首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coaggregation receptor polysaccharides (RPS) of Streptococcus oralis and related species are recognized by lectin-like adhesins on other members of the oral biofilm community and by RPS-specific antibodies. The former interactions involve beta-GalNAc or beta-Gal containing host-like motifs in the oligosaccharide repeating units of these polysaccharides, whereas the latter involves features of these molecules that are immunogenic. In the present investigation, the molecular and corresponding structural basis for the serotype specificity of S. oralis ATCC 10557 RPS was determined by engineering the production of this polysaccharide in transformable Streptococcus gordonii 38. This involved the systematic replacement of genes in the rps cluster of strain 38 with different but related genes from S. oralis 10557 and structural characterization of the resulting polysaccharides. The results identify four unique genes in the rps cluster of strain 10557. These include wefI for an alpha-Gal transferase, wefJ for a GalNAc-1-phosphotransferase that has a unique acceptor specificity, wefK for an acetyl transferase that acts at two positions in the hexasaccharide repeating unit, and a novel wzy associated with the beta1-3 linkage between these units. The serotype specificity of engineered polysaccharides correlated with the wefI-dependent presence of alpha-Gal in these molecules rather than with partial O-acetylation or with the linkage between repeating units. The findings illustrate a direct approach for defining the molecular basis of polysaccharide structure and antigenicity.  相似文献   

2.
The presence of L-rhamnose (Rha) branches in the coaggregation receptor polysaccharides (RPS) of Streptococcus gordonii 38 and Streptococcus oralis J22 was eliminated by replacement of wefB with ermAM in these strains. The expression of this gene in S. oralis 34 did not, however, result in the addition of Rha branches to the linear RPS of this strain, which is identical to that produced by the wefB-deficient mutant of S. gordonii 38. This paradoxical finding was explained by a subtle difference in acceptor specificity of the galactose-1-phosphotransferases encoded by downstream wefC in S. gordonii 38 and wefH in S. oralis 34. These genes were distinguished by the unique ability of WefC to act on the branched acceptor formed by the action of WefB.  相似文献   

3.
An agglutinin that has high affinity for GalNAcbeta1-->, was isolated from seeds of Wistaria sinensis by adsorption to immobilized mild acid-treated hog gastric mucin on Sepharose 4B matrix and elution with aqueous 0.2 M lactose. The binding property of this lectin was characterized by quantitative precipitin assay (QPA) and by inhibition of biotinylated lectin-glycan interaction. Of the 37 glycoforms tested by QPA, this agglutinin reacted best with a GalNAcbeta1-->4 containing glycoprotein (GP) [Tamm-Horsfall Sd(a+) GP]; a Galbeta1-->4GlcNAc containing GP (human blood group precursor glycoprotein from ovarian cyst fluid and asialo human alpha1-acid GP) and a GalNAcalpha1-->3GalNAc containing GP (asialo bird nest GP), but poorly or not at all with most sialic acid containing glycoproteins. Among the oligosaccharides tested, GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc (Fp) was the most active ligand. It was as active as GalNAc and two to 11 times more active than Tn cluster mixtures, Galbeta1--> 3/4GlcNAc (I/II), GalNAcalpha1-->3(L-Fucalpha1-->2)Gal (Ah), Galbeta1-->4Glc (L), Galbeta1-->3GalNAc (T) and Galalpha1--> 3Galalpha-->methyl (B). Of the monosaccharides and their glycosides tested, p-nitrophenyl betaGalNAc was the best inhibitor; it was approximately 1.7 and 2.5 times more potent than its corresponding alpha anomer and GalNAc (or Fp), respectively. GalNAc was 53.3 times more active than Gal. From the present observations, it can be concluded that the Wistaria agglutinin (WSA) binds to the C-3, C-4 and C-6 positions of GalNAc and Gal residues; the N-acetyl group at C-2 enhances its binding dramatically. The combining site of WSA for GalNAc related ligands is most likely of a shallow type, able to recognize both alpha and beta anomers of GalNAc. Gal ligands must be Galbeta1-->3/4GlcNAc related, in which subterminal beta1-->3/4 GlcNAc contributes significantly to binding; hydrophobicity is important for binding of the beta anomer of Gal. The decreasing order of the affinity of WSA for mammalian structural carbohydrate units is Fp >/= multi-II > monomeric II >/= Tn, I and Ah >/= E and L > T > Gal.  相似文献   

4.
The antigenically related coaggregation receptor polysaccharides (RPS) of Streptococcus oralis strains C104 and SK144 mediate recognition of these bacteria by other members of the dental plaque biofilm community. In the present study, the structure of strain SK144 RPS was established by high resolution NMR spectroscopy as [6Galfβ1-6GalNAcβ1-3Galα1-2ribitol-5-PO4-6Galfβ1-3Galβ1]n, thereby indicating that this polysaccharide and the previously characterized RPS of strain C104 are identical, except for the linkage between Gal and ribitol-5-phosphate, which is α1-2 in strain SK144 versus α1-1 in strain C104. Studies to define the molecular basis of RPS structure revealed comparable genes for six putative transferases and a polymerase in the rps loci of these streptococci. Cell surface RPS production was abolished by disrupting the gene for the first transferase of strain C104 with a nonpolar erm cassette. It was restored in the resulting mutant by plasmid-based expression of either wcjG, the corresponding gene of S. pneumoniae for serotype 10A capsular polysaccharide (CPS) biosynthesis or wbaP for the transferase of Salmonella enterica that initiates O-polysaccharide biosynthesis. Thus, WcjG, like WbaP, appears to initiate polysaccharide biosynthesis by transferring galactose-1-phosphate to a lipid carrier. In further studies, the structure of strain C104 RPS was converted to that of strain SK144 by replacing the gene (wefM) for the fourth transferase in the rps locus of strain C104 with the corresponding gene (wcrC) of strain SK144 or Streptococcus pneumoniae serotype 10A. These findings identify genetic markers for the different ribitol-5-phosphate-containing types of RPS present in S. oralis and establish a close relationship between these polysaccharides and serogroup 10 CPSs of S. pneumoniae.The coaggregations observed between different viridans group streptococci and Actinomyces naeslundii (6) provided early evidence for the role of interbacterial adhesion in dental plaque biofilm formation. Interactions between these bacteria were subsequently attributed to binding of A. naeslundii type 2 fimbriae to specific Gal and GalNAc-containing cell wall polysaccharides, referred to as receptor polysaccharides (RPS), on strains of Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii (7, 9, 14). These streptococci inhabit the tooth surface (23), where they grow in close association with type 2 fimbriated A. naeslundii (26) and other members of the dental plaque biofilm community. Growth and biofilm formation were not observed in flow cells when coaggregating strains of S. oralis and A. naeslundii were cultured separately in dilute saliva (27). However, when cultured together, the two strains grew as a mixed-species community, thereby supporting a recognition role for cell surface RPS in biofilm development.Six structural types of RPS have been identified by high resolution nuclear magnetic resonance (NMR) of the cell wall polysaccharides isolated from over 20 coaggregating strains of S. sanguinis, S. gordonii, and S. oralis (8). These polysaccharides are composed of structurally distinct repeating units that contain conserved Galf linked β1-6 to a host-like recognition motif, which is GalNAcβ1-3Gal (Gn) in certain types of RPS and Galβ1-3GalNAc (G) in others. The flexible β1-6 linkage from Galf (34) is thought to function as a hinge, exposing the adjacent host-like motif for adhesin-mediated recognition (21). Whereas both Gn and G types of RPS are recognized by type 2 fimbriated A. naeslundii, only Gn types are recognized by the GalNAc-binding adhesins present on non-RPS-bearing strains of S. sanguinis and S. gordonii (8). Conversely, only G types are coaggregation receptors of certain Veillonella spp. (25). The host-like features of these polysaccharides, although critical for interbacterial adhesion, contribute little to RPS serotype specificity, which instead reflects the immunogenic features of these molecules (21). As a result, the identification of RPS-bearing streptococci requires both serotyping (i.e., serotypes 1, 2, 3, 4, or 5) and receptor typing (i.e., types Gn or G) of these bacteria.A possible molecular approach for the identification of these bacteria is evident from comparative studies of the chromosomal loci (rps) for RPS biosynthesis in different strains (33, 35-37). In this regard, the genes wchA and wchF, which were first identified in Streptococcus pneumoniae (5, 15), encode the first two transferases for synthesis of RPS serotypes 1, 2, and 3. WchA transfers Glc-1-phosphate from UDP-Glc to a carrier lipid, and WchF adds Rha β1-4 to Glc. Subsequent synthesis of both the antigenic and receptor regions in these polysaccharides depends on other encoded transferases (35-37), many of which are distinguishable from those identified in S. pneumoniae. In addition to Glc- and Rha-containing types of RPS, other types have been described that lack these sugars but contain ribitol-5-phosphate (3), in addition to GalNAc, Galp, and Galf, which are common constituents of all types. The ribitol-5-phosphate-containing group, represented by type 4Gn RPS of S. oralis C104 and type 5Gn RPS of S. oralis SK144, is the subject of the present study. The results define the structural and genetic basis of the antigenic difference noted between these polysaccharides. They also reveal a close molecular relationship between these types of RPS and certain capsular polysaccharides (CPS) of S. pneumoniae, most notably those in CPS serogroup 10.  相似文献   

5.
The rare NOR erythrocytes, which are agglutinated by most human sera, contain unique glycosphingolipids (globoside elongation products) terminating with the sequence Galalpha1-4GalNAcbeta1-3Gal- recognized by common natural human antibodies. Anti-NOR antibodies were isolated from several human sera by affinity procedures, and their specificity was tested by inhibition of antibody binding to NOR-tri-polyacrylamide (PAA) conjugate (ELISA) by the synthetic oligosaccharides, Galalpha1-4GalNAcbeta1-3Gal (NOR-tri), Galalpha1-4GalNAc (NOR-di), Galalpha1-4Galbeta1-3Galbeta1-4Glc ((Gal)3Glc), and Galalpha1-4Gal (P1-di). Two major types of subspecificity of anti-NOR antibodies were found. Type 1 antibodies were found to react strongly with (Gal)3Glc and NOR-tri and weakly with P1-di and NOR-di, which indicated specificity for the trisaccharide epitope Galalpha1-4Gal/GalNAcbeta1-3Gal. Type 2 antibodies were specific to Galalpha1-4GalNAc, because they were inhibited most strongly by NOR-tri and NOR-di and were not (or very weakly) inhibited by (Gal)3Glc and P1-di. Monoclonal anti-NOR antibodies were obtained by immunizing mice with NOR-tri-human serum albumin (HSA) conjugate and were found to have type 2 specificity. All anti-NOR antibodies reacted specifically with NOR glycolipids on thin-layer plates. The cross-reactivity of type 1 anti-NOR antibodies with Galalpha1-4Gal drew attention to a possible antigenic relationship between NOR and blood group P system glycolipids. The latter glycolipids include Pk (Galalpha1-4Galbeta1-4Glc-Cer) present in all normal erythrocytes and P1 (Galalpha1-4Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-Cer) present only in P1 erythrocytes. Sera of some P2 (P1-negative) persons contain natural anti-P1 antibodies. This prompted us to test the specificity of anti-P1 antibodies. Natural human anti-P1 isolated from serum of P2 individual and mouse monoclonal anti-P1 were best inhibited by Galalpha1-4Galbeta1-4GlcNAc (P1-tri) and did not react with NOR-tri and NOR-di. Monoclonal anti-P1 bound to Pk and P1 glycolipids and not to NOR glycolipids. These results indicated an entirely different specificity of anti-NOR and anti-P1 antibodies. Human serum samples differed in the content of anti-alpha-galactosyl antibodies, including both types of anti-NOR. In the sera of some individuals, type 1 or type 2 anti-NOR antibodies dominated, and other samples contained mixtures of both types of anti-NOR. The biological significance of these new abundant anti-alpha-galactosyl antibodies still awaits elucidation.  相似文献   

6.
The cell wall polysaccharide of Streptococcus gordonii 38 functions as a coaggregation receptor for surface adhesins on other members of the oral biofilm community. The structure of this receptor polysaccharide (RPS) is defined by a heptasaccharide repeat that includes a GalNAcbeta1-->3Gal-containing recognition motif. The same RPS has now been identified from S. gordonii AT, a partially sequenced strain. PCR primers designed from sequences in the genomic database of strain AT were used to identify and partially characterize the S. gordonii 38 RPS gene cluster. This cluster includes genes for seven putative glycosyltransferases, a polysaccharide polymerase (Wzy), an oligosaccharide repeating unit transporter (Wzx), and a galactofuranose mutase, the enzyme that promotes synthesis of UDP-Galf, one of five predicted RPS precursors. Genes outside this region were identified for the other four nucleotide-linked sugar precursors of RPS biosynthesis, namely, those for formation of UDP-Glc, UDP-Gal, UDP-GalNAc, and dTDP-Rha. Two genes for putative galactose 4-epimerases were identified. The first, designated galE1, was identified as a pseudogene in the galactose operon, and the second, designated galE2, was transcribed with three of the four genes for dTDP-Rha biosynthesis (i.e., rmlA, rmlC, and rmlB). Insertional inactivation of galE2 abolished (i) RPS production, (ii) growth on galactose, and (iii) both UDP-Gal and UDP-GalNAc 4-epimerase activities in cell extracts. Repair of the galE1 pseudogene in this galE2 mutant restored growth on galactose but not RPS production. Cell extracts containing functional GalE1 but not GalE2 contained UDP-Gal 4-epimerase but not UDP-GalNAc 4-epimerase activity. Thus, provision of both UDP-Gal and UDP-GalNAc for RPS production by S. gordonii 38 depends on the dual specificity of the epimerase encoded by galE2.  相似文献   

7.
To understand the reason why, in the absence of GM2 activator protein, the GalNAc and the NeuAc in GM2 (GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta1-->4Glcbet a1-1'Cer) are refractory to beta-hexosaminidase A and sialidase, respectively, we have recently synthesized a linkage analogue of GM2 named 6'GM2 (GalNAcbeta1-->6(NeuAcalpha2-->3)Galbeta1-->4Glcbet a1-1'Cer). While GM2 has GalNAcbeta1-->4Gal linkage, 6'-GM2 has GalNAcbeta1-->6Gal linkage (Ishida, H., Ito, Y., Tanahashi, E., Li, Y.-T., Kiso, M., and Hasegawa, A. (1997) Carbohydr. Res. 302, 223-227). We have studied the enzymatic susceptibilities of GM2 and 6'GM2, as well as that of the oligosaccharides derived from GM2, asialo-GM2 (GalNAcbeta1-->4Galbeta1--> 4Glcbeta1-1'Cer) and 6'GM2. In addition, the conformational properties of both GM2 and 6'GM2 were analyzed using NMR spectroscopy and molecular mechanics computation. In sharp contrast to GM2, the GalNAc and the Neu5Ac of 6'GM2 were readily hydrolyzed by beta-hexosaminidase A and sialidase, respectively, without GM2 activator. Among the oligosaccharides derived from GM2, asialo-GM2, and 6'GM2, only the oligosaccharide from GM2 was resistant to beta-hexosaminidase A. Conformational analyses revealed that while GM2 has a compact and rigid oligosaccharide head group, 6'GM2 has an open spatial arrangement of the sugar units, with the GalNAc and the Neu5Ac freely accessible to external interactions. These results strongly indicate that the resistance of GM2 to enzymatic hydrolysis is because of the specific rigid conformation of the GM2 oligosaccharide.  相似文献   

8.
Murine sperm initiate fertilization by binding to specific oligosaccharides linked to the zona pellucida, the specialized matrix coating the egg. Biophysical analyses have revealed the presence of both high mannose and complex-type N-glycans in murine zona pellucida. The predominant high mannose-type glycan had the composition Man(5)GlcNAc(2), but larger oligosaccharides of this type were also detected. Biantennary, triantennary, and tetraantennary complex-type N-glycans were found to be terminated with the following antennae: Galbeta1-4GlcNAc, NeuAcalpha2-3Galbeta1-4GlcNAc, NeuGcalpha2-3Galbeta1-4GlcNAc, the Sd(a) antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc, NeuGcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc), and terminal GlcNAc. Polylactosamine-type sequence was also detected on a subset of the antennae. Analysis of the O-glycans indicated that the majority were core 2-type (Galbeta1-4GlcNAcbeta1-6[Galbeta1-3]GalNAc). The beta1-6-linked branches attached to these O-glycans were terminated with the same sequences as the N-glycans, except for terminal GlcNAc. Glycans bearing Galbeta1-4GlcNAcbeta1-6 branches have previously been suggested to mediate initial murine gamete binding. Oligosaccharides terminated with GalNAcbeta1-4Gal have been implicated in the secondary binding interaction that occurs following the acrosome reaction. The significant implications of these observations are discussed.  相似文献   

9.
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.  相似文献   

10.
Sialoglycans on the cell surface of human colon cancer (HCC) cells have been implicated in cellular adhesion and metastasis. To clarify the role of N-acetylneuraminic acid (NeuAc) linked alpha2,3 to galactose (Gal) on the surface of HCC cells, we studied the intercellular adhesion of HCC cell lines expressing increasing NeuAcalpha2,3Gal-R. Our model system consisted of the HCC SW48 cell line, which inherently possesses low levels of cell surface alpha2,3 and alpha2,6 sialoglycans. To generate SW48 clonal variants with elevated cell surface NeuAcalpha2,3Gal-R linkages, we transfected the expression vector, pcDNA3, containing either rat liver cDNA encoding Galbeta1,3(4)GlcNAc alpha2,3 sialyltransferase (ST3Gal III) or human placental cDNA encoding Galbeta1,3GalNAc/Galbeta1,4GlcNAc alpha2,3 sialyltransferase (ST3Gal IV) into SW48 cells. Selection of neomycin-resistant clones (600 microgram G418/ml) having a higher percentage of cells expressing NeuAcalpha2,3Gal-R (up to 85% positive Maackia amurenis agglutinin staining compared with 30% for wild type cells) was performed. These ST3Gal III and ST3Gal IV clonal variants demonstrated increased adherence to IL-1beta-activated human umbilical vein endothelial cells (HUVEC) (up to 90% adherent cells compared with 63% for wild type cells). Interestingly, ST3Gal III and ST3Gal IV clonal variants also bound non-activated HUVEC up to 4-fold more effectively than wild type cells. Cell surface NeuAcalpha2,3Gal-R expression within the various SW48 clonal variants correlated directly with increased adhesion to HUVEC (r=0.84). Using HCC HT-29 cells, which express high levels of surface NeuAcalpha2,3Gal-R, addition of synthetic sialyl, sulfo or GalNAc Lewis X structures were found to specifically inhibit intercellular adhesion. At 1.0mM, NeuAcalpha2,3Galbeta1,3(Fucalpha1, 4)GlcNAc-OH and Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,6(SE-6Galbeta1++ +, 3)GalNAcalpha1-O-methyl inhibited HT-29 cell adhesion to IL-1beta-stimulated HUVEC by 100% and 68%, respectively. GalNAcbeta1, 4(Fucalpha1,3)GlcNAcbeta1-O-methyl and GalNAcbeta1,4(Fucalpha1, 3)GlcNAcbeta1,6Manalpha1,6Manbeta1-0-C30H61, however, did not possess inhibitory activity. In conclusion, these studies demonstrated that cell surface NeuAcalpha2,3Gal-R expression is involved in HCC cellular adhesion to HUVEC. These specific carbohydrate-mediated intercellular adhesive events may play an important role in tumor angiogenesis, metastasis and growth control.  相似文献   

11.
Mistletoe lectin I (ML-I) is a type II ribosome-inactivating protein, which inhibits the protein biosynthesis at the ribosomal level. ML-I is composed of a catalytically active A-chain with rRNA N-glycosidase activity and a B-chain with carbohydrate binding specificities. Using comparative solid-phase binding assays along with electrospray ionization tandem mass spectrometry, ML-I was shown to preferentially bind to terminally alpha2-6-sialylated neolacto series gangliosides from human granulocytes. IV(6)Neu5Ac-nLc4Cer, VI(6)Neu5Ac-nLc6Cer, and VIII(6)Neu5Ac-nLc8Cer were identified as ML-I receptors, whereas the isomeric alpha2-3-sialylated neolacto series gangliosides were not recognized. Only marginal binding of ML-I to terminal galactose residues of neutral glycosphingolipids with a Galbeta1-4Glc or Galbeta1-4GlcNAc sequence was determined, whereas a distal Galalpha1-4Gal, GalNAcbeta1-3Gal, or GalNAcbeta1-4Gal disaccharide did not bind at all. Among the glycoproteins investigated in Western blot and microwell adsorption assays, only those carrying Neu5Acalpha2-6Galbeta1-4GlcNAc residues, exclusively, predominantly, or even as less abundant constituents in an assembly with Neu5Acalpha2-3Galbeta1-4GlcNAc-terminated glycans, displayed high ML-I binding capacity. From our data we conclude that (i) ML-I has to be considered as a sialic acid- and not a galactose-specific lectin and (ii) neolacto series gangliosides and sialoglycoproteins with type II glycans, which share the Neu5Acalpha2-6Galbeta1-4GlcNAc terminus, are true ML-I receptors. This strict preference might help to explain the immunostimulatory potential of ML-I toward certain leukocyte subpopulations and its therapeutic success as a cytotoxic anticancer drug.  相似文献   

12.
Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha fruit, is a galactose-binding lectin and a potent mitogen of T and B cells. Knowledge obtained from previous studies on the affinity of ALA was limited to molecular and submolecular levels of Galbeta1-->3GalNAc (T) and its derivatives. In the present study, the carbohydrate specificity of ALA was characterized at the macromolecular level according to the mammalian Gal/GalNAc structural units and corresponding glycoconjugates by an enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results indicate that ALA binds specifically to tumor-associated carbohydrate antigens GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3 GalNAcalpha1-->Ser/Thr (Talpha). It barely cross-reacts with other common glycotopes on glycoproteins, including ABH blood group antigens, Galbeta1-->3/4GlcNAc (I/II) determinants, T/Tn covered by sialic acids, and N-linked plasma glycoproteins. Dense clustering structure of Tn/Talpha-containing glycoproteins tested resulted in 2.4 x 10(5)-6.7 x 10(5)-fold higher affinities to ALA than the respective GalNAc and Gal monomer. According to our results, the overall affinity of ALA for glycans can be ranked respectively: polyvalent Tn/Talpha glycotopes > monomeric Talpha and simple clustered Tn > monomeric Tn > GalNAc > Gal; while other glycotopes: Galalpha1-->3/4Gal (B/E), Galbeta1-->3/4GlcNAc (I/II), GalNAcalpha1-->3Gal/GalNAc (A/F), and GalNAcbeta1-->3/4Gal (P/S) were inactive. The strong specificity of ALA for Tn/Talpha cluster suggests the importance of glycotope polyvalency during carbohydrate-receptor interactions and emphasizes its value as an anti-Tn/T lectin for analysis of glycoconjugate mixtures or transformed carbohydrates.  相似文献   

13.
Wu JH  Singh T  Herp A  Wu AM 《Biochimie》2006,88(2):201-217
Ricin (RCA60) is a potent cytotoxic protein with lectin domains, contained in the seeds of the castor bean Ricinus communis. It is a potential biohazard. To corroborate the biological properties of ricin, it is essential to understand the recognition factors involved in the ricin-glycotope interaction. In previous reports, knowledge of the binding properties of ricin was limited to oligosugars and glycopeptides with different specificities. Here, recognition factors of the lectin domains in ricin were examined by enzyme-linked lectinosorbent (ELLSA) and inhibition assays, using mammalian Gal/GalNAc structural units and corresponding polyvalent forms. Except for blood group GalNAcalpha1-3Gal (A) active and Forssman (GalNAcalpha1-3GalNAc, F) disaccharides, ricin has a broad range of affinity for mammalian disaccharide structural units-Galbeta1-4Glcbeta1-(Lbeta), Galbeta1-4GlcNAc (II), Galbeta1-3GlcNAc (I), Galbeta1-3GalNAcalpha1-(Talpha), Galbeta1-3GalNAcbeta1-(Tbeta), Galalpha1-3Gal (B), Galalpha1-4Gal (E), GalNAcbeta1-3Gal (P), GalNAcalpha1-Ser/Thr (Tn) and GalNAcbeta1-4Gal (S). Among the polyvalent glycotopes tested, ricin reacted best with type II-containing glycoproteins (gps). It also reacted well with several T (Thomsen-Friedenreich), tumor-associated Tn and blood group Sd. (a+)-containing gps. Except for bird nest and Tamm-Horsfall gps (THGP), this lectin reacted weakly or not at all with ABH-blood type and sialylated gps. From the present and previous results, it can be concluded that: (i) the combining sites of these lectin domains should be a shallow-groove type, recognizing Galbeta1-4Glcbeta1- and Galbeta1-3(4)GlcNAcbeta- as the major binding site; (ii) its size may be as large as a tetrasaccharide and most complementary to lacto-N-tetraose (Galbeta1-3GlcNAc beta1-3Galbeta1-4Glc) and lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc); (iii) the polyvalency of glycotopes, in general, enhances binding; (iv) a hydrophobic interaction in the vicinity of the binding site for sugar accommodation, increases the affinity for Galbeta-. This study should assist in understanding the glyco-recognition factors involved in carbohydrate-toxin interactions in biological processes. The effect of the polyvalent P/S glycotopes on ricin binding should be examined. However, this is hampered by the lack of availability of suitable reagents.  相似文献   

14.
The substrate specificity of an alpha2,3-sialyltransferase (v-ST3Gal I) obtained from myxoma virus infected RK13 cells has been determined. Like mammalian sialyltransferase enzymes, the viral enzyme contains the characteristic L- and S-sialyl motif sequences in its catalytic domain. Analysis of the deduced amino acid sequences of cloned sialyltransferases suggests that v-ST3Gal I is closely related to mammalian ST3Gal IV. v-ST3Gal I catalyzes the transfer of sialic acid from CMP-NeuAc to Type I (Galbeta1-3GlcNAcbeta) II (Galbeta1-4GlcNAcbeta) and III (Galbeta1-3GalNAcbeta) acceptors. In addition, the viral enzyme also transfers sialic acid to the fucosylated acceptors Lewis(x) and Lewis(a). This substrate specificity is unlike any sialyltransferases described to date, though it is most comparable with those of mammalian ST3Gal IV enzymes. The products from reactions with fucosylated acceptors were characterized by capillary zone electrophoresis, (1)H-NMR spectroscopy and mass spectrometry. They were shown to be 2,3-sialylated Lewis(x) and 2,3-sialylated Lewis(a), respectively.  相似文献   

15.
Wu AM  Wu JH  Liu JH  Singh T 《Life sciences》2004,74(14):1763-1779
Bauhinia purpurea agglutinin (BPA) is a Galbeta1-3GalNAc (T) specific leguminous lectin that has been widely used in multifarious cytochemical and immunological studies of cells and tissues under pathological or malignant conditions. Despite these diverse applications, knowledge of its carbohydrate specificity was mainly limited to molecular or submolecular T disaccharides. Thus, the requirement of high density polyvalent or multi-antennary carbohydrate structural units for BPA binding and an updated affinity profile were further evaluated by enzyme-linked lectinosorbent (ELLSA) and inhibition assays. Among the glycoproteins (gps) tested and expressed as 50% nanogram inhibition, the high density polyvalent GalNAcalpha1-Ser/Thr (Tn) and Galbeta1-3/4GlcNAc (I/II) glycotopes present on macromolecules generated a great enhancement of binding affinity for BPA as compared to their monomers. The most potent inhibitors were a Tn-containing gp (asialo OSM) and a I/II containing gp (human blood group precursor gp), which were up to 1.7 x 10(4) and 2.3 x 10(3) times more potent than monovalent Gal and GalNAc, respectively. However, multi-antennary glycopeptides, such as tri-antennary Galbeta1-4GlcNAc, which was slightly more active than II or Gal, gave only a minor contribution. Regarding the carbohydrate structural units studied by the inhibition assay, blood group GalNAcbeta1-3/4Gal (P/S) active glycotopes were active ligands. The overall binding profile of BPA was: high density polyvalent T/Tn and II clusters > Tn-glycopeptides (M.W. <3.0 x 10(3))/Talpha monomer > monovalent P/S > Tn monomer and GalNAc > tri-antennary II > Gal > Man and Glc (inactive). These findings give evidence for the binding of this lectin to dense cell surface T, Tn and I/II glycoconjugates and should facilitate future usage of this lectin in biotechnological and medical applications.  相似文献   

16.
17.
Wu AM  Wu JH  Lin LH  Lin SH  Liu JH 《Life sciences》2003,72(20):2285-2302
Artocarpus integrifolia agglutinin (Jacalin) from the seeds of jack fruits has attracted considerable attention for its diverse biological activities and has been recognized as a Galbeta1-->3GalNAc (T) specific lectin. In previous studies, the information of its binding was limited to the inhibition results of monosaccharides and several T related disaccharides, but its interaction with other carbohydrate structural units occurring in natural glycans has not been characterized. For this reason, the binding profile of this lectin was studied by enzyme linked lectinosorbent assay (ELLSA) with our glycan/ligand collection. Among glycoproteins (gps) tested for binding, high density of multi-Galbeta1-->3GalNAcalpha1--> (mT(alpha)) and GalNAcalpha1-->Ser/Thr (mTn) containing gps reacted most avidly with Jacalin. As inhibitors expressed as nanograms yielding 50% inhibition, these mT(alpha) and mTn containing glycans were about 7.1 x 10(3), 4.0 x 10(5), and 7.8 x 10(5) times more potent than monomeric T(alpha), GalNAc, and Gal. Of the sugars tested and expressed as nanomoles for 50% inhibition, Tn containing peptides, T(alpha), and the human P blood group active disaccharide (P(alpha), GalNAcbeta1-->3Galalpha1-->) were the best and about 283 times more active than Gal. We conclude that the most potent ligands for this lectin are mTn, mT, and possibly P(alpha) glycotopes, while GalNAcbeta1-->4Galbeta1-->, GalNAcalpha1-->3Gal, GalNAcalpha1-->3GalNAc, and Galalpha1-->3Gal determinants were poor inhibitors. Thus, the overall binding profile of Jacalin can be defined in decreasing order as high density of mTn, and mT(alpha) > simple Tn cluster > monomeric T(alpha) > monomeric P(alpha) > monomeric Tn > monomeric T > GalNAc > Gal > Methylalpha1-->Man z.Gt; Man and Glc (inactive). Our finding should aid in the selection of this lectin for biological applications.  相似文献   

18.
Natural anti-NOR antibodies are common in human sera and agglutinate human erythrocytes of a rare NOR phenotype. The NOR phenotype-related antigens are unique neutral glycosphingolipids recognized by these antibodies and Griffonia simplicifolia IB4 isolectin (GSL-IB4). The oligosaccharide chains of NOR glycolipids are terminated by Galalpha1-4GalNAcbeta1-3Galalpha units. To characterize the specificity of anti-NOR antibodies and compare it with specificities of GSL-IB4 and known anti-Galalpha1,3Gal antibodies, alpha-galactosylated saccharides and saccharide-polyacrylamide conjugates were used. New synthetic oligosaccharides, corresponding to the terminal di- and trisaccharide sequence of NOR glycolipids and the conjugate of the NOR-tri with HSA were included. These compounds were tested by microtiter plate ELISA and hemagglutination inhibition. Anti-NOR antibodies reacted most strongly with Galalpha1-4GalNAcbeta1-3Gal (NOR-tri), and over 100 times less strongly with Galalpha1-4GalNAc (NOR-di). The antibodies reacted also with Galalpha1-4Gal and Galalpha1-4Galbeta1-4GlcNAc, similarly as with NOR-di but not with other tested compounds. In turn, anti-Galalpha1,3Gal antibodies reacted most strongly with Galalpha1-3Gal and were very weakly inhibited by the NOR-related oligosaccharides (weaker than by galactose), and NOR-tri was less active than NOR-di. GSL-IB4 reacted with all tested alpha-galactosylated saccharides and conjugates, including the similarly active NOR-tri and NOR-di. These results showed that anti-NOR represent a new species of anti-alpha-galactosyl antibodies with high affinity for the Galalpha1-4GalNAcbeta1-3Gal sequence present in rare NOR erythrocytes.  相似文献   

19.
Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). 1H NMR spectra of the polysaccharide show that is is partially O-acetylated. Analysis of the 1H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The 1H and 13C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by 1H-detected heteronuclear multiple-quantum correlation (1H[13C]HMQC). The linkage of the component monosaccharides in the polymer, deduced from two-dimensional 1H-detected heteronuclear multiple-bond correlation spectra (1H[13C]HMBC), shows that the repeating unit of the de-O-acetylated polymer is a linear hexasaccharide with no branch points. The complete 1H and 13C assignment of the native polysaccharide was carried out by the same techniques augmented by a 13C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the 1H spectrum pose difficulties. The fully assigned spectra of the native polymer show that each of two different positions is acetylated in one-third of the repeating subunits and that the acetylation is randomly distributed along the polymer. The exact positions of acetylation were assigned by a carbonyl-selective HMBC method that unambiguously defines the positions of O-acetylation. The complete structure of the native polysaccharide in S. oralis ATCC 10557 is [formula: see text] Comparison of this structure with those previously determined for the polysaccharides of strains 34 and J22 suggests that the similar lectin receptor activities of these molecules may depend on internal galactofuranose linked (beta 1----6)- to Gal(beta 1----3)GalNAc(alpha) or GalNAc(beta 1----3)Gal(alpha).  相似文献   

20.
The carbohydrate expression in the epithelium lining the oesophagus of the toadfish Halobatrachus didactylus was studied by means of conventional and lectin histochemistry. The stratified epithelium was constituted by basal cells, polymorphous cells in the intermediate layer, pyramidal and flattened cells in the outer layer and contained two types of large secretory cells: goblet cells and sacciform cells. PAS, Alcian blue pH 2.5 and pH 1.0 stained very strongly the goblet cells, weakly the surface of the other epithelial cells but did not stain the sacciform cells. The goblet cells cytoplasm contained oligosaccharides with terminal Galbeta1,3GalNAc, alpha/betaGalNAc, Galbeta1,4GlcNAc, alphaL-Fuc and internal betaGlcNAc residues (PNA, SBA, RCA120, UEA I, LTA and KOH-sialidase-WGA affinity). Galbeta1,4GlcNAc, alphaL-Fuc and internal betaGlcNAc were also found in the glycocalyx. The sacciform cells expressed sialyloligosaccharides terminating with Neu5Acalpha2,3Galbeta1,4GlcNac, Neu5Acbeta2,6Gal/GalNAc, Neu5AcForssman pentasaccharide (MAL II, SNA, KOH-sialidase-DBA staining) as well as asialo-glycoconjugates with terminal/internal alphaMan (Con A affinity) and with terminal Galbeta1,3GalNAc, Forssman pentasaccharide, Galbeta1,4GlcNAc, GalNAc (HPA and SBA reactivity), alphaGal (GSA I-B4 reactivity), D-GlcNAc (GSA II labelling), alphaL-Fuc. The basal cells cytoplasm exhibited terminal/internal alphaMan and terminal Neu5Acalpha2,6Gal/GalNAc, Galbeta1,4GlcNAc, alpha/betaGalNAc, alphaGal, GlcNAc, alphaL-Fuc. Intermediate cells showed oligosaccharides with terminal/internal alphaMan and/or terminating with Neu5Acalpha2,6Gal/GalNAc, Galbeta1,4GlcNAc in the cytoplasm and with Neu5Acalpha2,3Galbeta1,4GlcNac, alpha/betaGalNAc, alphaGal, GlcNAc, alphaL-Fuc in the glycocalyx. The pyramidal cells expressed terminal/internal alphaMan and terminal Neu5Acalpha2,6Gal/GalNAc, alpha/betaGalbeta1,4NAc, alphaGal, alphaL-Fuc in the entire cytoplasm, terminal Neu5Acalpha2,3Galbeta1,4GlcNac and Forssman pentasaccharide in the apical extension, internal betaGlcNAc and/or terminal alphaL-Fuc in the luminal surface, Neu5Acalpha2,3Galbeta1,4GlcNac, Neu5Acalpha2,6Gal/GalNAc, Galbeta1,4GlcNAc, alphaGal in the basolateral surface. The flattened cells displayed glycans with terminal/internal alphaMan and terminal Neu5Acalpha2,6Gal/GalNAc, alpha/betaGalNAc, alphaGal, D-GlcNAc in the entire cytoplasm, glycans terminating with Galbeta1,3GalNAc and/or internal betaGlcNAc in the sub-nuclear cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号