首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an analysis of the solubility and hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. We distinguish globular nonamphiphilic forms (Gna) from globular amphiphilic forms (Ga). The Ga forms bind micelles of detergent, as indicated by the following properties. They are converted by mild proteolysis into nonamphiphilic derivatives. Their Stokes radius in the presence of Triton X-100 is approximately 2 nm greater than that of their lytic derivatives. The G2a forms fall in two classes. Class I contains molecules that aggregate in the absence of detergent, when mixed with an AChE-depleted Triton X-100 extract from electric organ. AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which is also detectable in detergent-soluble (DS) extracts of electric lobes and spinal cord. Class II forms never aggregate but only present a slight shift in sedimentation coefficient, in the presence or absence of detergent. This class contains the AChE G2a forms of plasma and of the low-salt-soluble (LSS) fractions from spinal cord and electric lobes. The heart possesses a BuChE G2a form of class II in LSS extracts, as well as a similar G1a form. G4a forms of AChE, which are solubilized only in the presence of detergent and aggregate in the absence of detergent, represent a large proportion of cholinesterase in DS extracts of nerves and spinal cord, together with a smaller component of G4a BuChE. These forms may be converted to nonamphiphilic derivatives by Pronase. Nonaggregating G4a forms exist at low levels in the plasma (BuChE) and in LSS extracts of nerves (BuChE) and spinal cord (AChE).  相似文献   

2.
1. In a recent study, we distinguished two classes of amphiphilic AChE3 dimers in Torpedo tissues: class I corresponds to glycolipid-anchored dimers and class II molecules are characterized by their lack of sensitivity to PI-PLC and PI-PLD, relatively small shift in sedimentation with detergent, and absence of aggregation without detergent. 2. In the present report, we analyze the amphiphlic or nonamphiphilic properties of globular AChE forms in T28 murine neural cells, rabbit muscle, and chicken muscle. The molecular forms were identified by sucrose gradient sedimentation in the presence and absence of detergent and analyzed by nondenaturing charge-shift electrophoresis. Some amphiphilic forms showed an abnormal electrophoretic migration in the absence of detergent, because of the retention of detergent micelles. 3. We show that the amphiphilic monomers (G1a) from these tissues, as well as the amphiphilic dimers (G2a) from chicken muscle, resemble the class II dimers of Torpedo AChE. We cannot exclude that these molecules possess a glycolipidic anchor but suggest that their hydrophobic domain may be of a different nature. We discuss their relationship with other cholinesterase molecular forms.  相似文献   

3.
An immunoglobulin M (IgM) monoclonal antibody (mAb Elec-39), obtained against asymmetric acetylcholinesterase (AChE) from Electrophorus electric organs, also reacts with a fraction of globular AChE (amphiphilic G2 form) from Torpedo electric organs. This antibody does not react with asymmetric AChE from Torpedo electric organs or with the enzyme from other tissues of Electrophorus or Torpedo. The corresponding epitope is removed by endoglycosidase F, showing that it is a carbohydrate. The subsets of Torpedo G2 that react or do not react with Elec-39 (Elec-39+ and Elec-39-) differ in their electrophoretic mobility under nondenaturing conditions; the Elec-39+ component also binds the lectins from Pisum sativum and Lens culinaris. Whereas the Elec-39- component is present at the earliest developmental stages examined, an Elec-39+ component becomes distinguishable only around the 70-mm stage. Its proportion increases progressively, but later than the rapid accumulation of the total G2 form. In immunoblots, mAb Elec-39 recognizes a number of proteins other than AChE from various tissues of several species. The specificity of Elec-39 resembles that of a family of anti-carbohydrate antibodies that includes HNK-1, L2, NC-1, NSP-4, as well as IgMs that occur in human neuropathies. Although some human neuropathy IgMs that recognize the myelin-associated glycoprotein did not react with Elec-39+ AChE, mAbs HNK-1, NC-1, and NSP-4 showed the same selectivity as Elec-39 for Torpedo G2 AChE, but differed in the formation of immune complexes.  相似文献   

4.
《Biochimie》1987,69(2):147-156
We studied the reactivity of monoclonal antibodies (mAbs) raised against acetylcholinesterase (AChE) purified from Electrophorus and Torpedo electric organs. We obtained IgG antibodies (Elec-21, Elec-106, Tor-3E5, Tor-ME8, Tor-1A5), all of them directed against the catalytic subunit of the corresponding species, with no significant cross-reactivity. These antibodies do not inhibit the enzyme and recognize all molecular forms, globular (G) and asymmetric (A). Tor-ME8 reacts specifically with the denatured A and G subunits of Torpedo AChE, in immunoblots. Several hybridomas raised against Electrophorus AChE produced IgM antibodies (Elec-39, Elec-118, Elec-121). These antibodies react with the A forms of Electrophorus electric organs and also with a subset of dimers (G2) from Torpedo electric organ. In addition, they react with a number of non-AChE components, in immunoblots. In contrast, they do not recognize AChE from other Electrophorus tissues or A forms from Torpedo electric organs.  相似文献   

5.
A previous study conducted in this laboratory revealed a decrease in total cholinesterase (total ChE) in the cerebral cortex, hippocampus and striatum in aged rats (24 months) of various strains, as compared with young animals (3 months). The purpose of the present experiments was to extend the study to other brain areas (hypothalamus, medulla-pons and cerebellum) and to assess whether this decrease was dependent on the reduction of either specific acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE) or both. By using ultracentrifugation on a sucrose gradient, the molecular forms of AChE were evaluated in all the brain areas of young and aged Sprague-Dawley rats. In young rats the regional distribution of total ChE and AChE varied considerably with respect to BuChE. The age-related loss of total ChE was seen in all areas. Although there was a reduction of AChE and, to somewhat lesser extent, of BuChE in the cerebral cortex, hippocampus, striatum, and hypothalamus (but not in the medulla-pons or the cerebellum), the ratio AChE/BuChE was not substantially modified by age. Two molecular forms of AChE, namely G4 (globular tetrameric) and G1 (monomeric), were detected in all the brain areas. Their distribution, expressed as G4/G1 ratio, varied in young rats from about 7.5 for the striatum to about 2.0 for the medulla-pons and cerebellum. The age-related changes consisted in a significant and selective loss of the enzymatic activity of G4 forms in the cerebral cortex, hippocampus, striatum, and hypothalamus, which resulted in a significant decrease of the G4/G1 ratio. No such changes were found in the medullapons or the cerebellum. Since G4 forms have been proposed to be present presynaptically, their age-related loss in those brain areas where acetylcholine plays an important role in neurotransmission may indicate an impairment of presynaptic mechanisms.  相似文献   

6.
We show that human and bovine dopamine beta-hydroxylases (DBH) exist under three main molecular forms: a soluble nonamphiphilic form and two amphiphilic forms. Sedimentation in sucrose gradients and electrophoresis under nondenaturing conditions, by comparison with acetylcholinesterase (AChE), suggest that the three forms are tetramers of the DBH catalytic subunit and bind either no detergent, one detergent micelle, or two detergent micelles. By analogy with the Gna4 and Ga4 AChE forms, we propose to call the nonamphiphilic tetramer Dna4 and the amphiphilic tetramers Da4I and Da4II. In addition to the major tetrameric forms, DBH dimers occur as very minor species, both amphiphilic and nonamphiphilic. Reduction under nondenaturing conditions leads to a partial dissociation of tetramers into dimers, retaining their amphiphilic character. This suggests that the hydrophobic domain is not linked to the subunits through disulfide bonds. The two amphiphilic tetramers are insensitive to phosphatidylinositol phospholipase C, but may be converted into soluble DBH by proteolysis in a stepwise manner; Da4II----Da4I----Dna4. Incubation of soluble DBH with various phospholipids did not produce any amphiphilic form. Several bands corresponding to the catalytic subunits of bovine DBH were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but this multiplicity was not simply correlated with the amphiphilic character of the enzyme. In the case of human DBH, we observed two bands of 78 and 84 kDa. As previously reported by others, the presence of the heavy subunit characterizes the amphiphilic forms of the enzyme. We discuss the nature of the hydrophobic domain, which could be an uncleaved signal peptide, and the organization of the different amphiphilic and nonamphiphilic DBH forms. We present two models in which dimers may possess either one hydrophobic domain or two domains belonging to each subunit; in both cases, a single detergent micelle would be bound per dimer.  相似文献   

7.
The embryonic development of total specific activities as well as of molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and of butyrylcholinesterase (BChE, EC 3.1.1.8) have been studied in the chick brain. A comparison of the development in different brain parts shows that cholinesterases first develop in diencephalon, then in tectum and telencephalon; cholinesterase development in retina is delayed by about 2-3 days; and the development in rhombencephalon [not studied until embryonic day 6 (E6)] and cerebellum is last. Both enzymes show complex and independent developmental patterns. During the early period (E3-E7) first BChE expresses high specific activities that decline rapidly, but in contrast AChE increases more or less constantly with a short temporal delay. Thereafter the developmental courses approach a late phase (E14-E20), during which AChE reaches very high specific activities and BChE follows at much lower but about parallel levels. By extraction of tissues from brain and retina in high salt plus 1% Triton X-100, we find that both cholinesterases are present in two major molecular forms, AChE sedimenting at 5.9S and 11.6S (corresponding to G2 and G4 globular forms) and BChE at 2.9S and 10.3S (G1 and G4, globular). During development there is a continuous increase of G4 over G2 AChE, the G4 form reaching 80% in brain but only 30% in retina. The proportion of G1 BChE in brain remains almost constant at 55%, but in retina there is a drastic shift from 65% G1 before E5 to 70% G4 form at E7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
S Stieger  U Brodbeck 《Biochimie》1991,73(9):1179-1186
We investigated the enzymatic properties of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus towards glycosyl-phosphatidylinositol anchored acetylcholinesterase (AChE) from bovine erythrocytes and Torpedo electric organ as substrate. The conversion of membrane from AChE to soluble AChE by PI-PLC depended on the presence of a detergent and of phosphatidylcholine. In presence of mixed micelles containing Triton X-100 (0.05%) and phosphatidylcholine (0.5 mg/ml) the rate of AChE conversion was about 3 times higher than in presence of Triton X-100 alone. Furthermore, inhibition of PI-PLC occurring at Triton X-100 concentrations higher than 0.01% could be prevented by addition of phosphatidylcholine. Ca2+, Mg2+ and sodium chloride had no effect on PI-PLC activity in presence of phosphatidylcholine and Triton X-100, whereas in presence of Triton X-100 alone sodium chloride largely increased the rate of AChE conversion. Determination of kinetic parameters with three different substrates gave Km-values of 7 microM, 17 microM and 2 mM and Vmax-values of 0.095 microM.min-1, 0.325 microM.min-1 and 56 microM.min-1 for Torpedo AChE, bovine erythrocyte AChE and phosphatidylinositol, respectively. The low Km-values for both forms of AChE indicated that PI-PLC not only recognized the phosphatidylinositol moiety of the anchor but also other components thereof.  相似文献   

9.
The change in the expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities in neoplastic colon and lung prompted us to study the possible effect of cancer on the expression of cholinesterases (ChEs) in kidney. Samples of papillary renal cell carcinoma (pRCC), conventional RCC (cRCC), chromophobe RCC (chRCC) and renal oncocytoma (RON), beside adjacent non-cancerous tissues, were analyzed. In pRCC both AChE and BuChE activities were statistically increased; in cRCC and chRCC only AChE activity increased and in RON neither AChE nor BuChE activities were affected. Abundant amphiphilic AChE dimers (G(2)(A)) and fewer monomers (G(1)(A)) were identified in healthy kidney as well as in all tumour classes. Incubation with PIPLC revealed glycosylphosphatidylinositol in AChE forms. BuChE is distributed between principal G(4)(H), fewer G(1)(H), and much fewer G(4)(A) and G(1)(A) species. RT-PCR showed similar amounts of AChE-H, AChE-T and BuChE mRNAs in healthy kidney. Their levels increased in pRCC but not in the other tumour types. The data support the idea that, as in lung tumours, in renal carcinomas expression of ChE mRNAs, biosynthesis of molecular components and level of enzyme activity change according to the specific kind of cell from which tumours arise.  相似文献   

10.
Rat liver cholinesterases were found to share properties and characteristics with those expressed in cholinergic tissues. The distribution and presence of different molecular forms of cholinesterases in different subcellular organelles of rat liver were studied. The rough and smooth endoplasmic reticulum and Golgi apparatus were enriched in the G4 molecular form of acetylcholinesterase (AChE) (relative to the G2 molecular form), while the inverse was found in the plasma membrane. The interaction of these molecular forms of AChE with the Golgi membrane was studied in detail. Approximately one-half of the G4 form was free within the lumen while the remainder was an intrinsic membrane protein; all the G2 molecular form was anchored to the membrane via phosphatidylinositol. Only the G1 and G2 molecular forms of butyrylcholinesterase (BuChE) were found in the above subcellular organelles; both molecular forms were soluble within the lumen of Golgi vesicles. These results indicate that rat liver expresses several molecular forms of AChE which have multiple interactions with membranes and that liver is unlikely to be the source of the G4 form of BuChE present in high concentration in the plasma.  相似文献   

11.
Eight inhibitors of acetylcholinesterase (AChE), tacrine, bis-tacrine, donepezil, rivastigmine, galantamine, heptyl-physostigmine, TAK-147 and metrifonate, were compared with regard to their effects on AChE and butyrylcholinesterase (BuChE) in normal human brain cortex. Additionally, the IC50 values of different molecular forms of AChE (monomeric, G1, and tetrameric, G4) were determined in the cerebral cortex in both normal and Alzheimer's human brains. The most selective AChE inhibitors, in decreasing sequence, were in order: TAK-147, donepezil and galantamine. For BuChE, the most specific was rivastigmine. However, none of these inhibitors was absolutely specific for AChE or BuChE. Among these inhibitors, tacrine, bis-tacrine, TAK-147, metrifonate and galantamine inhibited both the G1 and G4 AChE forms equally well. Interestingly, the AChE molecular forms in Alzheimer samples were more sensitive to some of the inhibitors as compared with the normal samples. Only one inhibitor, rivastigmine, displayed preferential inhibition for the G1 form of AChE. We conclude that a molecular form-specific inhibitor may have therapeutic applications in inhibiting the G1 form, which is relatively unchanged in Alzheimer's brain.  相似文献   

12.
Abstract: The levels and molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and pseudocholinesterase (ΦChE, EC 3.1.1.8) were examined in various skeletal muscles, cardiac muscles, and neural tissues from normal and dystrophic chickens. The relative amount of the heavy (Hc) form of AChE in mixed-fibre-type twitch muscles varies in proportion to the percentage of glycolytic fast-twitch fibres. Conversely, muscles with higher levels of oxidative fibres (i.e., slow-tonic, oxidative-glycolytic fast-twitch, or oxidative slow-twitch) have higher proportions of the light (L) form of AChE. The effects of dystrophy on AChE and ΦChE are more severe in muscles richer in glycolytic fast-twitch fibres (e.g., pectoral or posterior latissimus dorsi, PLD); there is no alteration of AChE or ΦChE in a slow-tonic muscle. In the pectoral or PLD muscles from older dystrophic chickens, however, the AChE forms revert to a normal distribution while the ΦChE pattern remains abnormal. Muscle ΦChE is sensitive to collagenase in a similar way as is AChE, thus apparently having a similar tailed structure. Unlike skeletal muscle, cardiac muscle has very high levels of ΦChE, present mainly as the L form; AChE is present mainly as the medium (M) form, with smaller amounts of L and Hc. The latter pattern of AChE forms resembles that seen in several neural tissues examined. No alterations in AChE or ΦChE were found in cardiac or neural tissues from dystrophic chickens.  相似文献   

13.
The effects of denervation and direct electrical stimulation upon the activity and the molecular form distribution of butyrylcholinesterase (BuChE) were studied in fast-twitch posterior latissimus dorsi (PLD) and in slow-tonic anterior latissimus dorsi (ALD) muscles of newly hatched chicken. In PLD muscle, denervation performed at day 2 substantially reduced the rate of rapid decrease of BuChE specific activity which takes place during normal development, whereas in the case of ALD muscle little change was observed. Moreover, the asymmetric forms which were dramatically reduced in denervated PLD muscle were virtually absent in denervated ALD muscle at day 14. Denervated PLD and ALD muscles were stimulated from day 4 to day 14 of age. Two patterns of stimulation were applied, either 5-Hz frequency (slow rhythm) or 40-Hz frequency (fast rhythm). Both patterns of stimulation provided the same number of impulses per day (about 61,000). In PLD muscle, electrical stimulation almost totally prevented the postdenervation loss in asymmetric forms and led to a decrease in BuChE specific activity. In ALD muscle, electrical stimulation partially prevented the asymmetric form loss which occurs after denervation. This study emphasizes the role of evoked muscle activity in the regulation of BuChE asymmetric forms in the fast PLD muscle and the differential response of denervated slow and fast muscles to electrical stimulation.  相似文献   

14.
Total, membrane, and soluble acetylcholinesterase (AchE, EC 3.1.1.7) activities increase during the pupal development of Apis mellifera queen to reach maximum values at emergence. Membrane and soluble AchE are inhibited by 10-5 M eserine or BW284C51 except at Pr, Pdm, and Pdd stages in which soluble AchE presents eserine-sensitive and eserine-resistant fractions. At all pupal stages, AchE occurs in a major amphiphilic membrane form that represents about 98% of total AchE activity and whose sedimentation coefficient is about 5.7S, and in a minor hydrophilic form that represents about 2% of total AchE activity and whose sedimentation coefficient is about 7S. At all pupal stages, phosphatidylinositol-specific phospholipase C (PI-PLC) and glycosyl phosphatidylinositol-specific phospholipase D (GPI-PLD) convert the membrane form into soluble counterparts which electrophoretic mobilities differ from that of the soluble form. AchE exhibits a butyrylcholinesterase (BuChE) activity that represents about 14% of AchE activity. During pupal development, the BuChE/AChE ratio of the membrane fraction is relatively stable, whereas the BuChE/AChE ratio of the soluble fraction is subjected to significant variations. At early pupal stages (Pw–Pd), membrane AchE displayed a high Km value, higher than 40 μM, that decreases to an intermediary value of about 30 μM at Pdl and Pdm stages, to reach finally about 20 μM at Pdd and emergence stages. Arch. Insect Biochem. Physiol. 36:69–84, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
To study the polymorphism of human cholinesterases (ChEs) at the levels of primary sequence and three-dimensional structure, a fragment of human butyrylcholinesterase (BuChE) cDNA was subcloned into the pEX bacterial expression vector and its polypeptide product analyzed. Immunoblot analysis revealed that the clone-produced BuChE peptides interact specifically with antibodies against human and Torpedo acetylcholinesterase (AChE). Rabbit polyclonal antibodies prepared against the purified clone-produced BuChE polypeptides interacted in immunoblots with denatured serum BuChE as well as with purified and denatured erythrocyte AChE. In contrast, native BuChE tetramers from human serum, but not AChE dimers from erythrocytes, interacted with these antibodies in solution to produce antibody-enzyme complexes that could be precipitated by second antibodies and that sedimented faster than the native enzyme in sucrose gradient centrifugation. Furthermore, both AChE and BuChE dimers from muscle extracts, but not BuChE tetramers from muscle, interacted with these antibodies. To reveal further whether the anti-cloned BuChE antibodies would interact in situ with ChEs in the neuromuscular junction, bundles of muscle fibers were microscopically dissected from the region in fetal human diaphragm that is innervated by the phrenic nerve. Muscle fibers incubated with the antibodies and with 125I-Protein A were subjected to emulsion autoradiography, followed by cytochemical ChE staining. The anti-cloned BuChE antibodies, as well as anti-Torpedo AChE antibodies, created patches of silver grains in the muscle endplate region stained for ChE, under conditions where control sera did not. These findings demonstrate that the various forms of human AChE and BuChE in blood and in neuromuscular junctions share sequence homologies, but also display structural differences between distinct molecular forms within particular tissues, as well as between similarly sedimenting molecular forms from different tissues.  相似文献   

16.
  • 1.1. Properties of acetylcholinesterase (AChE, EC 3.1.1.7) from Apis mellifera head were studied during pupal development and at the adult stage.
  • 2.2. During post-embryonic development, tissue and specific activities were closely related and increased to reach a maximum value at emergence and at last pupal stage, respectively.
  • 3.3. In adults, AChE activity was weaker in foragers than in emerging bees.
  • 4.4. The membrane form occurred in adult bees as well as in pupae whereas the soluble enzyme only appeared from Pd pupal stage.
  • 5.5. The proportion of soluble and membrane forms fluctuated during late development but, in all cases, the percentage of the soluble form remained less than 10% of total AChE activity.
  • 6.6. At all post-embryonic stages, the membrane form was sensitive to the action of phosphatidylinositol-specific phospholipase C (PI-PLC) and was converted into a hydrophilic enzyme.
  • 7.7. In adult bees, the sensitivity to PI-PLC depended on the season. In summer, about 60% of the membrane activity could be solubilized by PI-PLC vs only 5% in winter.
  • 8.8. The sensitivity of AChE to pirimicarb varied with the developmental stage.
  • 9.9. In foraging bees, AChE was more susceptible to pirimicarb than in emerging bees. This difference of sensitivity to carbamate was abolished after removal of the membrane anchor either by mild trypsin digestion of PI-PLC treatment.
  相似文献   

17.
The presence of acetylcholinesterase (AChE) mRNA and activity in the tissues and cells involved in immune responses prompted us to investigate the level and pattern of AChE components in spleen. AChE activity was higher in mouse spleen (0.46 +/- 0.13 micromol of acetylthiocholine split per hour and per mg protein) than in muscle or heart, but lower than in brain. The spleen was essentially free of butyrylcholinesterase (BuChE) activity. About 40% of spleen AChE was extracted with a saline buffer, and a further 40% with 1% Triton X-100. Sedimentation analyses, the splitting of subunits in AChE dimers, phosphatidylinositol-specific phospholipase C (PIPLC) exposure, and phenyl-agarose chromatography showed that hydrophilic (G1H, 43%) and amphiphilic AChE monomers (G1A, 36%), as well as amphiphilic dimers (G2A, 21%), occurred in spleen. All these molecules bound to fasciculin-2-Sepharose, although the extent of binding was higher for G1H (77%) than for G1A (63%) or G2A (48%) forms. Differences in the extent to which wheat germ lectin (WGA) adsorbed with AChE of mouse spleen and of erythrocyte allowed us to discard the blood origin of spleen AChE activity. A 62 kDa protein was labeled in spleen samples using antibodies against human AChE. The protein was attributed to AChE monomers since its size was the same, regardless of whether disulfide bonds were reduced or not. Since cholinergic stimulation modulates proliferation/maturation of lymphoid cells, AChE may be important for regulating the level of acetylcholine (ACh) in the neighborhood of cholinergic receptors (AChR) in spleen and other lymphoid tissues.  相似文献   

18.
Two types of phospholipid degrading enzyme, phospholipase D (PLD; EC 3.1.4.4) and phosphatidyl- inositol-specific phospholipase C (PIP(2)-PLC; PI-PLC 3.1.4.11) were studied during the development of seeds and plants of Brassica napus. PLD exhibits two types of activity; polyphosphoinositide-requiring (PIP(2)-dependent PLD) and polyphosphoinositide-independent requiring millimolar concentrations of calcium (PLDalpha). Significantly different patterns of activity profiles were found for soluble and membrane-associated forms of all three enzymes within both processes. Membrane-associated PIP(2)-dependent PLD activity shows the opposite trend when compared to PLDalpha, while the highest PI-PLC activity appears in the same stages of development of seeds and plants as for PLDalpha. In subcellular fractions of hypocotyls of young plants, phospholipases were localized predominantly on plasma membranes. The biochemical characteristics (Ca(2+), pH) of all three enzymes associated with plasma membrane vesicles, isolated by partitioning in an aqueous dextran- polyethylene glycol two-phase system, are also described. Direct interaction of PLDalpha with G-proteins under in vitro conditions was not confirmed.  相似文献   

19.
Different forms of phospholipase D (dependent on and independent of the presence of phosphatidylinositol 4,5-bisphosphate, PIP(2)) were identified in maturing and germinating seeds of Brassica napus. Both forms were present in cytosolic and membrane fractions of maturing seeds. PIP(2)-dependent activity increased continuously during seed germination, while PIP(2)-independent activity appeared mostly at the very beginning of seed maturation. PIP(2)-dependent activity was detected mainly in the plasma-membrane fraction. Phosphatidylinositol-specific phospholipase C (PI-PLC) was found only in membrane fractions of both types of developing rape seed tissues. The increasing activities of PLC and PIP(2)-dependent PLD were mainly detected in hypocotyls of seedlings. Some biochemical characteristics of both described enzymes are also presented.  相似文献   

20.
The evolution of acetylcholinesterase (AChE) activity and AChE molecular form distribution were studied in slow-tonic anterior latissimus dorsi (ALD) and in fast-twitch posterior latissimus dorsi (PLD) muscles of chickens 2-18 days of age. In ALD as well as in PLD muscles, the AChE-specific activity increased transiently from day 2 to day 4; the activity then decreased more rapidly in PLD muscle. During this period asymmetric AChE forms decreased dramatically in ALD muscle and the globular forms increased. In PLD muscle, the most striking change was the decline in A8 form between days 2 and 18 of development. Denervation performed at day 2 delayed the normal decrease in AChE-specific activity in PLD muscle, whereas little change was observed in ALD muscle. Moreover, A forms in these two muscles were virtually absent 8 days after denervation. Direct electrical stimulation depressed the rise in AChE-specific activity in denervated PLD muscle and prevented the loss of the A forms. Furthermore, the different molecular forms varied according to the stimulus pattern. In ALD muscle, electrical stimulation failed to prevent the effect of denervation. This study emphasizes the differential response of denervated slow and fast muscles to electrical stimulation and stresses the importance of the frequency of stimulation in the regulation of AChE molecular forms in PLD muscle during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号