mass of 53 kD, as determined by gel filtration and SDS-PAGE, and exhibited an pI of approximately 5.5. The substrate specificity was very high toward F6P and M1P for respective reductive and oxidative reactions. The enzyme was found to be a sulfhydryl-type, because its activity was inhibited by N-ethylmaleimide and p-hydroxymercuribenzoate, and the inhibition by p-hydroxymercuribenzoate was rescued by 2-mercaptoethanol. Some unknown factors in the extract may also have inhibited the activity, because the total activity was greatly increased through the purification procedure. The optimum pH for F6P reduction was changed from 6.0 or lower to 7.2 by the addition of 200 mm NaCl. The reduction of F6P showed strong substrate inhibition above 0.5 mm. However, Km(F6P) of M1PDH was increased eight times by the addition of 200 mm NaCl, whereas Vmax was in a similar range with the avoidance of substrate inhibition by F6P. These results indicate that the enzyme was finely and directly regulated by the salt concentration without the requirement for gene expression. M1PDH can therefore be a key enzyme for regulating mannitol biosynthesis when the alga is stressed by a salinity change.  相似文献   

13.
14.
15.
16.
Glyceraldehyde 3-phosphate dehydrogenase mutants of Escherichia coli.   总被引:21,自引:16,他引:5       下载免费PDF全文
We describe glyceraldehyde 3-phosphate dehydrogenase mutants of Escherichia coli. The gene (gap) is at approximately 34 min, with the transductional order gap-fadD-eda. One gap mutant is temperature sensitive and has a heat-labile enzyme. Another is amber.  相似文献   

17.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

18.
Sorbitol is a sugar alcohol largely used in the food industry as a low-calorie sweetener. We have previously described a sorbitol-producing Lactobacillus casei (strain BL232) in which the gutF gene, encoding a sorbitol-6-phosphate dehydrogenase, was expressed from the lactose operon. Here, a complete deletion of the ldh1 gene, encoding the main l-lactate dehydrogenase, was performed in strain BL232. In a resting cell system with glucose, the new strain, named BL251, accumulated sorbitol in the medium that was rapidly metabolized after glucose exhaustion. Reutilization of produced sorbitol was prevented by deleting the gutB gene of the phosphoenolpyruvate: sorbitol phosphotransferase system (PTSGut) in BL251. These results showed that the PTSGut did not mediate sorbitol excretion from the cells, but it was responsible for uptake and reutilization of the synthesized sorbitol. A further improvement in sorbitol production was achieved by inactivation of the mtlD gene, encoding a mannitol-1-phosphate dehydrogenase. The new strain BL300 (lac::gutF Δldh1 ΔgutB mtlD) showed an increase in sorbitol production whereas no mannitol synthesis was detected, avoiding thus a polyol mixture. This strain was able to convert lactose, the main sugar from milk, into sorbitol, either using a resting cell system or in growing cells under pH control. A conversion rate of 9.4% of lactose into sorbitol was obtained using an optimized fed-batch system and whey permeate, a waste product of the dairy industry, as substrate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号