共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A Iu Grishanova V V Obraztsov D G Shekhtman V V Liakhovich 《Biokhimii?a (Moscow, Russia)》1987,52(7):1138-1143
Cytochrome P-450 induction in hepatic microsomes after injections of rats with a fluorocarbon emulsion containing perfluorodecalin was studied in comparison with phenobarbital and methylcholanthrene type inductions. It was shown that perfluorodecalin injection as well as the phenobarbital one cause an increase in the cytochrome P-450 content, NADPH-cytochrome c reductase activity, the rates of benzphetamine N-demethylation and aldrin epoxidation in the microsomes. Using the Ouchterlony double immunodiffusion test with antibodies against cytochrome P-450b, an immunological identity of cytochrome P-450 isoforms during perfluorodecalin and phenobarbital inductions was shown. Upon "rocket" immunoelectrophoresis the recovery of cytochrome P-450 which is immunologically indistinguishable from cytochrome P-450b was approximately 72% in perfluorodecalin-induced microsomes. The activity of benzphetamine demethylase and aldrin epoxidase was inhibited by antibodies against cytochrome P-450b. These results suggest that in rat hepatic microsomes perfluorodecalin induces the cytochrome P-450 isoform whose immunological properties and substrate specificity correspond to those of phenobarbital-type cytochrome P-450. 相似文献
3.
N V Adrianov A I Archakov M Tsigler 《Biulleten' eksperimental'no? biologii i meditsiny》1989,108(8):164-166
Perfluorodecalin was incorporated into phospholipid liposomes and injected intraperitoneally in various dozes. The maximal cytochrome P-450 induction is reached 48 hours after perfluorodecalin injection. Cytochrome P-450 content increases 4 times after perfluorodecalin injection in dose of 0.6 ml/kg in homogenate, and 6 times after perfluorodecalin injection in a dose of 0.4 ml/kg in microsomes. Phenobarbital and perfluorodecalin induce several cytochrome P-450 isozymes and cause the appearance of a new isozyme with mass 56 kD absent in microsomes of intact CBA mice. Perfluorodecalin induction strongly increased the rate of NADPH-dependent aminopyrine nN-demethylation (6-7 times per mg of microsomal protein and 1.5 times per nmol cytochrome P-450). The rate of NADPH-dependent hydroxylation of aniline was not affected by perfluorodecalin induction. 相似文献
4.
5.
6.
P Beaune J P Flinois L Kiffel P Kremers J P Leroux 《Biochimica et biophysica acta》1985,840(3):364-370
Using a classical methodology of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulose) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-450(9). It has been proven to be different from all precedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-450(9) does not recognize rat liver microsomes; thus this cytochrome P-450(9) is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quantitative polymorphism. In reconstituted system, cytochrome P-450(9) is able to hydroxylate all substrates tested but is not specific of any; its exact role in xenobiotic metabolism in man remains to be elucidated. 相似文献
7.
Leonard S. Baskin Chung S. Yang 《Biochemical and biophysical research communications》1982,108(2):700-707
The topography of microsomal proteins was studied by 2-dimensional gelelectrophoresis. The second dimension was run in the presence of 2-mercaptoethanol, thus allowing detection of proteins previously cross-linked by disulfide bonds as off-diagonal spots. With hepatic microsomes from phenobarbital pretreated rats, several off-diagonal spots were seen. The most intense spot, with a molecular weight of 52,000, was derived from a dimer of this protein. It was identified as cytochrome P-450 (P-450) by a double antibody enzyme-immunoassay. The dimer is probably formed by oxidation of sulfhydryl groups of P-450 molecules during the preparation of microsomes. P-450 can also be cross-linked to form 105,000, 167,000, and 240,000 dal oligomers by treating microsomes with dithiobis(succinimidyl propionate) at 0°C. Cross-linking of P-450 to other proteins was also observed with one-dimensional gel-electrophoresis. The results suggest that the cross-linked proteins are close neighbors of P-450 in the membrane. 相似文献
8.
Y Aoyama Y Yoshida S Kubota H Kumaoka A Furumichi 《Archives of biochemistry and biophysics》1978,185(2):362-369
NADPH-cytochrome c reductase of yeast microsomes was purified to apparent homogeneity by solubilization with sodium cholate, ammonium sulfate fractionation, and chromatography with hydroxylapatite and diethylaminoethyl cellulose. The purified preparation exhibited an apparent molecular weight of 83,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The reductase contained one molecule each of flavin-adenine dinucleotide and riboflavin 5′-phosphate, though these were dissociative from the apoenzyme. The purified reductase showed a specific activity of 120 to 140 μmol/min/mg of protein for cytochrome c as the electron acceptor. The reductase could reduce yeast cytochrome P-450, though with a relatively slow rate. The reductase also reacted with rabbit liver cytochrome P-450 and supported the cytochrome P-450-dependent benzphetamine N-demethylation. It can, therefore, be concluded that the NADPH-cytochrome c reductase is assigned for the cytochrome P-450 reductase of yeast. The enzyme could also reduce the detergent-solubilized cytochrome b5 of yeast. So, this reductase must contribute to the electron transfer from NADPH to cytochrome b5 that observed in the yeast microsomes. 相似文献
9.
NADPH-cytochrome P-450 reductase has been purified to electrophoretic homogeneity from rabbit liver microsomes by a procedure that may be used in conjunction with the isolation of the major forms of cytochrome P-450. The purified reductase is active in a reconstituted hydroxylation system containing P-450LM2 or P-450LM4. The enzyme contains one molecule each of FMN and FAD per polypeptide chain having an apparent minimal molecular weight of 74,000. Immunological techniques provided evidence for only a single form of the reductase; lower molecular weight forms occasionally seen are believed to be due to degradation by contaminating microsomal or bacterial proteases. Upon anaerobic photochemical reduction, the rabbit liver reductase undergoes spectral changes highly similar to those previously described by Vermilion and Coon for the rat liver enzyme; the fully reduced rabbit liver enzyme is converted to the three-electron-reduced form by the addition of NADP and then to the stable one-electron-reduced form by exposure to oxygen. The CD spectra of the fully oxidized enzyme, one-electron-reduced form (air-stable semiquinone), three-electron-reduced form, and fully reduced form are presented. The results obtained provide evidence that the FMN and FAD are in highly different environments in the enzyme, as also indicated by the different redox potentials and oxygen reactivities of the flavins. 相似文献
10.
The interaction between P-450C21 and NADPH-cytochrome P-450 reductase, both purified from bovine adrenocortical microsomes, has been investigated in a reconstituted system with a nonionic detergent, Emulgen 913, by kinetic analysis and gel filtrations. Steady state kinetic data in progesterone 21-hydroxylation showed formation of an equimolar complex between the two enzyme proteins at low Emulgen concentration. Steady state kinetic studies on the electron transfer from NADPH to P-450C21 via the reductase showed that a stable complex formation between the two enzyme proteins was not involved in the steady state electron transfer at high Emulgen concentration. In stopped flow experiments, a time course of the P-450C21 reduction showed biphasic kinetics composed of fast and slow phases. The dependence of kinetic parameters on Emulgen concentration indicates that the fast phase corresponds to the electron transfer within the complex and the slow phase to the electron transfer through a random collision between P-450C21 and the reductase. The stable complex formation between P-450C21 and the reductase has been clearly demonstrated by gel filtration. The stable complex was composed of several molecules of the two enzyme proteins at an equimolar ratio, which was active for progesterone 21-hydroxylation and had a tendency to dissociate at high Emulgen concentration. 相似文献
11.
A A Fa?bushevich L F Guliaeva A Iu Grishanova V M Mishin V V Liakhovich 《Biokhimii?a (Moscow, Russia)》1990,55(7):1210-1215
The synthesis of pharmacologically active diazepam metabolites (oxazepam, 4-hydroxydiazepam, N-demethyldiazepam) in liver microsomes of intact and phenobarbital-, 3-methylcholanthrene- and dexamethasone-induced male and female Wistar rats as well as in a reconstituted system with isolated forms of cytochrome P-450 (P-450a, P-450b, P-450c, P-450d and P-450k according to the Ryan nomenclature) was studied. Marked sex-dependent differences in the rates of diazepam metabolism in liver microsomes of intact and induced animals were revealed. The changes in the spectrum of diazepam metabolites in liver microsomes of induced rats (as compared to control animals) were revealed. In a reconstituted system only phenobarbital-induced cytochromes P-450b and P-450k were found to be active participants of diazepam N-demethylation; none of the isoenzymes tested were shown to be involved in diazepam hydroxylation. 相似文献
12.
13.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome. 相似文献
14.
Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles 总被引:2,自引:0,他引:2
J Gut C Richter R J Cherry K H Winterhalter S Kawato 《The Journal of biological chemistry》1982,257(12):7030-7036
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes. 相似文献
15.
Rat liver cytochrome P-450IA1 and/or yeast NADPH-cytochrome P-450 reductase was expressed genetically in yeast microsomes. The ratio of P-450IA1 to the reductase was about 17:1 and 1:2 without and with coexpression of the reductase, respectively. Rotational diffusion of P-450IA1 was examined by observing the flash-induced absorption anisotropy, r(t), of the heme.CO complex. In only P-450IA1-expressed microsomes, 28% of P-450IA1 was rotating with a rotational relaxation time (phi) of about 1200 microseconds. The mobile population was increased to 43% by the presence of the coexpressed reductase, while phi was not changed significantly. Increased concentration of KCl from 0 to 1000 mM caused considerable mobilization of P-450IA1. The results demonstrate a proper incorporation of P-450IA1 molecules into yeast microsomal membranes. The significant mobilization of P-450IA1 by the presence of reductase suggests a possible transient association of P-450IA1 with the reductase. 相似文献
16.
Function of cytochrome P-450 of microsomes 总被引:25,自引:0,他引:25
17.
18.
The spectral changes of cytochrome P-450 caused by the addition of small molecules to liver microsomes were investigated precisely and the following conclusions were reached. 1. The Type I spectral change was entirely due to the interaction of the cytochrome with a hydrocarbon residue in a ligand. To induce the modified Type II spectral change, the presence of a hydroxyl group in a ligand was required. Compounds which contain a basic amino group induced the Type II spectral change. 2. The Type I spectral change was caused by the interaction of a ligand with the 419-nm form of cytochrome P-450, with its concomitant conversion to the 394-nm form. Whereas, compounds inducing modified Type II spectral change interacted with the 394nm form of the cytochrome. In this case, however, the 394-nm form was not converted back to the 419-nm form but was converted to a new state showing an absorption peak at 416 nm. The Type II spectral change-inducing interaction of a ligand with the cytochrome could occur with all forms of the cytochrome. 3. Both Type II and modified Type II compounds bound to the cytochrome at heme iron, and converted the cytochrome into modified ferrihemochromes. On the other hand, the Type I interaction occurred ina protein moiety of the cytochrome, and probably caused a conformational change of the cytochrome accompanied either by weakening of the internal ligand interaction or by displacement of the ligand with another one having a weaker field at the heme iron. 4. Type I and each of other two types of binding of compounds with cytochrome P-450 could occur simultaneously. 相似文献
19.
Alexander I. Archakov Evgeni A. Borodin Dmitri R. Davydov Alexander I. Karyakin Valeri L. Borovyagin 《Biochemical and biophysical research communications》1982,109(3):832-840
The dilution of rabbit liver microsomes by soy-bean phospholipids was used as methodical approach to investigate the molecular organization of NADPH-dependent microsomal redox chain. The ultrastructural analysis of control and phospholipid diluted microsomes revealed that the incorporation of exogenous phospholipids into microsome membranes increased their surface area, as well as decreased the lateral density distribution and size of intramembrane particles. The dilution of microsome membranes by phospholipids slowed down the initial rate of cytochrome P-450 reduction by NADPH. The apparent second order rate constant of cytochrome P-450 reduction by NADPH: cytochrome P-450-reductase did not change in phospholipid-enriched microsomes. The results obtained provide strong evidence for the random distribution of NADPH-specific flavoprotein and cytochrome P-450 in liver microsome membranes. 相似文献
20.
Evidence of binary complex formations between cytochrome P-450, cytochrome b5, and NADPH-cytochrome P-450 reductase of hepatic microsomes 总被引:2,自引:0,他引:2
P P Tamburini S MacFarquhar J B Schenkman 《Biochemical and biophysical research communications》1986,134(2):519-526
Water-soluble carbodiimide-catalyzed cross-linking of purified cytochrome P-450 LM2, cytochrome b5, and NADPH-cytochrome P-450 reductase was used to identify stable complexes formed between these proteins. High yields of P-450-b5 and P-450 reductase-b5 dimers, and lower yields of P-450 reductase-LM2 dimers were obtained. Substitution of native b5 and P-450 reductase with fully amidinated derivatives showed that LM2 and b5 were cross-linked exclusively through their respective amino and carboxyl groups. However, there appeared to be two complexation sites on the reductase which cross-link to b5 through amino groups and to LM2 through carboxyl groups respectively. A heterotrimer could not be identified following incubation of all three proteins together with EDC. 相似文献