首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.  相似文献   

2.
Binding of antigen to B-cell antigen receptor (BCR) leads to antigen internalization and presentation to T cells, a critical process in the initiation of the humoral immune response. However, antigen internalization has been demonstrated for soluble antigen, in vivo antigen is often encountered in insoluble form or tethered to a cell surface. Here, we show that not only can B cells internalize and present large particulate antigen (requiring a signalling-competent BCR to drive antigen uptake), but they can also extract antigen that is tethered tightly to a non-internalizable surface. The form in which the antigen is displayed affects the B cell's ability to discriminate antigen-BCR affinity. Thus, arraying an antigen on a particle or surface allows efficient presentation of low affinity antigens. However, the presentation efficiency of antigen arrayed on an internalizable particle plateaus at low affinity values. In contrast, extraction and presentation of antigen from a non-internalizable surface depends on antigen-BCR affinity over a wide affinity range. The results have implications for understanding both the initiation and affinity maturation of the immune response.  相似文献   

3.
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.  相似文献   

4.
The humoral immune response and antibody-mediated functions of B cells during viral infections are well described. However, we have limited understanding of antibody-independent B cell functions, such as cytokine production and antigen presentation, in acute and chronic viral infections and their role in protection and/or immunopathogenesis. Here, we summarize the current literature on these antibody-independent B cell functions and identify remaining knowledge gaps. B cell subsets produce anti- and pro-inflammatory cytokines, which can have both beneficial and detrimental effects during viral clearance. As professional antigen presenting cells, B cells also play an important role in immune regulation/shaping of the developing adaptive immune responses. Since B cells primarily express TLR7 and TLR9, we specifically discuss the role of Toll-like receptor (TLR)-mediated B cell responses to viral infections and their role in augmenting adaptive immunity through enhanced cytokine production and antigen presentation. However, viruses have evolved strategies to subvert TLR signaling and additional stimulation via B cell receptor (BCR) may be required to overcome the defective TLR response in B cells. To conclude, antibody-independent B cell functions seem to have an important role in regulating both acute and chronic viral infections and may form the basis for novel therapeutic approaches in treatment of viral infections in the future.  相似文献   

5.
In this study, we ask whether antigen presentation can be effected by antigen-activated B cells. Antigen-dependent in vitro proliferation of T cells from mice primed with SRBC or HoRBC occurs in the presence of B cells primed to the relevant antigen. B cells prepared from lymph nodes of mice primed with irrelevant antigens are not effective antigen-presenting cells for RBC-specific T cell proliferation over a wide range of SRBC doses. This is true even when both RBC and the antigen to which the B cells are primed are included in the culture. In contrast, B cells specific for a hapten determinant coupled to SRBC are able to support proliferation of T cells specific for SRBC determinants. We conclude from these data that antigen-specific B cells play a role in the induction of T cell proliferative responses to SRBC and HoRBC antigens. Two models are proposed: either B cells, upon antigen interaction with surface antibody, are able to act as accessory cells to induce Ia-dependent proliferation of immune T cells; or B cells augment the T cell proliferative response by secretion of antibody, leading to opsonization of the antigen for macrophage uptake and presentation.  相似文献   

6.
Natural killer T cells expressing an invariant T cell antigen receptor (iNKT cells) are cells of the innate immune system. After recognizing glycolipid antigens presented by CD1d molecules on antigen presenting cells (APCs), iNKT cells rapidly produce large quantities of cytokines, thereby stimulating many types of cells. Recent studies have described several mechanisms of iNKT cell activation and the contribution of these cells to antimicrobial responses. iNKT cells can be activated by endogenous antigens and/or inflammatory cytokines from APCs. However, iNKT cells also recognize certain microbial glycolipids by their invariant T cell antigen receptor (TCR), and they contribute to pathogen clearance in certain microbial infections. These findings indicate that the iNKT TCR is useful for detecting certain microbial pathogens. Moreover, recent studies suggest that iNKT cell glycolipid antigens may be useful in antimicrobial therapy and vaccines.  相似文献   

7.
T cells recognize antigen fragments from proteolytic products that are presented to them in the form of peptides on major histocompatibility complex (MHC) molecules, which is crucial for the T cell to identify infected or transformed cells. Autophagy, a process that delivers cytoplasmic constituents for lysosomal degradation, has been observed to provide a substantial source of intra- and extracellular antigens for MHC presentation to T cells, which will impact the tumor-specific immune response. Meanwhile, extracellular components are transported to cytoplasm for the degradation/secretion process by the endo-/exosomal pathway and are thus involved in multiple physiological and pathological processes, including immune responses. Autophagy and endo-/exosomal pathways are intertwined in a highly intricate manner and both are closely involved in antigen processing for MHC presentation; thus, we propose that they may coordinate in antigen processing and presentation in anticancer T cell immune responses. In this article, we discuss the molecular and functional crosstalk between autophagy and endo-/exosomal pathways and their contributions to antigen processing for MHC presentation in anticancer T cell immune responses.  相似文献   

8.
The heptapeptide antigen angiotensin III can be presented to guinea pig T cells by paraformaldehyde-treated antigen-presenting cells, which are incapable of processing antigens and presumably cannot even ingest them. We demonstrate here that the decapeptide angiotensin I can outcompete angiotensin III for presentation by paraformaldehyde-treated antigen-presenting cells. It seems likely that the competition is for a site on the surface of the presenting cell. This extends earlier findings of competition for presentation between antigens. We also demonstrate that the antigens of the angiotensin series are highly susceptible to proteolytic destruction in cultures containing prefixed accessory cells. The proteases responsible for the destruction of these peptides are apparently located in the plasma membrane of accessory cells. These enzymes represent a methodologic problem in studies of competition between antigens for presentation; but since they presumably are active also in untreated cells, they may play a physiologic role in the normal immune response.  相似文献   

9.
10.
How B cells and dendritic cells may cooperate in antigen purification   总被引:1,自引:0,他引:1  
The specificity of the immunological responses is achieved through the cooperation of three classes of cells: B and T lymphocytes, and dendritic cells (DCs). A critical, intensely studied interaction is that between DCs and T cells, during which the DC presents MHC-bound antigenic fragments to the T cell receptor (TCR). There has been recent excitement about the possibility of increasing the signal-to-noise ratio in the detection of cognate antigen-TCR couples, by the use of kinetic proofreading mechanisms. We examine here the signal-to-noise problem in a broader perspective, and in particular, address the question of possible "antigen purification" mechanisms, prior to their presentation to the T cells. Ways in which the DCs might concentrate, purify and preserve their load of captured antigens are considered: (i) If antigens can be transferred from one DC to another, in such a way that the richer a DC in antigen, the more it captures antigens from other DCs, the antigens may end up concentrated in a small subset of DCs, (ii) antigen purification may be achieved through recycling interactions between DCs and B cells. A DC would transmit to a B cell antigen mixtures, and the DC would recapture only the antigens which can bind to the B cell's antibodies and (iii) dendrites, when they are present, may play an essential role in recapturing the antigens that were used in interactions of DCs with T cells, B cells, or other DCs, thereby reducing antigen losses. More generally, we provide a personal interpretation of cell-to-cell antigen transfers, in terms of a strategy in which there is a progressive emergence, through multiple interactions, of subsets of cells of each type better and better prepared for the subsequent rounds of interactions.  相似文献   

11.
IgG-containing B cell antigen receptor (IgG-BCR), the BCR mostly expressed on memory B cells, contains a distinct signaling function from IgM-BCR or IgD-BCR expressed on naïve B cells. Because naïve B cells transgenic for IgG exhibit augmented response to antigens similar to memory B cells, the distinct signaling function of IgG-BCR appears to play a role in augmented antibody responses of memory B cells. However, how IgG-BCR signaling augments B cell responses is not yet well understood. Here we demonstrate that B cells from IgG-transgenic mice are anergic with defect in generation of BCR signaling upon BCR ligation. However, these IgG-transgenic B cells generate markedly augmented antibody response to a T cell-dependent antigen, probably due to hyper-responsiveness to a T cell-derived signal through CD40. Both BCR signaling defect and augmented response to CD40 ligation are partially restored in xid IgG-transgenic mice in which BCR signaling is down-modulated due to a loss-of-function mutation in the tyrosine kinase Btk crucial for BCR signaling. Thus, IgG-BCR induces augmented B cell responses in the absence of antigen-induced BCR signaling probably through high ligand-independent BCR signaling that may “idle” B cells to make them ready to respond to T cell help. This finding strongly suggests a crucial role of ligand-independent signaling in receptor function.  相似文献   

12.
Horizontal transmission of cytomegaloviruses (CMV) occurs via prolonged excretion from mucosal surfaces. We used murine CMV (MCMV) infection to investigate the mechanisms of immune control in secretory organs. CD4 T cells were crucial to cease MCMV replication in the salivary gland (SG) via direct secretion of IFNγ that initiated antiviral signaling on non-hematopoietic cells. In contrast, CD4 T cell helper functions for CD8 T cells or B cells were dispensable. Despite SG-resident MCMV-specific CD8 T cells being able to produce IFNγ, the absence of MHC class I molecules on infected acinar glandular epithelial cells due to viral immune evasion, and the paucity of cross-presenting antigen presenting cells (APCs) prevented their local activation. Thus, local activation of MCMV-specific T cells is confined to the CD4 subset due to exclusive presentation of MCMV-derived antigens by MHC class II molecules on bystander APCs, resulting in IFNγ secretion interfering with viral replication in cells of non-hematopoietic origin.  相似文献   

13.
In vitro studies have confirmed that cognate interactions between T and B cells are required to demonstrate enhanced helper activity using T cells with upregulated IgD-receptors (IgD-Rs). We studied the mechanism by which IgD-R+ T cells facilitate antibody responses by examining whether T cells also benefit from their expression of IgD-R. Experiments were designed to determine whether upregulation of IgD-R on T cells facilitates antigen presentation by IgD+ B cells. Goat Ig-primed splenic T cells from BALB/c mice were tested for their ability to respond to antigen-presenting B cells treated with goat anti-mouse (GAM) IgM or GAM IgD. T cell responses to GAM IgM and GAM IgD presented by B cells were significantly higher when goat Ig-primed cells were induced to express IgD-R by exposure to oligomeric IgD compared with goat Ig-primed control T cells. This effect was inhibited when monomeric IgD was added to the cultures. No differences in T and IgD-R+ T cell responses were seen using adherent cells as APCs. B cells from IgD-/- mice were also tested. Such B cells present antigen to IgD-R+ T cells without promoting enhanced responses compared with B cells from heterozygous IgD+/- mice. These studies suggest that IgD may play a costimulatory role during antigen presentation. We conclude that when T cells are induced to express IgD-R, these lectin-like receptors can ligate B cell membrane IgD during antigen presentation to facilitate responses of each of the cells engaged in cognate interaction, yielding enhanced antigen-specific T cell and B cell responses.  相似文献   

14.
Previous experiments suggested a role for specific B cells in the induction of antigen (SRBC)-specific T cell proliferation. Two models were proposed: in the first, B cells directly presented antigen to T cells; alternatively, B cells secreted antibody, which opsonized antigen for presentation by macrophages. Experiments to distinguish between these possibilities are presented here. Three lines of evidence support the conclusion that antigen is presented directly by specific B cells. First, nonimmune splenic adherent cells (SAC), which efficiently induced proliferation of appropriately primed T cells to antigens such as OVA and GAT, were unable to induce SRBC-specific proliferation. Secondly, a slope analysis of the logarithmic plot of T cell proliferation vs the number of irradiated B cells suggested that two cells were limiting within the presenting population. The addition of IL 1 or SAC reduced the slope to 1 (although in serum-free conditions, the addition of IL 1, but not SAC, reduced the slope of the line). Specificity of the B cells for the antigen continued to be required in the presence of exogenous IL 1 or SAC. These results suggested that presentation by specific B cells and the amount of IL 1 were the limiting requirements for the induction of SRBC-specific T cell proliferation. The third line of evidence was the demonstration of a restricted interaction between T cells and B cells. The addition of irradiated, allogeneic SRBC-specific B cells to T cell lines and syngeneic SAC failed to support proliferative responses. We further show that a GAT-specific T cell clone was triggered to proliferate by either SAC or B cells, but that antigen-specific B cells were necessary at low doses of antigen. This finding is important in two respects. First, the T cell clone previously has been shown to act as a helper; secondly, when low doses of antigen are used, the requirement for priming of the B cells to the specific antigen is true for a soluble, as well as a particulate, antigen. We propose that at low (physiologic) doses of antigen, presentation to secondary T cells takes place mainly at the surface of antigen-specific B cells. At high doses of antigen,h presentation can also be accomplished by nonspecific cells such as other B cells, macrophages, or dendritic cells.  相似文献   

15.
Dendritic cells: Potential role in cancer therapy   总被引:2,自引:0,他引:2  
Dendritic cells (DC) are extremely potent antigen presenting cells, uniquely capable of sensitizing naive T cells to protein antigens and eliciting antigen specific immune responses. Studies of human DC isolated from peripheral blood indicate that these cells can be used to stimulate and expand antigen specific CD4+ and CD8+ T cells, in vitro. On the basis of these findings we have initiated pilot clinical studies to investigate the ability of DC pulsed ex vivo with tumor associated proteins to stimulate host anti-tumor immunity when re-infused as a vaccine. In the first such study DC pulsed with tumor derived idiotype protein were infused into patients with low grade malignant B cell lymphoma who had failed conventional chemotherapy. The majority of treated patients developed T cell mediated anti-idiotype immune responses and some of the patients experienced tumor regression. These results suggest that DC based immunotherapy is a potentially useful approach to B cell lymphoma and raises the possibility that the approach may prove useful in the treatment of other tumors as well. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Processing of antigens by proteases in the endocytic compartments of antigen presenting cells (APC) is essential to make them suitable for presentation as antigenic peptides to T lymphocytes. Several proteases of the cysteine, aspartyl and serine classes are involved in this process. It has been speculated, that the aspartyl protease cathepsin E (CatE) is involved in antigen processing in B cell line, monocyte-derived dendritic cells (DC) and murine DC. Here we show the expression of CatE in primary human B cells and DC, which was only elevated in B cells after induction with phorbol 12-myristate 13-acetate (PMA), resulted in enhanced presentation of tetanus toxin C-fragment (TTC) to the respective T cells. Inhibition of aspartyl proteases using pepstatin-A-penetratin (PepA-P), a highly efficient, cell-permeable aspartyl protease inhibitor, reduced significantly T cell activation in PMA activated B cells but not in PMA activated myeloid DC (mDC). Thus we suggest that CatE is important in the processing of TTC in primary human B cells.  相似文献   

17.
Evidence has been presented to show that CD4+ autoreactive T cell lines (ATs)2 in the rat require periodic stimulation with syngeneic spleen cells for in vitro proliferation. This proliferation can be blocked by treatment of the stimulator (spleen) cells with mAb to Ia antigens. Although ATs are Ia+ and can activate the allogeneic MLR, they fail to be autostimulatory. Fractionation of the spleen cells revealed that ATs can be stimulated with B cells and not by macrophages, although the latter were efficient in several accessory cell functions, including antigen presentation, lectin-dependent T cell activation and allogenic MLR response. Moreover, B cells proliferated and differentiated in response to AT cells. These data are compatible with a model in which ATs respond to hitherto undetermined B cell membrane antigen(s) in association with MHC class II antigens. These results may have important implications in understanding autoimmune responses.  相似文献   

18.
Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.  相似文献   

19.
Immunology     
It has been known for the past 85 years that mucosal responses can be stimulated by local presentation of antigen and that the gut immune system is capable of mounting both primary and secondary responses to potentially harmful antigens while avoiding the expression of damaging responses to harmless dietary proteins. How these types of responses are induced and regulated remains unclear. In the gut attention has for some time been focused on Peyer's patches (PP) due to evidence that they play a vital role in the induction of humoral and cellular responses. Moreover, it has been established that MHC class II molecules are found in the gut mucosa on a variety of cell types outside PP, namely the lamina propria (LP). Fed antigens have also been detected in the LP and studies have shown that LP cells can stimulate allogeneic mixed lymphocyte responses and are capable of presenting soluble protein antigen to naïve T cells. This article reviews the present understanding of the possible roles of PP and LP in intestinal immunity in terms of induction, regulation, surveillance of immune responses and the antigen presenting cell types involved.  相似文献   

20.
Targeting dendritic cells for priming cellular immune responses   总被引:5,自引:0,他引:5  
The cardinal role of dendritic cells (DC) in priming adaptive immunity and in orchestrating immune responses against all classes of pathogens and also against tumors is well established. Their unique potential both to maintain self-tolerance and to initiate protective immune responses against foreign and/or dangerous structures is based on the functional diversity and flexibility of these cells. Tissue DC lining antigenic portals such as mucosal surfaces and the skin are specialized to take up a wide array of compounds including proteins, lipids, carbohydrates, glycoproteins, glycolipids and oligonucleotides, particles carrying such structures and apoptotic or necrotic cells. This process is facilitated by specialized receptors with high endocytic capacity, which provides potential targets for delivering designed molecules. The best route for targeting B- and/or T cell epitopes, however, is still the subject of intense investigation. Immature DC, which reside in various tissues, can be activated by pathogens, stress and inflammation or modified metabolic products, which induce mobilization of cells to draining lymph nodes where they act as highly potent professional antigen presenting cells. This is brought about by the ability to present their accumulated intracellular content for both CD4+ helper (Th) and CD8+ cytotoxic/cytolytic T lymphocytes (Tc/CTL). Engulfed proteins are processed intracellularly and their peptide fragments are transported to the cell surface in the context of major histocompatibility complex encoded class I and II molecules for presentation to Th cells and CTLs, respectively. The T cell priming capacity of DC, however, depends not only on antigen presentation but also on other features of DC. Human monocyte-derived DC provide an excellent tool to study the internalizing, antigen-presenting and T cell-activating functions of DC at their immature and activated differentiation states. These biological activities of DC, however, are highly dependent on their migratory potential from the peripheral non-lymphoid tissues to the lymph nodes, on the expression of adhesion molecules, which support the interaction of DC with T lymphocytes, and the cytokines secreted by DC, which polarize immune responses to Th1-mediated cellular or Th2-mediated antibody responses. These results altogether demonstrate that monocyte-derived DC are useful candidates for in vitro or in vivo targeting of antigens to induce efficient adaptive immune responses against pathogens and also against tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号