首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
Summary Taurine is known to increase ATP-dependent calcium ion (Ca2+) uptake in retinal membrane preparations and in isolated rod outer segments (ROS) under low calcium conditions (10M) (Pasantes-Morales and Ordóñez, 1982; Lombardini, 1991). In this report, ATP-dependent Ca2+ uptake in retinal membrane preparations was found to be inhibited by 5M cadmium (Cd2+), suggesting the involvement of cation channel activation. The activation of cGMP-gated cation channels, which are found in the ROS, is a crucial step in the phototransduction process. An inhibitor of cGMP-gated channels, LY83583, was found to inhibit taurine-stimulated ATP-dependent Ca2+ uptake but had no effect on ATP-dependent Ca2+ uptake in the absence of taurine, indicating that taurine may be increasing ATP-dependent Ca2+ uptake through a mechanism of action involving the opening of cGMP-gated channels. The activation of cGMP-gated channels with dibutyryl-cGMP and with phosphodiesterase inhibition using zaprinast caused an increase in ATP-dependent Ca2+ uptake in isolated ROS, but not in taurine-stimulated ATP-dependent Ca2+ uptake. LY83583 had the same effects in isolated ROS as in retinal membrane preparations. Another inhibitor of cGMP-gated channels, Rp-8-Br-PET-cGMPS, produced the same pattern of inhibition in isolated ROS as LY83583. Thus, there appears to be a causal link between taurine and the activation of the cGMP-gated channels in the ROS under conditions of low calcium concentration, a connection that suggests an important role for taurine in the visual signalling function of the retina.  相似文献   

2.
ATP-dependent Ca2+ uptake was investigated at low Ca2+ concentrations (10 microM) in rat retinal synaptosomal and mitochondrial preparations obtained by differential centrifugation on Ficoll gradients. Ca2+ uptake in the synaptosomal and mitochondrial subcellular preparations was stimulated by ATP and additionally stimulated by ATP plus taurine. The ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptakes were inhibited by mitochondrial metabolic inhibitors (atractyloside, oligomycin, and ruthenium red). These metabolic inhibitors had a greater effect on the ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptake activities in the mitochondrial preparation than in the synaptosomal preparation. ATP-dependent Ca2+ uptake in a synaptosomal subfraction obtained by osmotic shock was only partially inhibited by atractyloside. ATP-dependent Ca2+ uptake in the synaptosomal subfraction was also stimulated by taurine but to a lesser extent than in either the synaptosomal or mitochondrial preparation. These studies suggest that mitochondria are primarily responsible for taurine-stimulated ATP-dependent Ca2+ uptake in synaptosomal preparations.  相似文献   

3.
The effects of taurine on ATP-dependent calcium ion uptake and protein phosphorylation of rat retinal membrane preparations were investigated. Taurine (20 mM) stimulates ATP-dependent calcium ion uptake by twofold in crude retinal homogenates. In contrast, it inhibits the phosphorylation of specific membrane proteins as shown by acrylamide gel electrophoresis and autoradiography. The close structural analogue of taurine, 2-aminoethylhydrogen sulfate, demonstrates similar effects in both systems, i.e., stimulation of ATP-dependent calcium ion uptake and inhibition of protein phosphorylation, whereas isethionic acid and guanidinoethanesulfonate have no effect on either system. A P1 subcellular fraction of the retinal membrane preparation that contains photoreceptor cell synaptosomes has a higher specific activity for the uptake of calcium ions. Phosphorylation of specific proteins in the P1 fraction is also inhibited by the addition of 20 mM taurine. Taurine has no effect on retinal ATPase activities or on phosphatase activity, thus suggesting that it directly affects a kinase system.  相似文献   

4.
We have studied the correlation between [3H]ouabain binding sites, (Na++K+)ATPase (EC 3.6.1.3) activity and acetylcholine (ACh) release in different subcellular fractions ofTorpedo marmorata electric organ (homogenate, synaptosomes, presynaptic plasma membranes). Presynaptic plasma membranes contained the greater number of [3H]ouabain binding sites in good agreement with the high (Na++K+)ATPase activity found in this fraction. Blockade of this enzymatic activity by ouabain dose-dependently induced ACh release from pure cholinergic synaptosomes, either in the presence or absence of extracellular calcium ions. We suggest that one of the mechanisms involved in the ouabain-induced ACh release in the absence of Ca2+ o may be an increase in Na+ i that could (a) evoke Ca2+ release from internal stores and (b) inhibit ATP-dependent Ca2+ uptake by synaptic vesicles.  相似文献   

5.
Conventional subcellular fractionation techniques have been applied to human fetal brain (13–15 weeks gestation) and the fractions have been characterized by assaying for marker enzymes, cholinergic binding sites and electron microscopy. Fractionation of the homogenate resulted in a nuclear pellet (P1), a crude mitochrondrial pellet (P2) and a supernatant (S2). Further resolution of the P2 fraction by density gradient centrifugation resulted in two bands at the gradient interfaces and a pellet. The P2 and subsequently the P2B fraction contained intact plasma membrane profiles as judged by the predominance of adenylate cyclase activity and the presence of occluded lactate dehydrogenase which constituted over 70% of the total activity in these fractions. Morphological examination of the gradient fractions revealed that the P2B fraction contains membrane bound structures which resembie synaptosomes prepared from neonatal rat brain. These structures have a granular matrix in which mitochondria and frequently, neurofilaments were observed. Very few synaptic vesicles were present and there was no evidence for post synaptic attachments. The cholinergic markers choline acetyltransferase, acetylcholinesterase and receptor sites defined by quinuclidinyl benzilate and -bungarotoxin binding were enriched in fractions P2 and P2B which contained the bulk of nerve ending particles. This enriched preparation of fetal synaptosomes may be valuable for functional studies on pre-synaptic terminals in developing brain.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

6.
ACTIVE UPTAKE OF [3H]5-HT BY SYNAPTIC VESICLES FROM RAT BRAIN   总被引:2,自引:0,他引:2  
The question of whether synaptic vesicles accumulate [3H]5-HT by an active process was investigated in a mixed population of vesiclcs from whole rat brain. The temperature dependence and the effect of metabolic inhibitors were studied in synaptosomal suspensions and vesicular fractions. Arrhenius plots for synaptosomes differed from those for vesicles as did the temperature coefficients for these two fractions. For synaptosomes the Q10 was 7 and for vesicles 1.6. However, if ATP was added to the incubation, the temperature dependence of vesicular amine accumulation became manifest; the Arrhenius plot resembled that of synaptosomes and the Q10 was greater than 20 indicating strong temperature dependence. In the presence of ATP, vesicular uptake was stimulated approx 8-fold. Ouabain, dinitrophenol and NEM inhibited synaptosomal uptake but failed to affect [3H]5-HT accumulation by vesicles in the absence of ATP. When ATP was added, vesicular uptake was also blocked by NEM but was unaffected by either ouabain or DNP. Total observed uptake consisted of two components, one ATP-dependent and one nonsaturable and ATP-independent. The active process had a Km= 1.25 × 10?7 M and could be completely blocked by either 10?3 M or 10?7 M-reserpine. Active vesicular [3H]5-HT uptake was magnesium dependent and was inhibited by sodium and potassium. Cation effects on uptake were specific and could not be accounted for by either changes in osmotic pressure or ionic strength. It was concluded that synaptic vesicles from whole rat brain accumulate [3H]5-HT by an active process.  相似文献   

7.
The distributions of noradrenaline and dopamine in subcellular fractions of bovine superior cervical ganglia were measured fluorimetrically and were compared with that of acetylcholine. Results indicate that the crude synaptosomal pellet (P2), which contained the bulk of the bound acetylcholine, was not seriously contaminated with catecholamines. The microsomal fraction showed the highest concentration of noradrenaline relative to protein content, while dopamine was richest in P2, possibly due to formation of synaptosomes from nerve endings of the dopaminergic interneurones which have been described in this tissue.  相似文献   

8.
Colchicine blocks axoplasmic flow and produces neurofibrillary degeneration. Brain slices from mice injected intracerebrally with colchicine incorporated more [14C]leucine into protein and had a decreased uptake of [14C]leucine into the perchloric acid-soluble pool than did their controls. Brain RNA content was decreased and free leucine increased by colchicine-induced encephalopathy. The specific activities of proteins from subcellular fractions of colchicine-injected brain were increased in the nuclear fraction, the 100,000-g supernatant, and its vinblastine-precipitable tubulin. The ratio of the specific activity of the crude mitochondrial fraction to that of the total homogenate was decreased, as would consistent with impaired movement of newly labeled protein into synaptosomes. Colchicine-injected brain extracts contained one or more cytosol fractions that stimulated ribosomal incorporation of [14C]leucine into protein in a cell-free system. Colchicine-binding-activity measurements indicated loss of soluble and particulate tubulin in colchicine-injected brains; the decrease of soluble tubulin was verified by its selective precipitation with vinblastine. Colchicine encephalopathy did not affect the rate of spontaneous breakdown of in vitro colchicine binding activity. Similarities of colchicine encephalopathy to the neuron's response to axonal damage suggest that colchicine-induced increase in protein synthesis may, in part, reflect a neuronal response to blockage of neuroplasmic transport.  相似文献   

9.
The properties of active or ATP-dependent calcium transport by islet-cell endoplasmic reticulum and plasma membrane-enriched subcellular fractions were directly compared. These studies indicate that the active calcium transport systems of the two membranes are fundamentally distinct. In contrast to calcium uptake by the endoplasmic reticulum-enriched fraction, calcium uptake by islet-cell plasma membrane-enriched vesicles exhibited a different pH optimum, was not sustained by oxalate, and showed an approximate 30-fold greater affinity for ionized calcium. A similar difference in affinity for calcium was exhibited by the Ca2+-stimulated ATPase activities which are associated with these islet-cell subcellular fractions. Consistent with the effects of calmodulin on calcium transport, calmodulin stimulated Ca2+-ATPase in the plasma membranes, but did not increase calcium-stimulated ATPase activity in the endoplasmic reticulum membranes. The physiological significance of the differences observed in calcium transport by the endoplasmic reticulum and plasma membrane fractions relative to the regulation of insulin secretion by the islets of Langerhans is discussed.  相似文献   

10.
Localization of the increased [32P]-labelling of phosphatidylinositol, caused by arrival of presynaptic impulses in a sympathetic ganglion, was investigated by subcellular fractionation of ganglia that had been labelled before homogenization. Paired superior cervical ganglia were excised from adult rats and incubated with 32P1 and [methyl-14C]choline for 4 h at 37°C. The preganglionic nerve of one ganglion of each pair was stimulated repetitively (10/s) during the last 3 h of incubation. The ganglia were then softened with collagenase, homogenized, and fractionated by density gradient centrifugation. Succinate dehydrogenase served as marker for the distribution of mitochondria on the gradient, and [14C]ACh for synaptosomes. [32P]-labelling of lipids was measured relative to that of phosphatidylcholine. The average changes in relative labelling that were caused by neuronal activity ranged as follows over the homogenate and the various fractions: phosphatidylinositol (PI), increased 39–75%; phosphatidylethanolamine, decreased 10–20%; diphosphatidylglycerol, not significantly affected. The increase in PI labelling was much greater in the denser fractions, in which synaptosomes and mitochondria were concentrated, than in the less dense fractions. The distribution of the PI effect on the gradient could be reasonably well explained by assuming that synaptosomes and mitochondria both contributed to the increase in PI labelling in proportion to the amount of their respective markers in a fraction. One-third or more of the total increase could thus be associated with synaptosomes and one-third or more with mitochondria, although alternative association with other structures could not be excluded. The implications of the inferred association with synaptosomes and mitochondria are discussed, current knowledge of the PI effect caused by impulses entering sympathetic ganglia is summarized, and suggestions concerning its physiological significance are reviewed. It is concluded that PI may have multiple roles in neuronal activity.  相似文献   

11.
《Insect Biochemistry》1987,17(6):911-918
High yields of relatively pure, morphologically well-preserved, functionally competent synaptosomes were prepared from brains of moths of Mamestra configurata using a modified microscale Ficoll flotation technique. Typical preparations yielded 10 mg of synaptosomal protein per gram of moth brains. The moth brain synaptosomes were virtually free of endoplasmic reticulum and mitochondrial contaminants as judged from marker enzyme studies and electron microscopy.Voltage-dependent Ca2+ ion transport was studied using the moth brain synaptosome preparations. Synaptosomes took up radioactive 45Ca2+ from the incubation medium. The rate of uptake was increased up to three-fold when the synaptosomes were incubated in a depolarizing, high [K+] medium. Time course studies indicated that voltage-dependent Ca2+ uptake was composed of an early (<2 sec) fast phase and a late (>10 sec) slow phase.ATP-dependent Ca2+ ion transport was studied in moth brain synaptosome membrane vesicles prepared from synaptosomes by osmotic shock and purified on a second Ficoll gradient. The inside-out synaptosome membrane vesicles contained an ATP-dependent calcium ion pump which transported 45Ca2+ from the incuation medium into the interior of the vesicle in the presence of ATP. The calcium ionophore A23187 rapidly released accumulated 45Ca2+ from the vesicles. The maximal rate of ATP-dependent Ca2+ transport occurred at a [Ca2+ free] of 0.1 to 0.2 nM, indicating that the transport process has a very high affinity for Ca2+ ions.  相似文献   

12.
Abstract— Particulate fractions from rat brain homogenate containing the synaptosomes synthesize and release prostaglandins F and E on aerobic incubation. The prostaglandin of the F-typc released could be further identified as proslaglandin F using specific radioimmunoassays for prostaglandins F, and F2α-. The metabolite 13,14-dihydro-15-keto-prostaglandin F could not be detected. The amount of prostaglandins released is dependent on incubation time and temperature as well as pH and osmolarity of the incubation medium. Total brain homogenate released more prostaglandins than purified synaptosomes per mg protein, indicating that synaptosomes are probably not a main source of prostaglandins when compared with other subcellular brain fractions. While prostaglandin synthesis was only moderately increased by the addition of the precursor fatty acid arachidonic acid, anti-inflammatory drugs like indomethacin, high concentrations of some local anaesthetics and Δ1-tetrahydrocannabinol inhibited prostaglandin release. The neurotransmitters noradrenaline, dopamine and 5-hydroxytryptamine did not influence prostaglandin release from the synaptosomal rat brain fractions.  相似文献   

13.
The ionophore X537A at concentrations of 5–20 M stimulated the release of [3H]GABA and [35S]taurine, from retinal subcellular crude nuclear (P1) and crude synaptosomal (P2) fractions. The release of [3H]GABA increased 114% and 136% over control values in P1 and P2 fractions, respectively. The efflux of [35S]taurine from P1 was increased by 45% and that from P2 by 21%. X537A increased45Ca2+ uptake in the P2 fraction but not in the P1 fraction. The effect of X537A on the amino acid release was not dependent on the presence of exogenous calcium. X537A did not affect [3H]GABA or [35S]taurine uptake by the retinal fractions. A23187 enhanced [3H]GABA release from P1 and P2 by 52% and 105%, respectively. The ionophore also increased [14C]glycine liberation in both P1 (35%) and P2 (50%) but failed to stimulate [35S]taurine release. A23187 produced a transient increase of45Ca2+ uptake of 38% in P1 and 30% in P2. The effects of A23187 on the release of amino acids were calcium dependent. The amino acid uptake was not affected by the ionophore. These results are consisent with the suggested neurotransmitter role for GABA at the outer synaptic layer and for GABA and glycine at the inner synaptic layer of the retina. A neurotransmitter role for taurine is not supported by the present results.  相似文献   

14.
Colchicine blocks axoplasmic flow and produces neurofibrillary degeneration. Brain slices from mice injected intracerebrally with colchicine incorporated more [14C]leucine into protein and had a decreased uptake of [14C]leucine into the perchloric acid-soluble pool than did their controls. Brain RNA content was decreased and free leucine increased by colchicine-induced encephalopathy. The specific activities of proteins from subcellular fractions of colchicine-injected brain were increased in the nuclear fraction, the 100,000-g supernatant, and its vinblastine-precipitable tubulin. The ratio of the specific activity of the crude mitochondrial fraction to that of the total homogenate was decreased, as would be consistent with impaired movement of newly labeled protein into synaptosomes. Colchicine-injected brain extracts contained one or more cytosol fractions that stimulated ribosomal incorporation of [14C]leucine into protein in a cell-free system. Colchicine-binding-activity measurements indicated loss of soluble and particulate tubulin in colchicine-injected brains; the decrease of soluble tubulin was verified by its selective precipitation with vinblastine. Colchicine encephalopathy did not affect the rate of spontaneous breakdown of in vitro colchicine binding activity. Similarities of colchicine encephalopathy to the neuron's response to axonal damage suggest that colchicine-induced increase in protein synthesis may, in part, reflect a neuronal response to blockage of neuroplasmic transport.  相似文献   

15.
–From a pool of hemispheres, optic lobes and cerebellum of chick 3 fractions containing synaptosomes have been prepared. They were obtained by subcellular fractionation of a homogenate and centrifugation of a crude mitochondrial suspension on a discontinuous Ficoll density gradient in iso-osmoticsucrose. The synaptosomal fractions were isolated from bands at the interface of 5–9, 9–12 and 12–16% Ficoll. The characterization of these fractions by marker enzymes, such as lactate dehydrogenase, acetyl-cholinesterase, monoamine oxidase, acid phosphatase and rotenone-sensitive and -insensitive NADH: cytochrome c reductase is reported. Electron microscopic analyses showed that the first fraction (AB) at the 5–9% Ficoll interface contained myelin and other membrane fragments as well as synaptosomes, the second fraction (C) at the 9–12% Ficoll interface contained mainly synaptosomes, and the third fraction (D) at the 12–16% Ficoll interface contained synaptosomes and free mitochondria. A fourth fraction (E) was obtained as a pellet, and was enriched in free mitochondria. There was fair agreement between the distribution pattern of the marker enzyme activities and the particles of the fractions seen by electron microscopy. The content of glycoprotein-bound N-acetylneuraminic acid and total phospholipid of these fractions has been determined. Relative to the mitochondrial fraction (E) the synaptosome fraction contained on basis of particulate protein, respectively, 2–3 times as much protein-bound N-acetylneuraminic acid and 10–20 per cent more total phospholipid.  相似文献   

16.
The subcellular localization and biochemical characterization of calcium transport were studied in the unicellular green alga Mesotaenium caldariorum. Membrane fractions prepared by osmotic lysis of Mesotaenium protoplasts exhibit high rates of ATP-dependent calcium uptake. Sucrose gradient centrifugation separates two pools of activity, which display specific activities for calcium transport as high as 15 nanomoles Ca2+ per minute per milligram of protein. Marker enzyme analysis shows that this dual distribution of calcium transport activity is similar to that of vanadate-insensitive ATPase and pyrophosphatase, activities considered to be associated with the tonoplast. Plasma membranes, endoplasmic reticulum vesicles, mitochondrial membranes, and thylakoids band at higher densities than either calcium transport fraction. Both pools of ATP-dependent calcium uptake contain two components which are not separable on sucrose gradients but can be distinguished on the basis of inhibitor sensitivity. One component is inhibited by nigericin or trimethyltin chloride (I50 values of 3 nanomolar and 4 micromolar, respectively), while the other component is vanadate sensitive (I50 of 25 micromolar). These results suggest that direct Ca2+ transport and Ca2+/H+ antiport activities are present in both sucrose gradient fractions.  相似文献   

17.
Calcium-activated neutral proteinase (CANP) activity was determined in subcellular fractions and in different regions of bovine brain. The CANP specific activity in spinal cord and corpus callosum, areas rich in myelin, were almost six-fold greater than cerebral cortex and cerebellum. Treatment of whole homogenate and myelin with 0.1% Triton X-100 increased the CANP activity by tenfold. Subcellular fractions were prepared from bovine brain gray and white matter. Most of the CANP activity (70%) was in the primary particulate fractions P1 (nuclear), P2 (mitochondrial) and P3 (microsomal). On subfractionation of each particulate fraction, the majority of the activity (greater than 50%) was recovered in the myelin-enriched fractions (P1A, P2A, P3A) which separate at the interphase of 0.32 M- and 0l85 M-sucrose. The distribution of activity was P2A>P1A>P3A. Further purification of myelin (of P2A) increased the specific activity over homogenate by more than three-fold. The same myelin fractions contained the highest proportion (60%) and specific activity (five-fold increase) of CNPase. The enzyme activity in different regions of brain and in subcellular fractions was increased by 20–39% after the inhibitor was removed. Electron microscopic study confirmed that the myelin fractions were highly purified. The cytosolic fraction contained 20–30% of the total homogenate CANP activity. Other fractions contained low enzyme activity. CANP was identified in the purified myelin fraction by electroimmublot-technique. It is concluded that the bulk of CANP in CNS is tightly bound to the membrane, may be masked or hidden and is intimately associated with the myelin sheath.Abbreviations Used CANP calcium-activated neutral proteinase - CNPase adenosine-2, 3-cyclic nucleotide 3-phosphohydrolase  相似文献   

18.
The effect of cold stress on the ganglioside fatty acid composition and sialic acid content of brain subcellular fractions and homogenate of rats was studied, the animals were kept in a cold room with 12h light-dark cycles at 3 and 10 degrees C for 2 weeks. (1) The rat brain homogenate, synaptosomes and myelin of rats exposed to 3 degrees C contained significantly higher amounts of ganglioside-bound sialic acid per mg of protein than these fractions of control rats kept at 23 degrees C; the differences were less pronounced in rats exposed to 10 degrees C. (2) A small, but significant, diminution of relative palmitic acid content and an increase of stearic acid content was found to take place in gangliosides from rat brain synaptosomes, synaptosomal plasma membranes and homogenate as a result of the exposure of animals to 3 degrees C and to a lesser extent to 10 degrees C. (3) The content of unsaturated fatty acids in gangliosides from brain subcellular fractions was approximately the same in cold exposed and control rats.  相似文献   

19.
Rat parotid gland homogenates were fractionated into mitochondrial, heavy microsomal and light microsomal fractions by differential centrifugation. ATP-dependent 45Ca2+ uptake by the subcellular fractions paralleled the distribution of NADPH-cytochrome c reductase, an enzyme associated with the endoplasmic reticulum. The highest rate of Ca2+ uptake was found in the heavy microsomal fraction. Ca2+ uptake by this fraction was dependent on the presence of ATP and was sustained at a linear rate by 5 mM-oxalate. Inhibitors of mitochondrial Ca2+ transport had no effect on the rate of Ca2+ uptake. Na+ and K+ stimulated Ca2+ uptake. At optimal concentrations. Na+ stimulated Ca2+ uptake by 120% and K+ stimulated Ca2+ uptake by 260%. Decreasing the pH from 7.4 to 6.8 had little effect on Ca2+ uptake. The Km for Ca2+ uptake was 3.7 microM free Ca2+ and 0.19 mM-ATP. Vanadate inhibited Ca2+ uptake; 60 microM-vanadate inhibited the rate of Ca2+ accumulation by 50%. It is concluded that the ATP-dependent Ca2+ transport system is located on the endoplasmic reticulum and may play a role in maintaining intracellular levels of free Ca2+ within a narrow range of concentration.  相似文献   

20.
Neurotoxic esterase (NTE) is now regarded as the site of the primary biochemical lesion in the delayed neuronal degeneration produced by certain organophosphorus esters. Since hens are the species of choice in studies of this neuropathy the subcellular distribution of NTE and marker enzymes in adult hen brain was carried out. Up to 70%, of NTE was recovered in a microsomal fraction (P3) which was also enriched in 5′-nucleotidase (5′-ribonucleotide phosphohydrolase EC 3.1.3.5), a plasma membrane marker. The protein content of this fraction (31% of the parent homogenate) is double that of equivalent mammalian brain fractions. The LDH distribution suggests that the P3 fraction contained many small synaptosomes. Subfractionation of microsomes by rate and equilibrium centrifugation on sucrose density gradients segregated the RNA but failed to separate the NTE. 5′-nucleotidase and glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase EC 3.1.3.9) from each other. NTE was considerably concentrated (2–5 times) in subfractions of the P2 fraction, which are believed to be enriched in synaptosomal membranes. A similar localization of NTE and AChE was found in subfractions of P2 from neonatal chick brain. Axon fragments contained a significant amount of NTE which was not associated with the myelin. Nuclear and mitochondrial fractions were low in NTE. Microsomes could be partitioned in biphasic aqueous polymer systems, but with little enrichment of NTE. The possible association of NTE with synaptosomal membranes suggests that early events in organophosphorus neuropathy may occur at the axonal (? synaptic) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号