首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloning of the RNA2 gene of Saccharomyces cerevisiae.   总被引:12,自引:4,他引:8       下载免费PDF全文
M G Lee  R A Young    J D Beggs 《The EMBO journal》1984,3(12):2825-2830
  相似文献   

2.
The RNA1 gene from Saccharomyces cerevisiae is defined by the temperature-sensitive rna1-1 mutation that interferes with the maturation and/or nucleocytoplasmic transport of RNA. We describe the purification of a 44-kDa protein from the evolutionary distant fission yeast Schizosaccharomyces pombe and the cloning and sequence analysis of the corresponding gene. Although this protein shares only 42% sequence identity with the RNA1 gene product, it represents a functional homologue because the expression of the S. pombe gene in S. cerevisiae complements the rna1-1 defect. Disruption in S. pombe of the gene encoding the 44-kDa protein, for which we propose the name S. pombe rna1p, reveals that it is essential for growth. Our analysis of purified S. pombe rna1p represents the first biochemical characterization of an RNA1 gene product and reveals that it is a monomeric protein of globular shape. Cell fractionation and immunofluorescence microscopy indicate that rna1p is a cytoplasmic protein possibly enriched in the nuclear periphery. We identify a sequence motif of 29 residues, which is rich in leucine and repeated eight times both in S. pombe and in S. cerevisiae rna1p. Similar leucine-rich repeats present in a series of other proteins, e.g., the mammalian ribonuclease/angiogenin inhibitor, adenylyl cyclase from S. cerevisiae, the toll protein from Drosophila melanogaster, and the sds22 protein phosphatase regulatory subunit from S. pombe, are thought to be involved in protein-protein interactions. Thus rna1p may act as a scaffold protein possibly interacting in the nuclear periphery with a protein ligand that could be associated with exported RNA.  相似文献   

3.
The yeast rna mutations (rna2 through rna10/11) are a set of temperature-sensitive mutations that result in the accumulation of pre-mRNAs at the nonpermissive temperature. Most of the yeast RNA gene products are involved in and essential for mRNA splicing in vitro, suggesting that they code for components of the splicing machinery. We tested this proposal by using an in vitro-synthesized RNA11 protein to complement the temperature-sensitive defect of the rna11 extract. During the in vitro complementation, the input RNA11 protein was associated with the 40S spliceosome and a 30S complex, suggesting that the RNA11 protein is indeed a component of the spliceosome. The formation of the RNA11-associated 30S complex did not require any exogenous RNA substrate, suggesting that this 30S particle is likely to be a preassembled complex involved in splicing. The RNA11-specific antibody inhibited the mRNA splicing in vitro, confirming the essential role of the RNA11 protein in mRNA splicing. Finally, using the anti-RNA11 antibody, we localized the RNA11 protein to the periphery of the yeast nucleus.  相似文献   

4.
5.
The yeast RNA gene products are essential for mRNA splicing in vitro   总被引:43,自引:0,他引:43  
A J Lustig  R J Lin  J Abelson 《Cell》1986,47(6):953-963
The yeast rna mutations (rna2-rna11) are a set of temperature-sensitive mutations that result in the accumulation of intron-containing mRNA precursors at the restrictive temperature. We have used the yeast in vitro splicing system to investigate the role of products of the RNA genes in mRNA splicing. We have tested the heat lability of the in vitro mRNA splicing reaction in extracts isolated from mutant and wild-type cells. Extracts isolated from seven of the nine rna mutants demonstrated heat lability in this assay, while most wild-type extracts were stable under the conditions utilized. We have also demonstrated that heat inactivation usually results in the specific loss of an exchangeable component by showing that most combinations of heat-inactivated extracts from different mutants complement one another. In three cases (rna2, rna5, and rna11), the linkage of the in vitro defect to the rna mutations was ascertained by a combination of reversion, tetrad, and in vitro complementation analyses. Furthermore, each heat-inactivated extract was capable of complementation by at least one fraction of the wild-type splicing system. Thus many of the RNA genes are likely to code for products directly involved in and essential for mRNA splicing.  相似文献   

6.
7.
The yeast genes RNA2-RNA11 are necessary for splicing of nuclear intron-containing pre-mRNAs. We investigated the relationships among these genes by asking whether increased expression of one RNA gene leads to suppression of the temperature-sensitive lethality of a mutation in any other RNA gene. The presence of extra plasmid-borne copies of the RNA3 gene relieves the lethality of temperature-sensitive rna4 mutations. A region of the yeast genome (SRN2) is described that suppresses temperature-sensitive rna2 mutations when it is present on either medium or high-copy number plasmids. Neither suppression occurs via a bypass of RNA gene function since null alleles of rna2 and rna4 are not suppressed by elevated dosage of SRN2 and RNA3, respectively. These results suggest that the SRN2 and RNA2 gene products have related functions, as do the RNA3 and RNA4 gene products.  相似文献   

8.
9.
The SR protein family is involved in constitutive and regulated pre-mRNA splicing and has been found to be evolutionarily conserved in metazoan organisms. In contrast, the genome of the unicellular yeast Saccharomyces cerevisiae does not contain genes encoding typical SR proteins. The mammalian SR proteins consist of one or two characteristic RNA binding domains (RBD), containing the signature sequences RDAEDA and SWQDLKD respectively, and a RS (arginine/serine-rich) domain which gave the family its name. We have now cloned from the fission yeast Schizosaccharomyces pombe the gene srp1. This gene is the first yeast gene encoding a protein with typical features of mammalian SR protein family members. The gene is not essential for growth. We show that overexpression of the RNA binding domain inhibits pre-mRNA splicing and that the highly conserved sequence RDAEDA in the RBD is involved. Overexpression of Srp1 containing mutations in the RS domain also inhibits pre-mRNA splicing activity. Furthermore, we show that overexpression of Srp1 and overexpression of the mammalian SR splicing factor ASF/SF2 suppress the pre-mRNA splicing defect of the temperature-sensitive prp4-73 allele. prp4 encodes a protein kinase involved in pre-mRNA splicing. These findings are consistent with the notion that Srp1 plays a role in the splicing process.  相似文献   

10.
Structural basis for the regulation of splicing of a yeast messenger RNA   总被引:33,自引:0,他引:33  
F J Eng  J R Warner 《Cell》1991,65(5):797-804
  相似文献   

11.
During the splicing process, spliceosomal snRNAs undergo numerous conformational rearrangements that appear to be catalyzed by proteins belonging to the DEAD/H-box superfamily of RNA helicases. We have cloned a new RNA helicase gene, designated DBP2 (DEAH-boxprotein), homologous to the Schizosaccaromyces pombe cdc28(+)/prp8(+) gene involved in pre-mRNA splicing and cell cycle progression. The full-length DBP2 contains 3400 nucleotides and codes for a protein of 1041 amino acids with a calculated mol. wt of 119 037 Da. Transfection experiments demonstrated that the GFP-DBP2 gene product, transiently expressed in HeLa cells, was localized in the nucleus. The DBP2 gene was mapped by FISH to the MHC region on human chromosome 6p21.3, a region where many malignant, genetic and autoimmune disease genes are linked. Because the expression of DBP2 gene in S.pombe prp8 mutant cells partially rescued the temperature-sensitive phenotype, we conclude that DBP2 is a functional human homolog of the fission yeast Cdc28/Prp8 protein.  相似文献   

12.
In the budding yeast Saccharomyces cerevisiae, a number of PRP genes known to be involved in pre-mRNA processing have been genetically identified and cloned. Three PRP genes (PRP2, PRP16, and PRP22) were shown to encode putative RNA helicases of the family of proteins with DEAH boxes. However, any such splicing factor containing the helicase motifs in vertebrates has not been identified. To identify human homologs of this family, we designed PCR primers corresponding to the highly conserved region of the DEAH box protein family and successfully amplified five cDNA fragments, using HeLa poly(A)+ RNA as a substrate. One fragment, designated HRH1 (human RNA helicase 1), is highly homologous to Prp22, which was previously shown to be involved in the release of spliced mRNAs from the spliceosomes. Expression of HRH1 in a S. cerevisiae prp22 mutant can partially rescue its temperature-sensitive phenotype. These results strongly suggest that HRH1 is a functional human homolog of the yeast Prp22 protein. Interestingly, HRH1 but not Prp22 contains an arginine- and serine-rich domain (RS domain) which is characteristic of some splicing factors, such as members of the SR protein family. We could show that HRH1 can interact in vitro and in the yeast two-hybrid system with members of the SR protein family through its RS domain. We speculate that HRH1 might be targeted to the spliceosome through this interaction.  相似文献   

13.
The RPC31 gene encoding the C31 subunit of Saccharomyces cerevisiae RNA polymerase C (III) has been isolated, starting from a C-terminal fragment cloned on a lambda gt11 library. It is unique on the yeast genome and lies on the left arm of chromosome XIV, very close to a NotI site. Its coding sequence perfectly matches the amino acid sequence of two oligopeptides prepared from purified C31. It is also identical to the ACP2 gene previously described as encoding an HMG1-like protein (W. Haggren and D. Kolodrubetz, Mol. Cell. Biol. 8:1282-1289, 1988). Thus, ACP2 and RPC31 are allelic and encode a subunit of RNA polymerase C. The c31 protein has a highly acidic C-terminal tail also found in several other chromatin-interacting proteins, including animal HMG1. Outside this domain, however, there is no appreciable homology to any known protein. The growth phenotypes of a gene deletion, of insertions, and of nonsense mutations indicate that the C31 protein is strictly required for cell growth and that most of the acidic domain is essential for its function. Random mutagenesis failed to yield temperature-sensitive mutants, but a slowly growing mutant was constructed by partial suppression of a UAA nonsense allele of RPC31. Its reduced rate of tRNA synthesis in vivo relative to 5.8S rRNA supports the hypothesis that the C31 protein is a functional subunit of RNA polymerase C.  相似文献   

14.
The primary structure of the 200 kDa protein of purified HeLa U5 snRNPs (U5-200kD) was characterized by cloning and sequencing of its cDNA. In order to confirm that U5-200kD is distinct from U5-220kD we demonstrate by protein sequencing that the human U5-specific 220 kDa protein is homologous to the yeast U5-specific protein Prp8p. A 246 kDa protein (Snu246p) homologous to U5-200kD was identified in Saccharomyces cerevisiae. Both proteins contain two conserved domains characteristic of the DEXH-box protein family of putative RNA helicases and RNA-stimulated ATPases. Antibodies raised against fusion proteins produced from fragments of the cloned mammalian cDNA interact specifically with the HeLa U5-200kD protein on Western blots and co-immunoprecipitate U5 snRNA and to a lesser extent U4 and U6 snRNAs from HeLa snRNPs. Similarly, U4, U5 and U6 snRNAs can be co-immunoprecipitated from yeast splicing extracts containing an HA-tagged derivative of Snu246p with HA-tag specific antibodies. U5-200kD and Snu246p are thus the first putative RNA helicases shown to be intrinsic components of snRNPs. Disruption of the SNU246 gene in yeast is lethal and leads to a splicing defect in vivo, indicating that the protein is essential for splicing. Anti-U5-200kD antibodies specifically block the second step of mammalian splicing in vitro, demonstrating for the first time that a DEXH-box protein is involved in mammalian splicing. We propose that U5-200kD and Snu246p promote one or more conformational changes in the dynamic network of RNA-RNA interactions in the spliceosome.  相似文献   

15.
The yeast gene RNA1 has been defined by the thermosensitive rna1-1 lesion. This lesion interferes with the processing and production of all major classes of RNA. Each class of RNA is affected at a distinct and presumably unrelated step. Furthermore, RNA does not appear to exit the nucleus. To investigate how the RNA1 gene product can pleiotropically affect disparate processes, we undertook a structural analysis of wild-type and mutant RNA1 genes. The wild-type gene was found to contain a 407-amino-acid open reading frame that encodes a hydrophilic protein. No clue regarding the function of the RNA1 protein was obtained by searching banks for similarity to other known gene products. Surprisingly, the rna1-1 lesion was found to code for two amino acid differences from wild type. We found that neither single-amino-acid change alone resulted in temperature sensitivity. The carboxy-terminal region of the RNA1 open reading frame contains a highly acidic domain extending from amino acids 334 to 400. We generated genomic deletions that removed C-terminal regions of this protein. Deletion of amino acids 397 to 407 did not appear to affect cell growth. Removal of amino acids 359 to 397, a region containing 24 acidic residues, caused temperature-sensitive growth. This allele, rna1-delta 359-397, defines a second conditional lesion of the RNA1 locus. We found that strains possessing the rna1-delta 359-397 allele did not show thermosensitive defects in pre-rRNA or pre-tRNA processing. Removal of amino acids 330 to 407 resulted in loss of viability.  相似文献   

16.
The SEN1 gene, which is essential for growth in the yeast Saccharomyces cerevisiae, is required for endonucleolytic cleavage of introns from all 10 families of precursor tRNAs. A mutation in SEN1 conferring temperature-sensitive lethality also causes in vivo accumulation of pre-tRNAs and a deficiency of in vitro endonuclease activity. Biochemical evidence suggests that the gene product may be one of several components of a nuclear-localized splicing complex. We have cloned the SEN1 gene and characterized the SEN1 mRNA, the SEN1 gene product, the temperature-sensitive sen1-1 mutation, and three SEN1 null alleles. The SEN1 gene corresponds to a 6,336-bp open reading frame coding for a 2,112-amino-acid protein (molecular mass, 239 kDa). Using antisera directed against the C-terminal end of SEN1, we detect a protein corresponding to the predicted molecular weight of SEN1. The SEN1 protein contains a leucine zipper motif, consensus elements for nucleoside triphosphate binding, and a potential nuclear localization signal sequence. The carboxy-terminal 1,214 amino acids of the SEN1 protein are essential for growth, whereas the amino-terminal 898 amino acids are dispensable. A sequence of approximately 500 amino acids located in the essential region of SEN1 has significant similarity to the yeast UPF1 gene product, which is involved in mRNA turnover, and the mouse Mov-10 gene product, whose function is unknown. The mutation that creates the temperature-sensitive sen1-1 allele is located within this 500-amino-acid region, and it causes a substitution for an amino acid that is conserved in all three proteins.  相似文献   

17.
18.
Using the cloned Saccharomyces cerevisiae YPT1 gene as hybridization probe, a gene, designated ypt2, was isolated from the fission yeast Schizosaccharomyces pombe and found to encode a 200 amino acid long protein most closely related to the ypt branch of the ras superfamily. Disruption of the ypt2 gene is lethal. The bacterially produced ypt2 gene product is shown to bind GTP. A region of the ypt2 protein corresponding to but different from the 'effector region' of ras proteins is also different from that of ypt1 proteins of different species but identical to the 'effector loop' of the S.cerevisiae SEC4 gene product, a protein known to be required for vesicular protein transport. The S.pombe ypt2 gene under control of the S.cerevisiae GAL10 promoter is able to suppress the temperature-sensitive phenotype of a S. cerevisiae sec4 mutant, indicating a functional similarity of these GTP-binding proteins from the two very distantly related yeasts.  相似文献   

19.
Previously we reported that mutations in the Saccharomyces cerevisiae REG1 gene encoding a negative regulator of glucose-repressible genes, suppress the RNA processing defects and temperature-sensitive growth of rna1-1 and prp cells. This result and the fact that growth on non-glucose carbon sources also suppresses rna1-1 led us to propose that RNA processing and export of RNA from the nucleus are responsive to carbon source regulation. To understand how carbon source affects these processes, we used p70, an antigen regulated by REGI and by glucose availability, as a reporter. We found that the response of p70 to glucose availability is mediated by both the SNFI-SSN6-dependent glucose repression and the RAS-cAMP pathways. These results led us to test whether the RAS-cAMP pathway interacts with RNA1. We found that suppression of rnal-1 appears to be mediated, at least in part, by the RAS-cAMP pathway.  相似文献   

20.
ABC14.5 (Rpb8) is a eukaryotic subunit common to all three nuclear RNA polymerases. In Saccharomyces cerevisiae, ABC14.5 (Rpb8) is essential for cell viability, however its function remains unknown. We have cloned and characterised the Schizosaccharomyces pombe rpb8(+) cDNA. We found that S.pombe rpb8, unlike the similarly diverged human orthologue, cannot substitute for S.cerevisiae ABC14. 5 in vivo. To obtain information on the function of this RNA polymerase shared subunit we have used S.pombe rpb8 as a naturally altered molecule in heterologous expression assays in S.cerevisiae. Amino acid residue differences within the 67 N-terminal residues contribute to the functional distinction of the two yeast orthologues in S.cerevisiae. Overexpression of the S.cerevisiae largest subunit of RNA polymerase III C160 (Rpc1) allows S.pombe rpb8 to functionally replace ABC14.5 in S.cerevisiae, suggesting a specific genetic interaction between the S.cerevisiae ABC14.5 (Rpb8) and C160 subunits. We provide further molecular and biochemical evidence showing that the heterologously expressed S.pombe rpb8 molecule selectively affects RNApolymerase III but not RNA polymerase I complex assembly. We also report the identification of a S.cerevisiae ABC14.5-G120D mutant which affects RNA polymerase III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号