共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
NADPH: cytochrome P-450 reductase in olfactory epithelium. Relevance to cytochrome P-450-dependent reactions. 下载免费PDF全文
The presence of a very active cytochrome P-450-dependent drug-metabolizing system in the olfactory epithelium has been confirmed by using 7-ethoxycoumarin, 7-ethoxyresorufin, hexobarbitone and aniline as substrates, and the reasons for the marked activity of the cytochrome P-450 in this tissue have been investigated. The spectral interaction of hexobarbitone and aniline with hepatic and olfactory microsomes has been examined. By this criterion there was no evidence for marked differences in the spin state of the cytochromes of the two tissues, or for the olfactory epithelium containing a greater amount of cytochrome capable of binding hexobarbitone, a very actively metabolized substrate. Rates of NADPH and NADH: cytochrome c reductase activity were found to be higher in the olfactory epithelium than in the liver, and direct evidence was obtained for a greater amount of the NADPH-dependent flavoprotein in the olfactory microsomes. Investigation of male rats and male and female mice, as well as male hamsters, demonstrated that, in all cases, the cytochrome P-450 levels of the olfactory epithelium were lower than those of the liver, while the 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities were higher. A correlation was found between 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities for both tissues in all species examined. The ratio of reductase to cytochrome P-450 was found to be considerably higher in the olfactory epithelium (1:2-1:3) than in the liver (1:11-1:15), regardless of the species examined, suggesting that facilitated electron flow may contribute significantly to the cytochrome P-450 catalytic turnover in the olfactory tissue. 相似文献
3.
NADPH:cytochrome c (cytochrome P-450) reductase (Fp) from hamster liver microsomes has been purified to near homogeneity using a simple and rapid method. Microsomes were treated with the detergent Chaps (3-[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid) in combination with 0.07% protamine sulfate and then centrifuged to pellet insoluble material. While over 60% of the total microsomal protein was solubilized, all Fp activity remained in the pellet. Fp was extracted from the Chaps-insoluble material using a combination of the detergents sodium cholate and Lubrol PX. This treatment resulted in a fivefold increase in Fp specific activity and allowed direct processing of the enriched Fp fraction by 2',5'-ADP agarose affinity chromatography. The purified Fp had a total flavin content of 23 nmol/mg protein (flavin adenine dinucleotide:flavin mononucleotide ratio = 1:1), a specific activity of 26,000 units/mg protein at 22 degrees C using cytochrome c as electron acceptor, and migrated as a single band on sodium-dodecyl sulfate-polyacrylamide gel electrophoresis with a relative molecular weight of 76,000. The purity, specific activity, and yield were nearly identical to results obtained when the flavoprotein was purified by conventional methods. This procedure eliminates the need for anion-exchange chromatography and allows for the rapid purification of large amounts of Fp suitable for use in studies concerning cytochrome P-450-mediated drug metabolism. Importantly, this method is equally effective when used to purify Fp from rat liver microsomes. 相似文献
4.
5.
N V Adrianov A I Archakov M Tsigler 《Biulleten' eksperimental'no? biologii i meditsiny》1989,108(8):164-166
Perfluorodecalin was incorporated into phospholipid liposomes and injected intraperitoneally in various dozes. The maximal cytochrome P-450 induction is reached 48 hours after perfluorodecalin injection. Cytochrome P-450 content increases 4 times after perfluorodecalin injection in dose of 0.6 ml/kg in homogenate, and 6 times after perfluorodecalin injection in a dose of 0.4 ml/kg in microsomes. Phenobarbital and perfluorodecalin induce several cytochrome P-450 isozymes and cause the appearance of a new isozyme with mass 56 kD absent in microsomes of intact CBA mice. Perfluorodecalin induction strongly increased the rate of NADPH-dependent aminopyrine nN-demethylation (6-7 times per mg of microsomal protein and 1.5 times per nmol cytochrome P-450). The rate of NADPH-dependent hydroxylation of aniline was not affected by perfluorodecalin induction. 相似文献
6.
A Iu Grishanova V V Obraztsov D G Shekhtman V V Liakhovich 《Biokhimii?a (Moscow, Russia)》1987,52(7):1138-1143
Cytochrome P-450 induction in hepatic microsomes after injections of rats with a fluorocarbon emulsion containing perfluorodecalin was studied in comparison with phenobarbital and methylcholanthrene type inductions. It was shown that perfluorodecalin injection as well as the phenobarbital one cause an increase in the cytochrome P-450 content, NADPH-cytochrome c reductase activity, the rates of benzphetamine N-demethylation and aldrin epoxidation in the microsomes. Using the Ouchterlony double immunodiffusion test with antibodies against cytochrome P-450b, an immunological identity of cytochrome P-450 isoforms during perfluorodecalin and phenobarbital inductions was shown. Upon "rocket" immunoelectrophoresis the recovery of cytochrome P-450 which is immunologically indistinguishable from cytochrome P-450b was approximately 72% in perfluorodecalin-induced microsomes. The activity of benzphetamine demethylase and aldrin epoxidase was inhibited by antibodies against cytochrome P-450b. These results suggest that in rat hepatic microsomes perfluorodecalin induces the cytochrome P-450 isoform whose immunological properties and substrate specificity correspond to those of phenobarbital-type cytochrome P-450. 相似文献
7.
8.
K E Appel H H Ruf B Mahr M Schwarz R Rickart W Kunz 《Chemico-biological interactions》1979,28(1):17-33
The interactions of 5 carcinogenic and 1 non-carcinogenic nitrosamines with hepatic microsomal cytochrome (cyt.) P-450 were investigated, using both optical difference and electron paramagnetic resonance (EPR) spectroscopic methods. Liver microsomes from phenobarbital (PB)-pretreated mice and 3-methylcholanthrene (3-MC)-pretreated rats were used, in order to have an increased specific content of cyt. P-450 and cyt. P-448 respectively. The optical and EPR spectral data obtained in the oxidised state suggest that nitrosamines are able to bind both as substrates and as ligands to the hemoprotein cyt. P-450, depending on the concentration of nitrosamine, its chemical identity and the cytochrome species present. After reduction with dithionite or NADPH in the optical difference spectrum a Soret band developed between 444 and 453 nm to an extent, which is dependent on the particular nitrosamine present. This initial nitrosamine-induced spectrum might represent a ferrous nitric oxide (NO)-cyt. P-450 complex. It appears unstable and is converted kinetically into a spectrum lacking a Soret band, but with a predominant absorbance minimum at about 425 nm. A visible band is located at 585 nm. In the EPR spectrum a sharp 3-line signal around g = 2.01 appears concomitantly. Both spectral parameters are typical of a NO-cyt. P-420 complex. These results, in conjunction with metabolic studies, indicate that nitrosamines are denitrosated by a reductive process in which cyt. P-450 appears to be involved. The resulting NO-cyt. P-450 complex denatures to a NO-cyt. P-420 complex when the dioxygen level is not sufficiently high to complete successfully. 相似文献
9.
Purification of cytochrome P-450, NADPH-cytochrome P-450 reductase,and epoxide hydratase from a single preparation of rat liver microsomes 总被引:1,自引:0,他引:1
A simplified procedure is presented for the simultaneous purification of the enzymes cytochrome P-450, epoxide hydratase (EC 3.3.2.3), and NADPH-cytochrome P-450 reductase (EC 1.6.2.4) from a single preparation of rat liver microsomes. All three enzymes can be recovered after chromatography of detergent-solubilized microsomes on a column of n-octylamino-Sepharose 4B. The major form of cytochrome P-450 (of phenobarbitaltreated rats) is purified by subsequent DEAE-cellulose chromatography, epoxide hydratase is purified by DEAE- and O-(carboxymethyl)-cellulose chromatography, and NADPH-cyto-chrome P-450 reductase is purified using 2′,5′-ADP agarose chromatography. The nonionic detergent Lubrol PX and the ionic detergents sodium cholate and deoxycholate are used in these procedures to permit utilization of uv-absorbance measurements in monitoring protein during purification. Overall yields of the three enzymes are approximately 20, 25, and 60%, respectively. All three enzymes are apparently homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and are functionally active. The same procedure can be used to obtain the major cytochrome P-450 present in liver microsomes isolated from β-naphthoflavone (5,6-benzoflavone)- or 3-methylcholanthrene-treated rats. Thus, the described procedures permit the rapid and reproducible purification of three major rat liver microsomal enzymes which can be coupled to study bioactivation and detoxification of a variety of xenobiotics in reconstituted systems. 相似文献
10.
P Beaune J P Flinois L Kiffel P Kremers J P Leroux 《Biochimica et biophysica acta》1985,840(3):364-370
Using a classical methodology of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulose) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-450(9). It has been proven to be different from all precedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-450(9) does not recognize rat liver microsomes; thus this cytochrome P-450(9) is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quantitative polymorphism. In reconstituted system, cytochrome P-450(9) is able to hydroxylate all substrates tested but is not specific of any; its exact role in xenobiotic metabolism in man remains to be elucidated. 相似文献
11.
Leonard S. Baskin Chung S. Yang 《Biochemical and biophysical research communications》1982,108(2):700-707
The topography of microsomal proteins was studied by 2-dimensional gelelectrophoresis. The second dimension was run in the presence of 2-mercaptoethanol, thus allowing detection of proteins previously cross-linked by disulfide bonds as off-diagonal spots. With hepatic microsomes from phenobarbital pretreated rats, several off-diagonal spots were seen. The most intense spot, with a molecular weight of 52,000, was derived from a dimer of this protein. It was identified as cytochrome P-450 (P-450) by a double antibody enzyme-immunoassay. The dimer is probably formed by oxidation of sulfhydryl groups of P-450 molecules during the preparation of microsomes. P-450 can also be cross-linked to form 105,000, 167,000, and 240,000 dal oligomers by treating microsomes with dithiobis(succinimidyl propionate) at 0°C. Cross-linking of P-450 to other proteins was also observed with one-dimensional gel-electrophoresis. The results suggest that the cross-linked proteins are close neighbors of P-450 in the membrane. 相似文献
12.
J Magdalou C Thirion M Balland G Siest 《The International journal of biochemistry》1985,17(10):1103-1107
Ultraviolet circular dichroism spectrum of purified NADPH cytochrome P-450 reductase was characterized by two negative bands centered at 208 and 222 nm. The approximation of the alpha-helical content from the value of the mean residue ellipticity at 222 nm indicated 28% of alpha-helical structures. Heat inactivation of the enzyme was associated to a drastic change in the secondary structure of the protein. Membrane reconstitution experiments by inclusion of the enzyme into liposomes revealed that the conformation of NADPH cytochrome P-450 reductase was sensitive to its phospholipid environment. Egg lecithin as well as synthetic phosphatidylcholines, at the optimal phospholipid-enzyme molar ratio 200, was able to increase up to 37% the mean residue ellipticity at 222 nm. Addition of phosphatidylserine or phosphatidylethanolamine produced no effect. Non-ionic detergent such as Emulgen 913 weakly enhanced the mean residue ellipticity. 相似文献
13.
The interaction between P-450C21 and NADPH-cytochrome P-450 reductase, both purified from bovine adrenocortical microsomes, has been investigated in a reconstituted system with a nonionic detergent, Emulgen 913, by kinetic analysis and gel filtrations. Steady state kinetic data in progesterone 21-hydroxylation showed formation of an equimolar complex between the two enzyme proteins at low Emulgen concentration. Steady state kinetic studies on the electron transfer from NADPH to P-450C21 via the reductase showed that a stable complex formation between the two enzyme proteins was not involved in the steady state electron transfer at high Emulgen concentration. In stopped flow experiments, a time course of the P-450C21 reduction showed biphasic kinetics composed of fast and slow phases. The dependence of kinetic parameters on Emulgen concentration indicates that the fast phase corresponds to the electron transfer within the complex and the slow phase to the electron transfer through a random collision between P-450C21 and the reductase. The stable complex formation between P-450C21 and the reductase has been clearly demonstrated by gel filtration. The stable complex was composed of several molecules of the two enzyme proteins at an equimolar ratio, which was active for progesterone 21-hydroxylation and had a tendency to dissociate at high Emulgen concentration. 相似文献
14.
Y Aoyama Y Yoshida S Kubota H Kumaoka A Furumichi 《Archives of biochemistry and biophysics》1978,185(2):362-369
NADPH-cytochrome c reductase of yeast microsomes was purified to apparent homogeneity by solubilization with sodium cholate, ammonium sulfate fractionation, and chromatography with hydroxylapatite and diethylaminoethyl cellulose. The purified preparation exhibited an apparent molecular weight of 83,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The reductase contained one molecule each of flavin-adenine dinucleotide and riboflavin 5′-phosphate, though these were dissociative from the apoenzyme. The purified reductase showed a specific activity of 120 to 140 μmol/min/mg of protein for cytochrome c as the electron acceptor. The reductase could reduce yeast cytochrome P-450, though with a relatively slow rate. The reductase also reacted with rabbit liver cytochrome P-450 and supported the cytochrome P-450-dependent benzphetamine N-demethylation. It can, therefore, be concluded that the NADPH-cytochrome c reductase is assigned for the cytochrome P-450 reductase of yeast. The enzyme could also reduce the detergent-solubilized cytochrome b5 of yeast. So, this reductase must contribute to the electron transfer from NADPH to cytochrome b5 that observed in the yeast microsomes. 相似文献
15.
NADPH-cytochrome P-450 reductase has been purified to electrophoretic homogeneity from rabbit liver microsomes by a procedure that may be used in conjunction with the isolation of the major forms of cytochrome P-450. The purified reductase is active in a reconstituted hydroxylation system containing P-450LM2 or P-450LM4. The enzyme contains one molecule each of FMN and FAD per polypeptide chain having an apparent minimal molecular weight of 74,000. Immunological techniques provided evidence for only a single form of the reductase; lower molecular weight forms occasionally seen are believed to be due to degradation by contaminating microsomal or bacterial proteases. Upon anaerobic photochemical reduction, the rabbit liver reductase undergoes spectral changes highly similar to those previously described by Vermilion and Coon for the rat liver enzyme; the fully reduced rabbit liver enzyme is converted to the three-electron-reduced form by the addition of NADP and then to the stable one-electron-reduced form by exposure to oxygen. The CD spectra of the fully oxidized enzyme, one-electron-reduced form (air-stable semiquinone), three-electron-reduced form, and fully reduced form are presented. The results obtained provide evidence that the FMN and FAD are in highly different environments in the enzyme, as also indicated by the different redox potentials and oxygen reactivities of the flavins. 相似文献
16.
A A Fa?bushevich L F Guliaeva A Iu Grishanova V M Mishin V V Liakhovich 《Biokhimii?a (Moscow, Russia)》1990,55(7):1210-1215
The synthesis of pharmacologically active diazepam metabolites (oxazepam, 4-hydroxydiazepam, N-demethyldiazepam) in liver microsomes of intact and phenobarbital-, 3-methylcholanthrene- and dexamethasone-induced male and female Wistar rats as well as in a reconstituted system with isolated forms of cytochrome P-450 (P-450a, P-450b, P-450c, P-450d and P-450k according to the Ryan nomenclature) was studied. Marked sex-dependent differences in the rates of diazepam metabolism in liver microsomes of intact and induced animals were revealed. The changes in the spectrum of diazepam metabolites in liver microsomes of induced rats (as compared to control animals) were revealed. In a reconstituted system only phenobarbital-induced cytochromes P-450b and P-450k were found to be active participants of diazepam N-demethylation; none of the isoenzymes tested were shown to be involved in diazepam hydroxylation. 相似文献
17.
Immunochemical studies on the contribution of NADPH cytochrome P-450 reductase to the cytochrome P-450-dependent metabolism of arachidonic acid 总被引:1,自引:0,他引:1
M L Schwartzman P J Pagano J C McGiff N G Abraham 《Archives of biochemistry and biophysics》1987,252(2):635-645
We have studied the role of NADPH cytochrome P-450 reductase in the metabolism of arachidonic acid and in two other monooxygenase systems: aryl hydrocarbon hydroxylase and 7-ethoxyresorufin-o-deethylase. Human liver NADPH cytochrome P-450 reductase was purified to homogeneity as evidenced by its migration as a single band on SDS gel electrophoresis, having a molecular weight of 71,000 Da. Rabbits were immunized with the purified enzyme and the resulting antibodies were used to evaluate the involvement of the reductase in cytochrome P-450-dependent arachidonic acid metabolism by bovine corneal epithelial and rabbit renal cortical microsomes. A highly sensitive immunoblotting method was used to identify the presence of NADPH cytochrome P-450 reductase in both tissues. We used these antibodies to demonstrate for the first time the presence of cytochrome c reductase in the cornea. Anti-NADPH cytochrome P-450 reductase IgG, but not anti-heme oxygenase IgG, inhibited the NADPH-dependent arachidonic acid metabolism in both renal and corneal microsomes. The inhibition was dependent on the ratio of IgG to microsomal protein where 50% inhibition of arachidonic acid conversion by cortical microsomes was achieved with a ratio of 1:1. A higher concentration of IgG was needed to achieve the same degree of inhibition in the corneal microsomes. The antibody also inhibited rabbit renal cortical 7-ethoxyresorufin-o-deethylase activity, a cytochrome P-450-dependent enzyme. However, the anti-NADPH cytochrome P-450 reductase IgG was much less effective in inhibiting rabbit cortical aryl hydrocarbon hydroxylase. Thus, the degree of inhibition of monooxygenases by anti-NADPH cytochrome P-450 reductase IgG is variable. However, with respect to arachidonic acid, NADPH cytochrome P-450 reductase appears to be an integral component for the electron transfer to cytochrome P-450 in the oxidation of arachidonic acid. 相似文献
18.
19.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome. 相似文献
20.
Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles 总被引:2,自引:0,他引:2
J Gut C Richter R J Cherry K H Winterhalter S Kawato 《The Journal of biological chemistry》1982,257(12):7030-7036
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes. 相似文献