首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decolorization of textile reactive azo dyes by a strain of bacteria (SL186) isolated from a contaminated site was investigated. SL186 was identified as Clostridium bifermentans by phenotypic characterization and 16S rDNA sequence comparison. Under anaerobic conditions, SL186 had decolorized the dyes Reactive Red 3B-A, Reactive Black 5, and Reactive Yellow 3G-P by over 90% after 36 h post-inoculation. The bacterium retained decolorizing activity over a wide range of pH values (6–12), with peak activity at pH 10. Additionally, SL186 decolorized a relatively high concentration of Reactive Red 3B-A dye (1,000 ppm) by over 80% and raw industrial effluent effectively. The addition of glucose increased the decolorization rate a little. Spectrophotometric analyses of the reactive dyes showed no distinct peak indicating aromatic amines. However, a new peak was detected between 300 and 450 nm from the decolorized raw industrial effluent. These results suggest that C. bifermentans SL186 is a suitable bacterium for the biological processing of dye-containing wastewater.  相似文献   

2.
Summary Four white-rot fungi isolated in Pakistan were used for decolorization of widely used reactive textile dyestuffs. Phanerochaete chrysosporium, Coriolus versicolor, Ganoderma lucidum and Pleurotus ostreatus were grown in defined nutrient media for decolorization of Drimarene Orange K-GL, Remazol Brilliant Yellow 3GL, Procion BluePX-5R and Cibacron Blue P-3RGR for 10 days in shake flasks. Samples were removed every day, centrifuged and the absorbances of the supernatants were read to determine percentage decolorization. It was observed that P. chrysosporium and C. versicolor could effectively decolorize Remazol Brilliant Yellow 3GL, Procion BluePX-5R and Cibacron Blue P-3RGR. Drimarene Orange K-GL was completely decolorized (0.2 g/l after 8 days) only by P.chrysosporium, followed by P. ostreatus (0.17 g/l after 10 days). P. ostreatus also showed good decolorization efficiencies (0.19–0.2 g/l) on all dyes except Remazol Brilliant Yellow (0.07 g/l after 10 days). G. lucidum did not decolorize any of the dyestuffs to an appreciable extent except Remazol Brilliant Yellow (0.2 g/l after 8 days).  相似文献   

3.
The ability of a Brazilian strain ofPleurotus pulmonarius to decolorize structurally different synthetic dyes (including azo, triphenylmethane, heterocyclic and polymeric dyes) was investigated in solid and submerged cultures. Both were able to decolorize completely or partially 8 of 10 dyes (Amido Black, Congo Red, Trypan Blue, Methyl Green, Remazol Brilliant Blue R, Methyl Violet, Ethyl Violet, Brilliant Cresyl Blue). No decolorization of Methylene Blue and Poly R 478 was observed. Of the four phenol-oxidizing enzymes tested in culture filtrates (lignin peroxidase, manganese peroxidase, aryl alcohol oxidase, laccase),P. pulmonarius produced only laccase. Both laccase activity and dye decolorization were related to glucose and ammonium starvation or to induction by ferulic acid. The decolorizationin vivo was tested using three dyes — Remazol Brilliant Blue R, Trypan Blue and Methyl Green. All of them were completely decolorized by crude extracellular extracts. Decolorization and laccase activity were equally affected by pH and temperature. Laccase can thus be considered to be the major enzyme involved in the ability ofP. pulmonarius to decolorize industrial dyes.  相似文献   

4.
The nonspecific ability of anaerobic sludge bacteria obtained from cattle dung slurry was investigated for 17 different dyes in a batch assay system using sealed serum vials. Experiments using Reactive Violet 5 (RV 5) showed that sludge bacteria could effectively decolorize solutions having dye concentrations up to 1000 mg l−1 with a decolorization efficiency of above 75% during 48 h of incubation. Headspace gas composition of anaerobic batch systems for varying dye concentration revealed that lower concentrations of RV 5 (upto 500 mg l−1) were found to be stimulatory to the methanogenic activity of sludge bacteria. However at higher dye concentrations, the headspace gas composition was found to be similar to batch assay controls without dye, indicating that dye at higher concentrations was inhibitory to methanogenic bacteria of sludge. The optimum inoculum and incubation temperature for maximum decolorization of RV 5 was found to be 9.0 g l−1(in terms of total solids) and 37°C, respectively. Of sixteen other dyes tested, nine (Reactive Black 5, Reactive Blue 31, Reactive Blue 28, Reactive Red HE8B, Reactive Yellow, Reactive Golden Yellow, Mordant Orange, Novatic Olive R S/D & Navilan Yellow GL) were decolorized with more than 88% efficiency; three (Orange II, Navy Blue HER & Novatic Blue BC S/D) were decolorized with about 50–65% efficiency, whereas other three dyes (Procion Orange H2R, Procion Brilliant Blue HGR & Novatic Blue BC S/D) were decolorized with less than 40% efficiency. Though Ranocid Fast Blue was decolorized with about 92.5% efficiency, this was merely due to sorption, whereas the other dyes were decolorized due to biotransformation.  相似文献   

5.
Since it had previously been found that biomass derived from the thermotolerant ethanol-producing yeast strain Kluyveromyces marxianus IMB3 exhibited a relatively high affinity for heavy metals it was decided to determine whether or not it might be capable of textile dye biosorption. To this end, biosorption isotherm analysis was carried out using the biomass together with commonly-used textile dyes including Remazol Black B, Remazol Turquoise Blue, Remazol Red, Remazol Golden Yellow and Cibacron Orange. Although the dyes Remazol Black B, Remazol Turquoise Blue and Remazol Red adhered to the Langmuir model, the remaining dyes failed to do so. The observed biosorption capacities at equilibrium dye concentrations of 100?mg/l were compared and it was found that the biomass exhibited a significant affinity for each dye. The potential use of this biosorptive material in the bioremediation of textile processing effluents is discussed.  相似文献   

6.
The little studied white rot fungus Ischnoderma resinosum was tested for its ability to decolorize seven different synthetic dyes. The strain efficiently decolorized Orange G, Amaranth, Remazol Brilliant Blue R, Cu-phthalocyanin and Poly R-478 on agar plates and in liquid culture at a relatively high concentration of 2–4 and 0.5–1 g l−1, respectively. Malachite Green and Crystal Violet were decolorized to a lower extent up to the concentration of 0.1 g l−1. Decolorization capacity of I. resinosum was higher than that in Phanerochaete chrysosporium, Pleurotus ostreatus or Trametes versicolor. In contrast with these thoroughly examined fungi, I. resinosum was able to degrade a wide spectrum of chemically and structurally different synthetic dyes. I. resinosum also efficiently decolorized dye mixtures. In liquid culture, Orange G and Remazol Brilliant Blue R were decolorized most rapidly; the process was not affected by different nitrogen content in the media. Shaken cultivation strongly inhibited the decolorization of Orange G.  相似文献   

7.
Aspergillus sojae B-10 was immobilized and used to treat model dye compounds. The model wastewater, containing 10 ppm of azo dyes such as Amaranth, Sudan III, and Congo Red, was treated with cells attached to a rotating disc contactor (RDC). Amaranth was decolorized more easily than were Sudan III and Congo Red. Decolorization of Amaranth began within a day, and the dye was completely decolorized within 5 days of incubation. Both Sudan III and Congo Red were almost completely decolorized after 5 days of incubation. Semicontinuous decolorization of azo by reusing attached mycelia resulted in almost complete decolorization in 20 days. This experiment indicated that decolorization was successfully conducted by removing azo dyes withAspergillus sojae B-10.  相似文献   

8.
During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk’s medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn2+-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures.  相似文献   

9.
Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT) from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2''-azino-bis(3-ethylbenzothazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), guaiacol, and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0–11.0 and thermostable at 40°C–90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters.  相似文献   

10.
A broad-spectrum dye-decolorizing bacterium, strain DN322, was isolated from activated sludge of a textile printing wastewater treatment plant. The strain was characterized and identified as a member of Aeromonas hydrophila based on Gram staining, morphology characters, biochemical tests, and nearly complete sequence analysis of 16S rRNA gene and the gyrase subunit beta gene (gyrB). Strain DN322 decolorized a variety of synthetic dyes, including triphenylmethane, azo, and anthraquinone dyes. For color removal, the most suitable pH and temperature were pH 5.0–10.0 and 25–37°C, respectively. Triphenylmethane dye, e.g., Crystal Violet, Basic Fuchsin, Brilliant Green, and Malachite Green (50 mg l−1) were decolorized more than 90% within 10 h under aerobic culture condition and Crystal Violet could be used as sole carbon source and energy source for cell growth. The color removal of triphenylmethane dyes was due to a soluble cytosolic enzyme, and the enzyme was an NADH/NADPH-dependent oxygenase; For azo and anthraquinone dyes, e.g., Acid Amaranth, Great Red GR, Reactive Red KE-3B, and Reactive Brilliant Blue K-GR (50 mg l−1) could be decolorized more than 85% within 36 h under anoxic condition. This strain may be useful for bioremediation applications.  相似文献   

11.
In this study crude laccases from the white‐rot fungi Cerrena unicolor and Trametes hirsuta were tested for their ability to decolorize simulated textile dye baths. The dyes used were Remazol Brilliant Blue R (RBBR) (100 mg/L), Congo Red (12.5 mg/L), Lanaset Grey (75 mg/L) and Poly R‐478 (50 mg/L). The effect of redox mediators on dye decolorization by laccases was also assessed. C. unicolor laccase was able to decolorize all the dyes tested. It was especially effective towards Congo Red and RBBR with 91 and 80% of color removal in 19.5 h despite the fact that simulated textile dye baths were used. Also Poly R‐478 and Lanaset Grey were partially decolorized (69 and 48%, respectively). C. unicolor laccase did not need any mediators for removing the dyes. However, T. hirsuta laccase was only able to decolorize simulated Congo Red and RBBR dye baths (91 and 45%, respectively) in 19.5 h without mediators. When using mediators the decolorization capability was enhanced substantially, e.g. Poly R‐478 was decolorized by 78% in 25.5 h. On the whole, both laccases showed potential to be used in industrial applications.  相似文献   

12.
A Citrobacter sp., isolated from soil at an effluent treatment plant of a textile and dyeing industry, decolorized several recalcitrant dyes except Bromophenol Blue. More than 90% of Crystal Violet and Methyl Red at 100 M were reduced within 1 h. Gentian Violet, Malachite Green and Brilliant Green lost over 80% of their colors in the same condition, but the percentage decolorization of Basic Fuchsin and Congo Red were less than the others, 66 and 26%, respectively. Decolorization of Congo Red was mainly due to adsorption to cells. Color removal was optimal at pH 7–9 and 35–40 °C. Decolorization of dyes was also observed with extracellular culture filtrate, indicating the color removal by enzymatic biodegradation.  相似文献   

13.
Two yeasts, Debaryomyces polymorphus, Candida tropicalis, and two filamentous fungi, Umbelopsis isabellina, Penicillium geastrivorus, could completely decolorize 100 mg Reactive Black 5 (RB 5) l–1 within 16–48 h. Manganese-dependent peroxidase (MnP) activities between 60 and 424 U l–1 were detected in culture supernatants of three of these organisms indicating the color removal by enzymatic biodegradation but with P. geastrivorus there was no ligninolytic enzyme activity in its culture and the decolorization was mainly due to biosorption to mycelium. Extensive decolorization by D. polymorphus (69–94%) and C. tropicalis (30–97%) was obtained with five other azo dyes and one anthraquinone dye. Except for Reactive Brilliant Blue KNR and Reactive Yellow M-3R, the four azo dyes, Reactive Red M-3BE, Procion Scharlach H-E3G, Procion Marine H-EXL and Reactive Brilliant Red K-2BP, induced D. polymorphus to produce MnP (105–587 U l–1). However, MnP activities of 198–329 U l–1 were only detected in the culture of C. tropicalis containing Reactive Red M-3BE and Reactive Brilliant Red K-2BP, respectively.  相似文献   

14.
以白腐真菌落叶松锈迷孔菌(Porodaedalea laricis)胞外漆酶为响应值,通过将Plackett-Burman设计、最陡爬坡设计和Box-Behnken设计相结合,获得了P.laricis产胞外漆酶的最适培养基为:去皮马铃薯365.61 g/L、蛋白胨5.0 g/L、葡萄糖20.0 g/L、KH2PO41.0 g/L、MgSO47H2O 0.5 g/L、MnSO4 H2O 0.15 g/L、CaCl22H2O 0.03 g/L、酒石酸铵6.68 g/L、琥珀酸钠1.5 g/L、吐温800.48 mL/L、玉米芯46.43 g/L、维生素B10.01 g/L。在该条件下,P.laricis漆酶活性为3.29 U/mL,相比于优化前提高了2.81倍,与理论值3.32 U/mL相近,说明该模型准确可靠。此外,将漆酶应用于降解多种合成染料包括活性亮蓝X-BR、雷马素亮蓝R、酸性黑172、刚果红、亚甲基蓝、中性红、靛蓝、萘酚绿B和结晶紫,反应168 h后脱色率分别可达到95.64%、97.21%、36.11%、91.63%、61.42%、74.65%、48.60%、25.13%和68.80%。  相似文献   

15.
Ischnoderma resinosum produced extracellular ligninolytic enzymes laccase and MnP. The activity of laccase achieved the maximum on day 10 (29.4 U L−1), the MnP on day 14 (34.5 U L−1). Laccase and Mn-peroxidase were purified from the culture liquid using gel permeation and ion-exchange chromatographies. Purified Mn-peroxidase performed decolorization of all textile dyes tested (Reactive Black 5, Reactive Blue 19, Reactive Red 22 and Reactive Yellow 15). Laccase was inactive with Reactive Black 5 and Reactive Red 22, while all dyes were decolorized after addition of the redox mediators violuric acid (VA) and hydroxybenzotriazole (HBT). The culture liquid from I. resinosum cultures was also able to decolorize all dyes as well as the synthetic dyebaths in the presence of VA and HBT. The highest decolorization rates were detected in acidic pH (3–4).  相似文献   

16.
Aluminum [Al(III)] adsorption onto dye-incorporated poly(ethylene glycol dimethacrylate-hydroxyethyl methacrylate) [poly(EGDMA-HEMA)] microspheres was investigated. Poly(EGDMA-HEMA) microspheres, in the size range of 150–200 μm, were produced by a modified suspension polymerization of EGDMA and HEMA. The reactive dyes (i.e., Congo Red, Cibacron Blue F3GA and Alkali Blue 6B) were covalently incorporated to the microspheres. The maximum dye load was 14.5 μmol Congo Red/g, 16.5 μmol Cibacron Blue F3GA/g and 23.7 μmol Alkali Blue 6B/g polymer. The maximum Al(III) adsorption on the dye microspheres from aqueous solutions containing different amounts of Al(III) ions were 27.9 mg/g, 17.3 mg/g and 12.2 mg/g polymer for the Congo Red, Cibacron Blue F3GA and Alkali Blue 6B, respectively. The maximum Al(III) adsorption was observed at pH 7.0 in all cases. Non-specific Al(III) adsorption was about 0.84 mg/g polymer under the same conditions. High desorption ratios (95%) were achieved in all cases by using 0.1 M HNO3. It was possible to reuse these dye-incorporated poly(EGDMA-HEMA) microspheres without significant losses in the Al(III) adsorption capacities.  相似文献   

17.
Four different aerobic mixed consortia collected from basins of wastewater streams coming out of dying plants of Crescent Textile (CT), Sitara Textile (ST), Chenab Fabrics (CF) and Noor Fatima Textile (NF), Faisalabad, Pakistan were applied for decolorization of Drimarene Orange K-GL, Drimarene Brilliant Red K-4BL, Foron Yellow SE4G and Foron Blue RDGLN for 10 days using the shake flask technique. CT culture showed the best decolorization potential on all dyestuffs followed by ST, NF and CF, respectively. CT could completely decolorize all dyes within 3–5 days. ST cultures showed effective decolorization potential on Foron Yellow SE4G and Drimarene Brilliant Red K-4BL but complete color removal was achieved after 4 and 7 days, respectively. NF culture showed 100% decolorization efficiencies on Foron Yellow SE4G and Foron Blue RDGLN but it took comparatively longer time periods (5–7 days). Where as, the NF culture had decolorized only 40% and 50% of Drimarene orange and red, respectively, after 10 days. CF caused complete decolorization of Foron Blue RDGLN and Drimarene Brilliant Red K-4BL after 4 and 8 days, respectively but it showed poor performance on other two dyes.  相似文献   

18.
Tagetes patula L. (Marigold) hairy roots were selected among few hairy root cultures from other plants tested for the decolorization of Reactive Red 198. Hairy roots of Tagetes were able to remove dye concentrations up to 110 mg L−l and could be successively used at least for five consecutive decolorization cycles. The hairy roots of Tagetes decolorized six different dyes, viz. Golden Yellow HER, Methyl Orange, Orange M2RL, Navy Blue HE2R, Reactive Red M5B and Reactive Red 198. Significant induction of the activity of biotransformation enzymes indicated their crucial role in the dye metabolism. UV–vis spectroscopy, HPLC and FTIR spectroscopy analyses confirmed the degradation of Reactive Red 198. A possible pathway for the biodegradation of Reactive Red 198 has been proposed with the help of GC–MS and metabolites identified as 2-aminonaphthol, p-aminovinylsulfone ethyl disulfate and 1-aminotriazine, 3-pyridine sulfonic acid. The phytotoxicity study demonstrated the non-toxic nature of the extracted metabolites. The use of such hairy root cultures with a high ability for bioremediation of dyes is discussed.  相似文献   

19.
The triazine dyes: Cibacron Blue 3GA, Reactive Red 120, Reactive Yellow 86, Reactive Green 19, Reactive Blue 4, Reactive Brown 10 inhibited the activity of a purified preparation of 1,6fucosyltransferase (GDP-L-fucose:N-acetyl -glucosaminide 6--L-fucosyltransferase, EC 2.4.1.68) from human blood platelets. Cibacron Blue 3GA and Reactive Red 120 were examined for the nature of the inhibition and both were found to be competitive inhibitors of the enzyme, with Ki=11[emsp4 ]M and 2[emsp4 ]M, respectively. The two dyes inhibited also serum glycosyltransferases: 1,2fucosyltransferase (GDP-L-fucose: -D-galactosyl-R2--L-fucosyltransferase, EC 2.4.1.69), 1,4galactosyltransferase (UDP-galactose: N-acetyl-D-glucosamine 4--D-galactosyltransferase, EC 2.4.1.90) and 1,3N-acetylglucosaminyltransferase (UDP-GlcNAc: 4--D-galactosyl-D-glucose). Cibacron Blue 3GA was a more effective inhibitor of the glycosyltransferases that use UDP-linked sugar donors than Reactive Red 120 while the latter was a stronger inhibitor of the fucosyltransferases that use GDP-linked donor. All four glycosyltransferases could be affinity purified on Cibacron Blue 3GA-Agarose columns. The order of elution of glycosyltransferases from the columns with solutions of 0.25–1.0[emsp4 ]M potassium iodide also depended upon the structure of nucleotide sugar donor, i.e. whether it contained UDP or GDP. Thus, triazine dyes should interact with the sugar donor binding sites of glycosyltransferases. The main advantages of the use of triazine dyes as affinity ligands for isolation of glycosyltransferases are their universal applicability regardless of enzyme specificity, low cost, and insensitivity to high concentration of other proteins present in the solution.  相似文献   

20.
Guo M  Lu F  Liu M  Li T  Pu J  Wang N  Liang P  Zhang C 《Biotechnology letters》2008,30(12):2091-2096
A recombinant laccase from Trametes versicolor in Pichia methanolica was produced constitutively in a defined medium. The recombinant laccase was purified using ultrafiltration, anion-exchange chromatography, and gel filtration. The molecular weight of the purified laccase was estimated as 64 kDa by SDS-PAGE. The purified recombinant laccase decolorized more than 90% of Remazol Brilliant Blue R (RBBR) initially at 80 mg l−1 after 16 h at 45°C and pH 5 when 25 U laccase ml−1 was used. The purified recombinant laccase could efficiently decolorize RBBR without additional redox mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号