首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study was carried out to characterize potential larval habitats in the city of Sekondi with the aim of assessing the relative importance of anthropogenic and natural water bodies as larval habitats. Insecticide-resistance status of Anopheles gambiae senso lato in the southwestern part of the coastal savannah zone in Ghana was also assessed against four different classes of insecticides. Larval surveys were carried out in two communities that are separated by a lagoon. Although the lagoon was a potential mosquito larval habitat, we showed that it was not an important mosquito breeding site. The major larval habitats were anthropogenic, resulting from human behavior. Some of the organically polluted breeding sites were inhabited by both An. gambiae s.l. and Culex quinquefasciatus larvae. The data also showed that An. gambiae s.l. has currently developed a strong resistance to DDT and pyrethroid insecticides in southwestern Ghana, where the species was reported to be susceptible about a decade ago. The use of insecticides in households was implicated as a possible cause of the development of resistance among An. gambiae s.l. populations in the area. The management of insecticide resistance among malaria vectors needs urgent attention if insecticide-treated materials can continue to be used for malaria control.  相似文献   

2.
Anopheline larval habitats associated with a swamp, were examined in a highland area (1910 m elevation) of western Kenya. A significant association was found between occurrence of Anopheles gambiae Giles s.s. (Diptera: Culicidae) larvae and two factors, habitat size and vegetation type. Over 80% of An. gambiae s.s. larvae were found in small isolated pools, characterized by short plants, occurring in both swamp margins and roadside ditches. However, Anopheles gambiae s.s. was not found in habitats marked by papyrus and floating plants. The larval habitat of An. gambiae s.s. was characterized by warmer daytime temperatures of water, which were significantly affected by habitat size and plant size. The density of indoor resting An. gambiae s.s. was 0.22 per house and negatively associated with distance from the swamp. These results indicate that the practice of swamp cultivation, in populated areas of the African highlands, increases availability and enhances habitat conditions for the malaria vector.  相似文献   

3.
A study was undertaken to identify the major larval habitats of the Anopheles gambiae (Giles) complex in rural Gambia. Mosquito larvae and pupae were sampled along transects and in specific habitats in the central region of the country during the rainy seasons of 1996 and 1997. The sampling showed that the major breeding sites were located on the flooded alluvial soils bordering the river. The largest numbers of larvae were found during September, one month after the peak rains. Polymerase chain reaction analysis of specimens showed that Anopheles melas (Theobald) was the dominant species in the flooded areas (81.5%), followed by A. gambiae sensu stricto (Giles) (18.0%) and A. arabiensis (Patton) (0.5%). By sampling in specific habitats it was evident that A. arabiensis was mainly breeding in rain-fed rice fields along the edge of the alluvial soils. Anopheles melas and A. gambiae s.s. often coexisted but whereas A. melas were found in water with a salinity of up to 72% sea water (25.2 g NaCl l(-1)), A. gambiae s.s. only occurred in water with up to 30% sea water (10.5 g NaCl l(-1)). Anopheles melas larvae were found in association with plant communities dominated by sedges and grasses (Eleocharis sp., Paspalum sp., Sporobolus sp.) and sea-purslane Sesuvium portulacastrum (L.) and the presence of cattle hoof prints, whereas A. gambiae s.s. larvae mainly occurred in association with Paspalum sp. and Eleocharis sp. The study showed that even during the peak rainy season, breeding of the A. gambiae complex is almost entirely restricted to the extensive alluvial areas along the river.  相似文献   

4.
A longitudinal entomological malaria survey was carried out in five zones of the town of Ouagadougou, Burkina Faso, and in three neighbouring villages. The main vector is Anopheles gambiae s.l. with An. funestus having a role in some localities during the dry season. Pyrethrum spray catches were carried out once or twice per month to determine variations in vector density. Inoculation rates were estimated from the number of blood-fed vectors per man and from the sporozoite rates. Larval sampling was routinely carried out all over the urban area in order to map the larval breeding sites. Widely different degrees of malaria transmission were documented in the urban area mainly related to the spatial and temporal distribution of An. gambiae larval breeding sites. Higher inoculation rates, depending both on higher vector densities and sporozoite rates, were documented in the villages.  相似文献   

5.
L Mancini  R Romi 《Parassitologia》1988,30(2-3):271-277
Permanent breeding sites for Anopheles gambiae s.l. were found to occur in the urban area of Ouagadougou and to have some importance in the maintenance of vector populations. In these breeding places Barbus pobeguini was found widespread and larvivorous as indicated by the presence of remnants of A. gambiae in its stomach contents. The use of B. pobeguini would avoid the introduction of non-local larvivorous fishes. A series of trials carried out in laboratory conditions with B. pobeguini of different size, showed: 1) a remarkable capacity to ingest larvae (at different stages) of A. gambiae; 2) pronounced tendency by bigger B. pobeguini specimens to cope with bigger larvae; 3) an indifferent attraction to A. gambiae and Culex quinquefasciatus larvae.  相似文献   

6.
Domesticating anopheline species from wild isolates provides an important laboratory tool but requires detailed knowledge of their natural biology and ecology, especially the natural breeding habitats of immature stages. The aim of this study was to determine the optimal values of some parameters of Anopheles gambiae larval development, so as to design a standard rearing protocol of highland isolates, which would ensure: the biggest fourth instars, the highest pupae productivity, the shortest duration of the larval stage and the best synchronization of pupation. The density of larvae, the size of breeding water and the quantity of food supplied were tested for their effect on larval growth. Moreover, three cheap foodstuffs were selected and tested for their capability to improve the breeding yield versus TetraMin? as the standard control. The larval density was a very sensitive parameter. Its optimal value, which was found to be ≈1?cm-2 surface area, yielded a daily pupation peak of 38.7% on day 8 post-oviposition, and a global pupae productivity of 78.7% over a duration range of three days. Anopheles gambiae's larval growth, survival and developmental synchronization were density-dependent, and this species responded to overcrowding by producing smaller fourth instars and fewer pupae, over elongated immature lifetime and duration range of pupae occurrence, as a consequence of intraspecific competition. While shallow breeding waters (<3?cm) produced a higher number of pupae than deeper ones, no effect of the breeding habitat's absolute surface area on larval development was observed. Increasing the daily food supply improved the pupae productivity but also boosted the water pollution level (which was assessed by the biological oxygen demand (BOD) and the chemical oxygen demand (COD)) up to a limit depending on the food quality, above which a rapid increase in larval mortality was recorded. The food quality that could substitute the manufactured baby fish food was obtained with weighed mixture of 1 wheat+1 shrimp+2 fish. On establishing an anopheline mosquito colony in the laboratory, special care should be taken to design and maintain the appropriate optimal values of larval density, water depth, daily diet quantity and nutritional quality.  相似文献   

7.
A flowable concentrate of Bacillus sphaericus (Neide) strain 2362 was applied against Anopheles gambiae Giles s.l. mosquito larve in small plot field trials in Bobo-Dioulasso area. Burkina-Faso. Third and fourth instar larvae were controlled for 10-15 days with a dosage of 10 g/m2, 3-10 days with 1 or 0.1 mg/m2, and 2 days with 0.01 g/m2. Complete elimination of larval populations required 1 x 10(2) to 2 x 10(3) viable spores/ml in the larval feeding zone. After treatment, the total numbers of viable spores decreased in the ponds, due to ingestion of spores by non-target as well as target organisms and/or loss of viability of some spores by sunlight. This formulation was less effective against An. gambiae than against Culex quinquefasciatus Say larvae, both in laboratory bioassays and under field conditions.  相似文献   

8.

Introduction

High malaria transmission heterogeneity in an urban environment is basically due to the complex distribution of Anopheles larval habitats, sources of vectors. Understanding 1) the meteorological and ecological factors associated with differential larvae spatio-temporal distribution and 2) the vectors dynamic, both may lead to improving malaria control measures with remote sensing and high resolution data as key components. In this study a robust operational methodology for entomological malaria predictive risk maps in urban settings is developed.

Methods

The Tele-epidemiology approach, i.e., 1) intensive ground measurements (Anopheles larval habitats and Human Biting Rate, or HBR), 2) selection of the most appropriate satellite data (for mapping and extracting environmental and meteorological information), and 3) use of statistical models taking into account the spatio-temporal data variability has been applied in Dakar, Senegal.

Results

First step was to detect all water bodies in Dakar. Secondly, environmental and meteorological conditions in the vicinity of water bodies favoring the presence of Anopheles gambiae s.l. larvae were added. Then relationship between the predicted larval production and the field measured HBR was identified, in order to generate An. gambiae s.l. HBR high resolution maps (daily, 10-m pixel in space).

Discussion and Conclusion

A robust operational methodology for dynamic entomological malaria predictive risk maps in an urban setting includes spatio-temporal variability of An. gambiae s.l. larval habitats and An. gambiae s.l. HBR. The resulting risk maps are first examples of high resolution products which can be included in an operational warning and targeting system for the implementation of vector control measures.  相似文献   

9.
ABSTRACT: BACKGROUND: A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. METHODS: The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2-4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. RESULTS: As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species. CONCLUSION: The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this decline has been most marked for An. gambiae s.s., and least for An. arabiensis, leading to current predominance of the latter. Due to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area.  相似文献   

10.
Polytene chromosome studies on the member species of the Anopheles gambiae complex in The Gambia and surrounding areas in Senegal led to comparative observations on bionomics of sympatric populations of An. melas and An. gambiae. Moreover, inversion polymorphisms have been analyzed in An. melas and their possible relationships with behavioural variations in endophily and anthropophily have been considered. An. melas shows a remarkably short dispersal from typical larval breeding places associated with mangrove swamps and it is definitely more zoophilic and exophilic than An. gambiae. Only a very small fraction of An. melas biting outdoor on animals rests indoors and consequently the human blood index is largely overestimated if based on the examination of house samples alone. Differences in the frequencies of 2Rn inversion karyotypes of An. melas were observed between parallel samples obtained from animal shelters and houses, from night catches on man outdoor and from night catches on main indoor and on animal outdoor. Further differences were shown by blood meal identification between human and animal fed subsamples from the same house resting samples. Non-uniform feeding and/or resting behaviour between carriers of alternative 2Rn inversion karyotypes is postulated to explain these data.  相似文献   

11.
Larval ecology is an important aspect of the population dynamics of anopheline mosquitoes (Diptera: Culicidae), the vectors of malaria. Anopheles larvae live in pools of stagnant water and adult fitness may be correlated with the nutritional conditions under which larvae develop. A study was conducted in Mbita, Western Kenya, to investigate how properties of the soil substrate of Anopheles gambiae breeding pools can influence development of this mosquito species. An. gambiae eggs from an established colony were dispensed into experimental plastic troughs containing soil samples from a range of natural Anopheles larval habitats and filtered Lake Victoria water. The duration of larval development (8-15 days), pupation rate (0-79%), and adult body size (20.28-26.91 mm3) varied among different soil types. The total organic matter (3.61-21.25%), organic carbon (0.63-7.18%), and total nitrogen (0.06-0.58%) levels of the soils were positively correlated with pupation rate and negatively correlated with development time and adult body size.  相似文献   

12.
Documented information on the ecology of larval habitats in Botswana is lacking but is critical for larval control programs. Therefore, this study determined the characteristics of these habitats and the influences of biotic and abiotic factors in Tubu village, Botswana. Eight water bodies were sampled between January and December, 2013. The aquatic vegetation and invertebrate species present were characterized. Water parameters measured were turbidity (NTU), conductivity (μS/cm), oxygen (mg/l), and pH. Larval densities of Anopheles arabiensis mosquitoes and their correlation with abiotic factors were determined. Larval breeding was associated with ‘short’ aquatic vegetation, a variety of habitats fed by both rainfall and flood waters and sites with predators and competitors. The monthly mean (± SEmean) larval density was 8.16±1.33. The monthly mean (±SEmean) pH, conductivity, oxygen, and turbidity were 7.65±0.13, 1152.834±69.171, 5.59±1.33, and 323.421±33.801, respectively. There was a significant negative correlation between larval density and conductivity (r = ‐0.839; p < 0.01), while a significant positive correlation occurred between turbidity and larval density (r = 0.685; p < 0.05). Oxygen (r = 0.140; p > 0.05) and pH (r = 0.252; p > 0.05) were not correlated with larval density. Floods and diversified breeding sites contributed to prolonged and prolific larval breeding. ‘Short’ aquatic vegetation and predator‐infested waters offered suitable environments for larval breeding. Turbidity and conductivity were good indicators for potential breeding places and can be used as early warning indices for predicting larval production levels.  相似文献   

13.
In West Africa, lineage splitting between the M and S molecular forms of the major Afro-tropical malaria mosquito, Anopheles gambiae (Diptera: Culicidae), is thought to be driven by ecological divergence, occurring mainly at the larval stage. Here, we present evidence for habitat segregation between the two molecular forms in and around irrigated rice fields located within the humid savannahs of western Burkina Faso. Longitudinal sampling of adult mosquitoes emerging from a range of breeding sites distributed along a transect extending from the heart of the rice field area into the surrounding savannah was conducted from June to November 2009. Analysis revealed that the two molecular forms and their sibling species Anopheles arabiensis are not randomly distributed in the area. A major ecological gradient was extracted in relation to the perimeter of the rice fields. The M form was associated with larger breeding sites mostly consisting of rice paddies, whereas the S form and An. arabiensis were found to depend upon temporary, rain-filled breeding sites. These results support hypotheses about larval habitat segregation and confirm the suggestion that the forms have different larval habitat requirements. Segregation appears to be clearly linked to anthropogenic permanent habitats and the community structure they support.  相似文献   

14.
Anopheline larvae generally inhabit the near-surface of aquatic habitats, but they dive and remain at the bottom of these habitats for some time. This study examined forced and voluntary diving behavior and submergence tolerance in the three major African malaria vectors, Anopheles gambiae Giles, An. arabiensis Patton, and An. funestus Giles. The former two species occur sympatrically in temporal and shallow water bodies, while the latter occurs in permanent deeper water bodies. Anopheles funestus was the most tolerant of submergence, but the larvae tended to halt their descent before reaching the bottom by attaching onto a wall. The difference in diving behavior between An. funestus and the two species in the An. gambiae complex may be an adaptation to their contrasting breeding sites, because the former species must spend considerable energy to surface in its typical breeding sites. Both An. gambiae and An. arabiensis reached the bottom and crawled along the substrate, but An. gambiae voluntarily crawled more often than An. arabiensis. The possible importance of asymmetric bottom-feeding between these two sympatric species is discussed.  相似文献   

15.
Adult females of Anopheles gambiae s.1. were collected by pyrethrum spray catch in Ouagadougou (Burkina Faso, formerly Upper Volta) and in four neighbouring villages. The collections have been carried out mostly during the 1984 rainy season. Monthly collections in some sampling sites allowed a preliminary longitudinal study. By analysis of nurse cell polytene chromosomes in adult females, An. gambiae s.str. and An. arabiensis were identified in the study area. Both species showed polymorphisms for various paracentric inversions. In all samples of An. arabiensis the frequencies of the alternative karyotypes were in Hardy-Weinberg equilibrium, suggesting panmictic conditions. Conversely, An. gambiae s.str. showed a different situation, since most of its samples had strong deficiency of certain expected heterokaryotypes. This same phenomenon was already observed in Mali, leading to the splitting of gambiae s.str. into different chromosomal forms, partially or totally reproductively isolated from each other. Each chromosomal form is characterized by different chromosomal polymorphisms. Two of these forms, Mopti and Savanna, were detected in the study area. Mopti chromosomal form is apparently associated with the presence of permanent waters (i.e. the "barrages" north of the town), while Savanna is usually found in situations where breeding places are mainly dependent from rain (e.g. in villages far from "barrages" or at the town's center).  相似文献   

16.
Samples of adult females of the Anopheles gambiae complex from thirteen localities of three islands of the Comoro Archipelago (Anjouan, Grande Comore and Moheli) were identified by analysis of ovarian polytene chromosomes as An. gambiae s.s. The samples showed only the inversion polymorphism 2La, the mean frequency of the inverted arrangement being 38%. A significantly higher frequency of the inverted arrangement 2La was observed in the localities with a lower annual rainfall. Similarities between the chromosomal polymorphism of the samples from Comoros and that of coastal eastern African countries suggest a probable continental origin of the An. gambiae s.s. populations in the Comoro Archipelago. A biometric analysis was carried out on the palpal index and the number of coeloconic sensilla, two characters partially diagnostic between fresh- and salt-water members of the gambiae complex. The palpal index of the 2La homozygous inverted females of An. gambiae s.s. was found to be significantly higher than the index of standard homozygotes and heterozygotes, suggesting a relation between the inversion and this biometric character. No An. merus was identified, although larvae of An. gambiae s.l. were observed breeding in brackish water.  相似文献   

17.
1. Three sibling species of mosquitoes of the Anopheles gambiae complex are found in the Senegal River Basin: An. melas Theobald, An. gambiae Giles and An. arabiensis Patton. 2. An. melas is restricted to the river delta and environs where saltwater breeding places are present. 3. An. gambiae and An. arabiensis are sympatric in the study area; An. arabiensis predominates in coastal zones where it breeds also during the dry season; An. gambiae predominates in inland areas where breeding is mostly restricted to the rainy season (July-September). 4. An. arabiensis is chromosomally polymorphic all over the study area, with much variation of inversion frequencies, particularly for the 2Ra arrangement. 5. An. gambiae is characterized by a very high frequency of the 2Rb-2La inversion arrangement which is typical of the Savanna chromosomal form.  相似文献   

18.
The prevalence of malaria infections was estimated in six different areas of the town of Ouagadougou, Burkina Faso, and in three neighbouring villages. Thick and thin blood films from a total of 2,117 children less than 5 years old were examined at the peak of the transmission season (August-September). Plasmodium falciparum was found in more than 98% of the positive slides. The overall parasite index at Ouagadougou was 16%, while indices from 51 to 88% were recorded in the three villages. Significant differences were observed between the six urban areas within the town as well as between the three villages. The highest parasite rates in the town were clearly associated with major breeding places of An. gambiae s.l. indicating a remarkable focality of transmission. Significant differences were observed between groups of children from houses only 300 m apart. Chemoprophylaxis appears to play an important role in determining parasite rates lower than expected in one of the three villages.  相似文献   

19.

Background

Urbanization has a great impact on the composition of the vector system and malaria transmission dynamics. In Dakar, some malaria cases are autochthonous but parasite rates and incidences of clinical malaria attacks have been recorded at low levels. Ecological heterogeneity of malaria transmission was investigated in Dakar, in order to characterize the Anopheles breeding sites in the city and to study the dynamics of larval density and adult aggressiveness in ten characteristically different urban areas.

Methods

Ten study areas were sampled in Dakar and Pikine. Mosquitoes were collected by human landing collection during four nights in each area (120 person-nights). The Plasmodium falciparum circumsporozoite (CSP) index was measured by ELISA and the entomological inoculation rates (EIR) were calculated. Open water collections in the study areas were monitored weekly for physico-chemical characterization and the presence of anopheline larvae. Adult mosquitoes and hatched larvae were identified morphologically and by molecular methods.

Results

In September-October 2007, 19,451 adult mosquitoes were caught among which, 1,101 were Anopheles gambiae s.l. The Human Biting Rate ranged from 0.1 bites per person per night in Yoff Village to 43.7 in Almadies. Seven out of 1,101 An. gambiae s.l. were found to be positive for P. falciparum (CSP index = 0.64%). EIR ranged from 0 infected bites per person per year in Yoff Village to 16.8 in Almadies. The An. gambiae complex population was composed of Anopheles arabiensis (94.8%) and Anopheles melas (5.2%). None of the An. melas were infected with P. falciparum. Of the 54 water collection sites monitored, 33 (61.1%) served as anopheline breeding sites on at least one observation. No An. melas was identified among the larval samples. Some physico-chemical characteristics of water bodies were associated with the presence/absence of anopheline larvae and with larval density. A very close parallel between larval and adult densities was found in six of the ten study areas.

Conclusion

The results provide evidence of malaria transmission in downtown Dakar and its surrounding suburbs. Spatial heterogeneity of human biting rates was very marked and malaria transmission was highly focal. In Dakar, mean figures for transmission would not provide a comprehensive picture of the entomological situation; risk evaluation should therefore be undertaken on a small scale.  相似文献   

20.
Mark–release–recapture experiments with Anopheles gambiae s.l. were performed during the wet seasons of 1993 and 1994 in Banambani, Mali. All recaptured mosquitoes were identified to species by PCR analysis and, when possible, by chromosomal analysis to chromosomal form. Two species of the An. gambiae complex were present: An. gambiae s.s. and An. arabiensis ; their ratio differed greatly from one year to the next. Three chromosomal forms of An. gambiae s.s. were found – Bamako, Savanna and Mopti. The drier 1993 was characterized by a high frequency of An. arabiensis and of the Mopti chromosomal forms of An. gambiae s.s. These trends were consistent with large-scale geographical patterns of abundance along a precipitation gradient. We observed no difference in dispersal between the two species, nor among the chromosomal forms of An. gambiae s.s. Therefore, in this situation at least, it is reasonable to group such data on the An. gambiae complex as a whole for analysis. Population size of An. gambiae s.l. females in the village was estimated to be 9000–11 000 in 1993 and 28 000 in 1994. The corresponding numbers were somewhat higher when independently-derived values of daily survival were used. These were consistent with estimates of effective population size obtained from patterns of gene frequency change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号