首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epidermis is a stratified squamous epithelium in which keratinocytes progressively undergo terminal differentiation towards the skin surface leading to programmed cell death. In this respect we studied the role of caspases. Here, we show that caspase-14 synthesis in the skin is restricted to differentiating keratinocytes and that caspase-14 processing is associated with terminal epidermal differentiation. The pro-apoptotic executioner caspases-3, -6, and -7 are not activated during epidermal differentiation. Caspase-14 does not participate in apoptotic pathways elicited by treatment of differentiated keratinocytes with various death-inducing stimuli, in contrast to caspase-3. In addition, we show that non-cornifying oral keratinocyte epithelium does not express caspase-14 and that the parakeratotic regions of psoriatic skin lesions contain very low levels of caspase-14 as compared to normal stratum corneum. These observations strongly suggest that caspase-14 is involved in the keratinocyte terminal differentiation program leading to normal skin cornification, while the executioner caspases are not implicated. Cell Death and Differentiation (2000) 7, 1218 - 1224  相似文献   

2.
3.
The maturation and activation mechanisms of caspases are generally well understood, except for those of caspase-14, which is activated at the onset of keratinocyte terminal differentiation. We investigated the possible involvement of epidermal proteases expressed in the late stage of differentiation, and found that the chymotrypsin-like serine protease kallikrein-related peptidase-7 (KLK7) cleaved procaspase-14 at Tyr(178), generating an intermediate form that consists of a large (20 kDa) and a small subunit (8 kDa). We prepared an antibody directed to this cleavage site (h14Y178 Ab), and confirmed that it recognized a 20-kDa band formed when procaspase-14 was incubated with chymotrypsin or KLK7. We then constructed a constitutively active form of the intermediate, revC14-Y178. The substrate specificity of revC14-Y178 was completely different from that of caspase-14, showing broad specificity for various caspase substrates except WEHD-7-amino-4-trifluoromethylcoumarin (AFC), the preferred substrate of active, mature caspase-14. K(m) values for VEID-AFC, DEVD-AFC, LEVD-AFC, and LEHD-AFC were 0.172, 0.261, 0.504, and 0.847 μm, respectively. We confirmed that the mature form of caspase-14 was generated when procaspase-14 was incubated with KLK7 or revC14-Y178. Expression of constitutively active KLK7 in cultured keratinocytes resulted in generation of both the intermediate form and the mature form of caspase-14. Immunohistochemical analysis demonstrated that the intermediate form was localized at the granular layer. Our results indicate that regulation of procaspase-14 maturation during terminal differentiation is a unique two-step process involving KLK7 and an activation intermediate of caspase-14.  相似文献   

4.
Caspase-14, a cysteine protease with restricted tissue distribution, is highly expressed in differentiated epidermal keratinocytes. Here, we extracted soluble proteins from stratum corneum (SC) of human epidermis and demonstrate that the extract cleaves tetrapeptide caspase substrates. The activity decreased to below 10% when caspase-14 was removed by immunodepletion showing that caspase-14 is the predominant caspase in SC. In contrast to normal SC, where caspase-14 was present exclusively in its processed form, incompletely matured SC of parakeratotic skin from psoriasis and seborrheic dermatitis contained both procaspase-14 and caspase-14 subunits. Fractionation of extract from parakeratotic SC revealed that the peak caspase activity coeluted with processed caspase-14 but not with procaspase-14. Our results suggest that during regular terminal keratinocyte differentiation, endogenous procaspase-14 is converted to caspase-14 subunits that are catalytically active in the outermost layers of normal human skin.  相似文献   

5.
Caspase-14 is a developmentally regulated and tissue restricted member of the caspase family present in mammals. It is mainly found in epidermal keratinocytes and has been hypothesized to be involved in a tissue-specific form of cell senescence, leading to the differentiation of keratinocytes that form the cornified cell layer. However, the substrate specificity, activation mechanism, and function of this caspase have yet to be revealed. We report that caspase-14, in contrast to other caspases, is not produced in active form following expression in Escherichia coli but can be activated by high concentrations of kosmotropic salts. Moreover, proteolytic cleavage is also required since the kosmotropic salts were only effective on the cleaved enzyme. We propose that caspase-14 requires proteolytic cleavage within the catalytic domain, followed by dimerization and ordering of mobile active site loops, to generate a competent enzyme. In the presence of kosmotropic salt, we were able to determine the substrate specificities of mouse and human caspase-14. Surprisingly, the substrate preferences for the human and mouse enzyme are dissimilar. The results obtained with human caspase-14 classify this enzyme as a cytokine activator, but the mouse enzyme shows preferences similar to apical apoptotic caspases.  相似文献   

6.
Caspases are essential proteases in programmed cell death and inflammation. Studies in murine and human cells have led to the characterization of 14 members of this enzyme family. Here we report the identification of caspase-15, a novel caspase that is expressed in various mammalian species including pig, dog, and cattle. The caspase-15 protein contains a catalytic domain with all amino acid residues critical for caspase activity and a prodomain that is predicted to fold into a pyrin domain structure, which is a unique feature among mammalian caspases. Recombinant porcine caspase-15 underwent autocatalytic processing into its subunits and cleaved both tetrapeptide caspase substrates and the apoptosis regulator protein Bid in vitro. Overexpression of caspase-15 in mammalian cells induced proenzyme maturation, cleavage of Bid, activation of caspase-3, and eventually cell death. Both the proteolytic and the pro-apoptotic activity of caspase-15 were abolished by mutation of the active site cysteine. Since a homolog of caspase-15 is absent in the human and the mouse genome, our results reveal an unexpected variability in the molecular apoptotic machinery of mammals.  相似文献   

7.
Caspase-14, a cysteinyl aspartate-specific protease expressed during epidermal differentiation, is detected exclusively in the cytosolic fraction of epidermis as a complex of procaspase-14 together with caspase-14 large and small subunits. On non-denaturing protein gels, native caspase-14 has a relative electrophoretic mobility of approximately 80kDa, which resolves into caspase-14 proform, large and small subunit in SDS-polyacrylamide. Purification of caspase-14 from native skin with subsequent N-terminal sequencing of the small subunit and tryptic digest analysis of the large subunit revealed an atypical processing site between Ile152 and Lys153, which distinguishes it from other caspases described to date that are processed at aspartate residues. Expression of caspase-14 in heterologous systems results in unprocessed procaspase-14 without generation of the large and small subunits that characterize this protein family. However, addition of cellular extracts to purified recombinant human caspase-14 generated immunoreactive peptides indistinguishable from large and small subunits in skin. These data provide evidence for novel processing of caspase-14 suggesting that this enzyme has unique mechanisms of regulation during epidermal differentiation.  相似文献   

8.
The activation of caspases is a central step in apoptosis and may also be critical for terminal differentiation of epidermal keratinocytes (KC). In particular, caspase-3 has been implicated in the differentiation of embryonic KC as well as in programmed cell death of KC, and caspase-14 has been suggested to function in the formation or homeostasis of the stratum corneum (SC). To test the putative roles of these proteases, we determined their expression level and activation status during development of fetal mouse epidermis. The level of procaspase-3 did not change significantly during epidermal development, and enzyme activation was undetectable at any timepoint investigated. Despite the lack of active caspase-3, the newly formed stratum granulosum and the regressing periderm contained cells positive in the terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling assay, indicating that nuclear DNA was degraded without activation of caspase-3, thereby arguing against a proteolytic function of caspase-3 in embryonic KC differentiation. By contrast, caspase-14 increased in abundance from embryonic day 14.5 (E14.5) onwards and consistently localized to the suprabasal layers of fetal epidermis. The caspase-14 pro-enzyme was processed into its catalytic subunits, a step required for enzyme activity, on day E17.5, coinciding with SC formation. Thus, processing of procaspase-14 is not confined to air-exposed mature skin but also occurs during epidermal development in utero. In summary, this study demonstrates that caspase-14, but not caspase-3 activation coincides temporally and spatially with embryonic KC differentiation, suggesting a role for caspase-14 in terminally differentiated KC.  相似文献   

9.
10.
While caspases play an established role as intracellular executors of apoptosis, little is known about extracellular activities of this ubiquitously expressed family of proteases. We demonstrate here that recombinant caspase-3 retained enzymatic activity in various extracellular fluids. Experiments with cell lines, primary cells, and mice with fulminant CD95-triggered hepatitis showed that significant amounts of DEVD-aminofluoromethylcoumarine-cleaving activity, indicative of active effector caspases, were released into the medium/plasma during apoptosis. Furthermore, caspase activities were detected in liquor samples from human head trauma patients. These findings warrant closer investigation of DEVDase activity as a diagnostic marker, and of potential extracellular substrates for caspases.  相似文献   

11.
Human Ntera2/cl.D1 (NT2) cells treated with retinoic acid (RA) differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2) or -9 (si-Casp9) was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM), microtubule associated protein-2 (MAP2) and tyrosine hydroxylase (TH) mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ~100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved) in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells.  相似文献   

12.
13.
It is now well established that the caspases, a family of cysteine proteases, play a key role in apoptosis. Although overexpressing each of the caspases in cells triggered apoptosis, the precise role and contribution of individual caspases are still unclear. Caspase-1, the first caspase discovered, was initially implicated in mammalian apoptosis because of its similarity to the gene productced-3.Using whole cells as well as anin vitrosystem to study apoptosis, the role of caspase-1 in Fas-mediated apoptosis in Jurkat T cells was examined in greater detail. Using various peptide-based caspase inhibitors, our results showed thatN-acetyl-Tyr-Val-Ala-Asp chloromethyl ketone and benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone efficiently blocked Fas-mediated apoptosis in Jurkat T cells, whereasN-acetyl-Tyr-Val-Ala-Asp aldehyde, which is more specific for caspase-1, had little effect. Cell lysates derived from anti-Fas-stimulated cells, which readily induced apoptotic nuclei morphology and DNA fragmentation in isolated thymocyte nuclei, had no caspase-1 activity using proIL-1β as a substrate. Time-course studies showed no caspase-1 activity during the activation of apoptosis in Jurkat cells by agonistic Fas antibodies. Furthermore, no pro-caspase-1 protein nor activated form of the protein was detected in normal or apoptotic Jurkat cells. In contrast, both caspase-2 and caspase-3 were readily detected as proenzymes in control cells and their activated forms were detected in apoptotic cells. Incubation of recombinant active caspase-1 with control cell lysates did not activate the apoptotic cascade as shown by the lack of detectable apoptotic nuclei promoting activity using isolated nuclei as substrate. However, under similar conditions proIL-1β was readily processed into the mature cytokine, indicating that the recombinant caspase-1 remained active in the presence of control cell lysates. Taken together our results demonstrate that caspase-1 is not required for the induction of apoptosis in Jurkat T cells mediated by the Fas antigen.  相似文献   

14.
Tazarotene-induced protein 3 (TIG3) is a recently discovered regulatory protein that is expressed in the suprabasal epidermis. In the present study, we show that TIG3 regulates keratinocyte viability and proliferation. TIG3-dependent reduction in keratinocyte viability is accompanied by a substantial increase in the number of sub-G1 cells, nuclear shrinkage, and increased formation of cornified envelope-like structures. TIG3 localizes to the membrane fraction, and TIG3-dependent differentiation is associated with increased type I transglutaminase activity. Microscopic localization and isopeptide cross-linking studies suggest that TIG3 and type I transglutaminase co-localize in membranes. Markers of apoptosis, including caspases and poly(ADP-ribose) polymerase, are not activated by TIG3, and caspase inhibitors do not stop the TIG3-dependent reduction in cell viability. Truncation of the carboxyl-terminal membrane-anchoring domain results in a complete loss of TIG3 activity. The morphology of the TIG3-positive cells and the effects on cornified envelope formation suggest that TIG3 is an activator of terminal keratinocyte differentiation. Our studies suggest that TIG3 facilitates the terminal stages in keratinocyte differentiation via activation of type I transglutaminase.  相似文献   

15.
The caspase family of proteases represents the main machinery by which apoptosis occurs. In vitro studies have revealed that upstream caspases are activated in response to apoptotic stimuli, and the active caspases in turn process downstream effector caspases that are involved in the destruction of cellular structure. Caspase-9 is an upstream caspase that can become active in response to cellular damage, including deprivation of growth factors and exposure to oxidative stress in vitro. Little is known, however, about how activation of caspase-9 is temporally and spatially regulated in vivo, e.g. during development. We have identified vimentin as the first example of a caspase-9 substrate that is not a downstream procaspase. Immunohistochemical analysis, using a specific antibody against the vimentin fragments generated by caspase-9, showed that caspase-9 cleaves vimentin in apoptotic cells in the embryonic nervous system and the interdigital regions. This result is consistent with observations that gene knockouts of caspase-9 and its activator, Apaf-1, result in developmental defects in these tissues. Our results show that the specific antibody is useful for in situ detection of caspase-9 activation in programmed cell death.  相似文献   

16.
Caspase-14 is a unique member of the evolutionarily conserved family of cysteinyl aspartate-specific proteinases, which are mainly involved in inflammation and apoptosis. However, recent evidence also implicates these proteases in proliferation and differentiation. Although most caspases are ubiquitously expressed, caspase-14 expression is confined mainly to cornifying epithelia, such as the skin. Moreover, caspase-14 activation correlates with cornification, indicating that it plays a role in terminal keratinocyte differentiation. The determination of in vitro conditions for caspase-14 activity paved the way to identifying its substrates. The recent development of caspase-14-deficient mice underscored its importance in the correct degradation of (pro)filaggrin and in the formation of the epidermal barrier that protects against dehydration and UVB radiation. Here, we review the current knowledge on caspase-14 in skin homeostasis and disease.  相似文献   

17.
Cysteine-dependent aspartate-specific proteases (caspases) are the cellular executors of apoptosis. Caspase-14 is the most divergent member of the family of mammalian caspases and displays a variety of unique characteristics. It is expressed in a limited number of tissues and has the shortest amino acid sequence within the caspase protein family. During induction of apoptosis, it is not processed, whereas terminal differentiation in skin leads to cleavage of caspase-14. Here we show that 40% of lung squamous cell carcinomas, 22% of breast cancers, and about 80% of cervical carcinomas express caspase-14. Immunohistochemistry reveals that caspase-14 is localized in areas of ongoing differentiation close to necrotic sites but is not strictly associated with the differentiation markers keratin-1/-10. Caspase-14 is neither mutated nor alternatively spliced in the tumors analyzed. Furthermore, caspase-14 is not processed into a small and large subunit, a process critical for the proteolytic activation of known effector caspases. We conclude that conditions exist in tumors leading to re-expression of this normally silent gene.  相似文献   

18.
Proteases of the caspase family are thought to be activated by proteolytic processing of their inactive zymogens. However, although proteolytic cleavage is sufficient for executioner caspases, a different mechanism has been recently proposed for initiator caspases, such as caspase-8, which are believed to be activated by proximity-induced dimerization. According to this model, dimerization rather than proteolytic processing is considered as the critical event for caspase-8 activation. Such a mechanism would suggest that in the absence of a dimerization platform such as the death-inducing signaling complex, caspase-8 proteolytic cleavage would result in an inactive enzyme. As several studies have described caspase-8 cleavage during mitochondrial apoptosis, we now investigated whether caspase-8 becomes indeed catalytically active in this pathway. Using an in vivo affinity labeling approach, we demonstrate that caspase-8 is activated in etoposide-treated cells in vivo in the absence of the receptor-induced death-inducing signaling complex formation. Furthermore, we show that both caspase-3 and -6 are required for the efficient activation of caspase-8. Our data therefore indicate that interchain cleavage of caspase-8 in the mitochondrial pathway is sufficient to produce an active enzyme even in the absence of receptor-driven procaspase-8 dimerization.  相似文献   

19.
In an attempt to investigate the molecular mechanism that leads to apoptotic death in Chinese hamster ovary (CHO) cells in batch and fed-batch cultures, we cloned caspase-2, -8 and -9 from a CHO cDNA library. Recombinant Chinese hamster caspase-2 and -9 expressed in Escherichia coli show highest activities towards commercial peptide substrates Ac-VDVAD-pNA and Ac-LEHD-pNA, the designated commercial substrates for human caspase-2 and -9, respectively. However, Chinese hamster caspase-8 shows a broad specificity profile and it cleaves the caspase-9 substrate more efficiently than it cleaves the caspase-8 substrate. The commercially available fluoromethyl ketone type of caspase inhibitors, such as Z-LEHD-fmk, Z-IETD-fmk, Z-VDVAD-fmk and Z-DEVD-fmk, were shown to completely lack specificity in inhibiting these caspases. The reversible aldehyde form of inhibitors for human caspase-8 and -9, Ac-LEHD-CHO and Ac-IETD-CHO, are equally efficient in inhibiting Chinese hamster caspase-8. Therefore, the wildly used method of utilizing the "caspase-specific" inhibitors to track the role of individual caspases in dying cells can be inaccurate and thus misleading. As an alternative, we stably expressed dominant negative (DN) mutants of Chinese hamster caspase-2, -8 and -9 to specifically inhibit these enzymes in CHO cells. Our results showed that inhibition of either endogenous caspase-8 or caspase-9 enhanced the viability of the CHO cells in both batch and fed-batch suspension cultures, but the inhibition of caspase-2 had minimal effects. These results suggest that caspase-8 and -9 are possibly involved in the apoptotic cell death in batch and fed-batch cultures of CHO cells, whereas caspase-2 is not. These findings can be valuable in the development of strategies for genetically engineering CHO cells to counter apoptotic death in batch and fed-batch cultures.  相似文献   

20.
Caspase activation during apoptosis occurs in a cascade from the initiator caspase(s) (e.g. caspase-8) to the effector caspases (e.g. caspase-3), which ensures the generation of large amounts of active caspases to dismantle cells. However, the mechanism that safeguards against inadvertent caspase activation is not well understood. Previous studies have suggested that the activation of procaspase-8 is mediated by cross-cleavage of precursor dimers, formed upon apoptosis induction, which are not only enzymatically competent but also highly susceptible to cleavage, and that procaspase-8 activation is a linear process without self-amplification. Effector procaspases constitutively exist as dimers and their activation is started by trans-cleavage by an initiator caspase followed by autocleavage of effector caspases. Here we show that the dimerization of caspase-3 molecules through their protease domains is required for their processing by initiator caspases. The subsequent autoprocessing takes place through cleavage between the dimeric intermediates. Moreover, mature caspase-3 fails to process its own precursor. Thus, despite a marked difference in the generation of active intermediates, the activation of initiator and effector caspases shares the features of interdimer cleavage and lack of self-amplification. These features may be important in preventing accidental cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号