首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously identified three well-dispersed mutations, E978-K, F989-L and D1009-R within the haemolysin A signal region, located at positions –46, –35 and –15, with respect to the C-terminus, respectively. Each mutation reduces the efficiency of secretion two- to threefold leaving 30–45% of the wild-type activity. We have constructed by in vitro manipulations double mutants of HlyA carrying all combinations of these mutations and a triple mutant carrying all three mutations. The effects on secretion were determined and the results, including residual levels of secretion with the triple mutant of only 0.6%, compared with the wild type, indicated that these residues may interact to form a single function in the wild-type signal. To test this further, we developed a secretion competition assay in order to classify signal mutations. We demonstrated that a CIZ-HlyA fusion protein, containing the C-terminal 81 kDa of HlyA fused to virtually the whole LacZ protein, strongly inhibits the secretion of the wild-type HlyA co-expressed In the same cell. The properties of the fusion indicate that it blocks the translocator. The three mutations singly and in combinations were recombined in vitro into the 3′-end of the hybrid gene. In every case, the presence of a mutation in the secretion signal of the hybrid protein alleviated the inhibition of secretion of the co-expressed HiyA. All the mutations are therefore essentially recessive and we propose that they all affect an early function, probably recognition of the translocator, rather than a subsequent step involved in translocation or final release of the toxin to the medium. This would indicate that residues involved in recognition for steps  相似文献   

2.
The release of haemolysin from Escherichia coli involves direct secretion across both the inner and outer membranes. Secretion of HlyA is dependent upon a specific membrane export complex composed of HlyB, -D and possibly TolC. HlyA is targeted to the medium via the membrane translocation complex, by a novel C-terminal secretion signal. Previous studies involving deletion and fusion analyses have given contradictory results for the minimal length (20-60 residues) of this HlyA signal region and little is known of the nature of the specific residues and structural features required for function. In this study we have analysed, quantitatively, the effect upon secretion of many point mutations introduced into the HlyA C-terminus. The results indicate the presence of a minimal secretion signal domain whose proximal boundary extends to at least residue -46 and which contains at least four individual residues essential for maximal secretion levels. We propose that such residues act co-operatively, forming multiple contact points with the translocator proteins, with the 'best fit' promoting maximal levels of secretion.  相似文献   

3.
We have carried out an extensive mutational analysis of the C-terminal signal which targets the export of the 1024-residue haemolysin protein (HlyA) of Escherichia coli across both bacterial membranes into the surrounding medium. Over 60 variants of the HlyA C-terminal 53-amino-acid sequence were created by oligonucleotide-directed mutagenesis and fused to the HlyA N-terminal 830 residues. Transport of the HlyA derivatives by the HlyB/HlyD system was compared with the wild-type level and the data indicate that the HlyA C-terminal export signal lies within the last 48 amino acids and comprises three functional domains: an amphipathic, charged helix between residues 1,977 and R,996; a 13-amino-acid uncharged region from residue T,997 to S,1009; and an 8-amino-acid hydroxylated tail at the extreme C-terminus. Analogous features were found in the C-terminal sequences of an extended family of haemolysins, leukotoxins and proteases which are secreted by HlyB/HlyD-type translocators. In particular, all nine proteins which are secreted into the extracellular medium possess potential extended amphipathic helices. These results suggest a possible role for multiple regions of the HlyA C-terminal export signal in which the first two domains span the membranes and the third domain remains in the cytoplasm.  相似文献   

4.
A member of the family of RTX toxins, Escherichia coli haemolysin A, is secreted from Gram-negative bacteria. It carries a C-terminal secretion signal of approximately 50 residues, targeting the protein to the secretion or translocation complex, in which the ABC-transporter HlyB is a central element. We have purified the nucleotide-binding domain of HlyB (HlyB-NBD) and a C-terminal 23kDa fragment of HlyA plus the His-tag (HlyA1), which contains the secretion sequence. Employing surface plasmon resonance, we were able to demonstrate that the HlyB-NBD and HlyA1 interact with a K(D) of approximately 4 microM. No interaction was detected between the HlyA fragment and unrelated NBDs, OpuAA, involved in import of osmoprotectants, and human TAP1-NBD, involved in the export of antigenic peptides. Moreover, a truncated version of HlyA1, lacking the secretion signal, failed to interact with the HlyB-NBD. In addition, we showed that ATP accelerated the dissociation of the HlyB-NBD/HlyA1 complex. Taking these results together, we propose a model for an early stage of initiation of secretion in vivo, in which the NBD of HlyB, specifically recognizes the C terminus of the transport substrate, HlyA, and where secretion is initiated by subsequent displacement of HlyA from HlyB by ATP.  相似文献   

5.
Recently, we have identified a novel topogenic sequence at the C terminus of Escherichia coli haemolysin (HlyA) which is essential for its efficient secretion into the medium. This discovery has introduced the possibility of using this secretion system for the release of chimeric proteins from E. coli directly into the medium. We have now successfully fused this C-terminal signal to a hybrid protein containing a few residues of beta-galactosidase and the majority of the E. coli outer membrane porin OmpF lacking its own N-terminal signal sequence. We find that this chimeric protein is specifically translocated across the inner and outer membranes and is released into the medium. In addition, we have further localized the HlyA secretion signal to the final 113 amino acids of the C terminus. In fact, a specific secretion signal appears to reside at least in part within the last 27 amino acids of HlyA.  相似文献   

6.
HlyD, a member of the membrane fusion protein family, is essential for the secretion of the RTX hemolytic toxin HlyA from Escherichia coli. Random point mutations affecting HlyA secretion were obtained, distributed in most periplasmic regions of the HlyD molecule. Analysis of the secretion phenotypes of different mutants allowed the identification of regions in HlyD involved in different steps of HlyA translocation. Four mutants, V349-I, T85-I, V334-I and L165-Q, were conditionally defective, a phenotype shown to be linked to the presence of inhibitory concentrations of Ca2+ in extracellular medium. Hly mutant T85-I was defective at an early stage in secretion, while mutants V334-I and L165-Q appeared to accumulate HlyA in the cell envelope, indicating a block at an intermediate step. Mutants V349-I, V334-I, and L165-Q were only partially defective in secretion, allowing significant levels of HlyA to be transported, but in the case of V349-I and L165-Q the HlyA molecules secreted showed greatly reduced hemolytic activity. Hemolysin molecules secreted from V349-I and V334-I are defective in normal folding and can be reactivated in vitro to the same levels as HlyA secreted from the wild-type translocator. Both V349-I and V334-I mutations mapped to the C-terminal lipoyl repeat motif, involved in the switching from the helical hairpin to the extended form of HlyD during assembly of the functional transport channel. These results suggest that HlyD is an integral component of the transport pathway, whose integrity is essential for the final folding of secreted HlyA into its active form.  相似文献   

7.
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the λ Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.  相似文献   

8.
Type I and II secretory pathways are used for the translocation of recombinant proteins from the cytoplasm of Escherichia coli. The purpose of this study was to evaluate four signal peptides (HlyA, TorA, GeneIII, and PelB), representing the most common secretion pathways in E. coli, for their ability to target green fluorescent protein (GFP) for membrane translocation. Signal peptide-GFP genetic fusions were designed in accordance with BioFusion standards (BBF RFC 10, BBF RFC 23). The HlyA signal peptide targeted GFP for secretion to the extracellular media via the type I secretory pathway, whereas TAT-dependent signal peptide TorA and Sec-dependent signal peptide GeneIII exported GFP to the periplasm. The PelB signal peptide was inefficient in translocating GFP. The use of biological technical standards simplified the design and construction of functional signal peptide-recombinant protein genetic devices for type I and II secretion in E. coli. The utility of the standardized parts model is further illustrated as constructed biological parts are available for direct application to other studies on recombinant protein translocation.  相似文献   

9.
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.  相似文献   

10.
Coexpression of pairs of nonhaemolytic H1yA mutants in the recombination-deficient (recA) strain Escherichia coli HB101 resulted in a partial reconstitution of haemolytic activity, indicating that the mutation in one H1yA molecule can be complemented by the corresponding wild-type sequence in the other mutant HlyA molecule and vice versa. This suggests that two or more HlyA molecules aggregate prior to pore formation. Partial reconstitution of the haemolytic activity was obtained by the combined expression of a nonhaemolytic HlyA derivative containing a deletion of five repeat units in the repeat domain and several nonhaemolytic HlyA mutants affected in the pore-forming hydrophobic region. The simultaneous expression of two inactive mutant HlyA proteins affected in the region at which HlyA is covalently modified by HlyC and the repeat domain, respectively, resulted in a haemolytic phenotype on blood agar plates comparable to that of wild-type haemolysin. However, complementation was not possible between pairs of HlyA molecules containing site-directed mutations in the hydrophobic region and the modification region, respectively. In addition, no complementation was observed between HlyA mutants with specific mutations at different sites of the same functional domain, i.e. within the hydrophobic region, the modification region or the repeat domain. The aggregation of the HlyA molecules appears to take place after secretion, since no extracellular haemolytic activity was detected when a truncated but active HlyA lacking the C-terminal secretion sequence was expressed together with a non-haemolytic but transport-competent HlyA mutant containing a deletion in the repeat domain.  相似文献   

11.
The 1706-residue adenylate cyclase toxin (CyaA) of Bordetella pertussis is an RTX protein with extensive carboxy-proximai glycine and aspartate-rich repeats. CyaA does not have a cleavable amino-terminal signal peptide and can be secreted across both bacterial membranes of the Escherichia coli cell envelope by the α-haemolysin (HlyA) translocator (HlyBD/TolC). We performed deletion mapping of secretion signals recognized in CyaA by this heterologous translocator. Truncated proteins with N–terminal and internal deletions were secreted at levels up to 10 times higher than intact CyaA and similar to HlyA. A secretion signal recognized by HlyBD/ToiC was found within the last 74 residues of CyaA. However, secretion of CyaA was reduced but not abolished upon deletion of the last 75 or 217 residues, indicating that at least two additional secretion signals recognized by HlyBD/TolC are within CyaA. One of them was localized to the repeat sequence between residues Asp-1587 to lle-1631. Interestingly, a conserved acidic' motif (Glu/Asp)-(X)11-Asp-(X)3/5-(Glu/Asp)-(X)14-Asp was found in the C-terminal sequences of HlyA, CyaA and the two secreted CyaA derivatives. We speculate that the presence and spacing of acidic residues may be an important feature of secretion signals recognized by the haemolysin translocator.  相似文献   

12.
There are basic structural similarities between plant PS II and bacterial RCs of the Chloroflexaceae and Rhodospirillaceae. These RCs are referred to as PS II-type RCs. A similar relationship of PS I RC to PS II-type RCs has not been established. Although plant PS I and PS II RCs show structural and functional differences, they also share similarities. Therefore, the A and B polypeptides of PS I were searched for PS II D1 and D2 polypeptide-like sequences. An alignment without gaps was found between PS II-type D2/M helix IV and PS I B helix X, as well as a weaker alignment of PS II-type D1/L with PS I B helix X. No comparable alignment with PS I A was found. In the M/D2 alignment there were eight identities and some conservative substitutions in twenty nine residues. PS I B helix X appeared to contain a modified chlorophyll dimer and monomer binding site and a modified non-heme iron-quinone binding site. The conserved residue sequence was found only in RC polypeptides. The proposed chlorophyll dimer-monomer binding site was located transmembrane from the iron-sulfur cluster X binding site. The conserved residues generally are those that interact with prosthetic groups. Half of the conserved residues are located on the same side of the helix. Thus, although there are impediments to concluding firmly that PS I B helix X has a functional and evolutionary relatedness to the D2 PS II and bacterial M RC polypeptides, our analysis gives reasonable support to the idea.Abbreviation RC reaction center  相似文献   

13.
Escherichia coli hemolysin (HlyA) is secreted by a specific export machinery which recognizes a topogenic secretion signal located at the C-terminal end of HlyA. This signal sequence has been variously defined as comprising from 27 to about 300 amino acids at the C-terminus of HlyA. We have used here a combined genetic and immunological approach to select for C-terminal HlyA peptides that are still secretion-component. A deletion library of HlyA mutant proteins was generated in vitro by successive degradation of hy1A from the 5′ end with exonuclease III. Secretion competence was tested by immunoblotting of the supernatant of each clone with an antiserum raised against a C-terminal portion of hemolysin. It was found that the hemolysin secretion system has no apparent size limitation for HlyA proteins over a range from 1024 to 62 amino acids. The smallest autonomously secretable peptide isolated in this selection procedure consists of the C-terminal 62 amino acids of HlyA. This sequence is shared by all secretion-competent, truncated HlyA proteins, which suggests that secretion of the E.coli hemolysin is strictly post-translational. The capacity of the hemolysin secretion machinery was found to be unsaturated by the steady-state level of its natural HlyA substrate and large amounts of truncated HlyA derivatives could still be secreted in addition to full-length HlyA.  相似文献   

14.
Escherichia coli hemolysin (HlyA) is secreted by a specific export machinery which recognizes a topogenic secretion signal located at the C-terminal end of HlyA. This signal sequence has been variously defined as comprising from 27 to about 300 amino acids at the C-terminus of HlyA. We have used here a combined genetic and immunological approach to select for C-terminal HlyA peptides that are still secretion-component. A deletion library of HlyA mutant proteins was generated in vitro by successive degradation of hy1A from the 5 end with exonuclease III. Secretion competence was tested by immunoblotting of the supernatant of each clone with an antiserum raised against a C-terminal portion of hemolysin. It was found that the hemolysin secretion system has no apparent size limitation for HlyA proteins over a range from 1024 to 62 amino acids. The smallest autonomously secretable peptide isolated in this selection procedure consists of the C-terminal 62 amino acids of HlyA. This sequence is shared by all secretion-competent, truncated HlyA proteins, which suggests that secretion of the E.coli hemolysin is strictly post-translational. The capacity of the hemolysin secretion machinery was found to be unsaturated by the steady-state level of its natural HlyA substrate and large amounts of truncated HlyA derivatives could still be secreted in addition to full-length HlyA.  相似文献   

15.
The relatively simple type 1 secretion system in gram-negative bacteria is nevertheless capable of transporting polypeptides of up to 800 kDa across the cell envelope in a few seconds. The translocator is composed of an ABC-transporter, providing energy through ATP hydrolysis (and perhaps the initial channel across the inner membrane), linked to a multimeric Membrane Fusion Protein (MFP) spanning the initial part of the periplasm and forming a continuous channel to the surface with an outer membrane trimeric protein. Proteins targeted to the translocator carry an (uncleaved), poorly conserved secretion signal of approximately 50 residues. In E. coli the HlyA toxin interacts with both the MFP (HlyD) and the ABC protein HlyB, (a half transporter) triggering, via a conformational change in HlyD, recruitment of the third component, TolC, into the transenvelope complex. In vitro, HlyA, through its secretion signal, binds to the nucleotide binding domain (NBD or ABC-ATPase) of HlyB in a reaction reversible by ATP that may mimic initial movement of HlyA into the translocation channel. HlyA is then transported rapidly, apparently in an unfolded form, to the cell surface, where folding and release takes place. Whilst recent structural studies of TolC and MFP-like proteins are providing atomic detail of much of the transport path, structural analysis of the HlyB NBD and other ABC ATPases, have revealed details of the catalytic cycle within an NBD dimer and a glimpse of how the action of HlyB is coupled to the translocation of HlyA.  相似文献   

16.
Many Gram-negative bacteria use a type I secretion system to translocate proteins, including pore-forming toxins, proteases, lipases and S-layer proteins, across both the inner and outer membranes into the extracellular surroundings. The Escherichia coli alpha-hemolysin (HlyA) secretion system is the prototypical and best characterized type I secretion system. The structure and function of the components of the HlyA secretion apparatus, HlyB, HlyD and TolC, have been studied in great detail. The functional characteristics of this secretion system enable it to be used in a variety of different applications, including the presentation of heterologous antigens in live-attenuated bacterial vaccines. Such vaccines can be an effective delivery system for heterologous antigens, and the use of a type I secretion system allows the antigens to be actively exported from the cytoplasm of the bacterial carrier rather than only becoming accessible to the host immune system after bacterial disintegration.  相似文献   

17.
Analysis of the haemolysin secretion system by PhoA-HlyA fusion proteins   总被引:4,自引:0,他引:4  
Summary We studied the efficiency of the pHly152-derived haemolysin transport system using PhoA-HlyA fusion proteins and different constructs which provide HlyB/HlyD in trans. The optimal C-terminal HlyA signal consists of the last 60 amino acids. Longer stretches of HlyA do not improve the transport efficiency of PhoA-HlyA fusion proteins. The introduction of deletions and/or replacements in the 60 amino acid HlyA signal domain revealed at least three functional regions with different degrees of specificity. Amino acids 1–21 (numbered from the N-terminal part of the 60 amino acid HlyA signal), termed region I, could be replaced by a Pro-containing peptide. The other two regions II and III (amino acids 22–40 and 41–60, respectively) seem to interact directly with the HlyB/HlyD translocator since a PhoA fusion protein which contains either of the two regions was still secreted in a HlyB/HlyD-dependent mode, albeit at low efficiency. An efficient trans-complementing HlyB/HlyD system was only obtained from the pHLy152-encoded hly determinant when the regulatory hlyR element was provided in cis. Secretion of the PhoA-HlyA fusion protein did not interfere with the secretion of HlyA even when the fusion protein was induced to a high level. This suggests that the capacity of the HlyB/HlyD translocation system is high and not normally saturated by its natural HlyA substrate.Dedicated to Prof., Dr. F. Lingens on the occasion of his 65th birthday  相似文献   

18.
The relatively simple type 1 secretion system in Gram-negative bacteria is nevertheless capable of transporting polypeptides of up to 800 kDa across the cell envelope in a few seconds. The translocator is composed of an ABC-transporter, providing energy through ATP hydrolysis (and perhaps the initial channel across the inner membrane), linked to a multimeric Membrane Fusion Protein (MFP) spanning the initial part of the periplasm and forming a continuous channel to the surface with an outer membrane trimeric protein. Proteins targeted to the translocator carry an (uncleaved), poorly conserved secretion signal of approximately 50 residues. In E. coli the HlyA toxin interacts with both the MFP (HlyD) and the ABC protein HlyB, (a half transporter) triggering, via a conformational change in HlyD, recruitment of the third component, TolC, into the transenvelope complex. In vitro, HlyA, through its secretion signal, binds to the nucleotide binding domain (NBD or ABC-ATPase) of HlyB in a reaction reversible by ATP that may mimic initial movement of HlyA into the translocation channel. HlyA is then transported rapidly, apparently in an unfolded form, to the cell surface, where folding and release takes place. Whilst recent structural studies of TolC and MFP-like proteins are providing atomic detail of much of the transport path, structural analysis of the HlyB NBD and other ABC ATPases, have revealed details of the catalytic cycle within an NBD dimer and a glimpse of how the action of HlyB is coupled to the translocation of HlyA.  相似文献   

19.
Yao L  Yan H  Cukier RI 《Biophysical journal》2007,92(7):2301-2310
Yeast cytosine deaminase, a zinc metalloenzyme, catalyzes the deamination of cytosine to uracil. Experimental and computational evidence indicates that the rate-limiting step is product release, instead of the chemical reaction step. In this work, we use molecular dynamics to suggest ligand exit paths. Simulation at 300 K shows that the active site is well protected by the C-terminal helix (residues 150-158) and F-114 loop (residues 111-117) and that on the molecular dynamics timescale water does not flow in or out of the active site. In contrast, simulation at 320 K shows a significant increase in flexibility of the C-terminal helix and F-114 loop. The motions of these two regions at 320 K open the active site and permit water molecules to diffuse into and out of the active site through two paths with one much more favored than the other. Cytosine is pushed out of the active site by a restraint method in two directions specified by these two paths. In path 1 the required motion of the protein is local-involving only the C-terminal helix and F-114 loop-and two residues, F-114 and I-156, are identified that have to be moved away to let cytosine out; whereas in path 2, the protein has to rearrange itself much more extensively, and the changes are also much larger compared to the path 1 simulation.  相似文献   

20.
The calmodulin-sensitive adenylate cyclase of Bordetella pertussis, a 45 kd secreted protein, is synthesized as a 1706 amino acid precursor. We have shown that this precursor is a bifunctional protein, carrying both adenylate cyclase and haemolytic activities. The 1250 carboxy-terminal amino acids of the precursor showed 25% similarity with Escherichia coli alpha-haemolysin (HlyA) and 22% similarity with Pasteurella haemolytica leucotoxin. Three open reading frames were identified downstream from the cyaA gene: cyaB, cyaD and cyaE, coding for polypeptides of 712, 440 and 474 amino acid residues, respectively. As for E. coli alpha-haemolysin, secretion of B.pertussis adenylate cyclase and haemolysin requires the expression of additional genes. The gene products of cyaB and cyaD are highly similar to HlyB and HlyD, known to be necessary for the transport of HlyA across the cell envelope and for its release into the external medium. Complementation and functional studies indicate that the B.pertussis adenylate cyclase-haemolysin bifunctional protein is secreted by a mechanism similar to that described for E.coli alpha-haemolysin, requiring, in addition to the cyaB and cyaD gene products, the presence of a third gene product specified by the cyaE gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号