首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The katG gene coding for the only catalase-peroxidase in the cyanobacterium Synechocystis sp. strain PCC 6803 was deleted in this organism. Although the rate of H2O2 decomposition was about 30 times lower in the DeltakatG mutant than in the wild type, the strain had a normal phenotype and its doubling time as well as its resistance to H2O2 and methyl viologen were indistinguishable from those of the wild type. The residual H2O2-scavenging capacity was more than sufficient to deal with the rate of H2O2 production by the cell, estimated to be less than 1% of the maximum rate of photosynthetic electron transport in vivo. We propose that catalase-peroxidase has a protective role against environmental H2O2 generated by algae or bacteria in the ecosystem (for example, in mats). This protective role is most apparent at a high cell density of the cyanobacterium. The residual H2O2-scavenging activity in the DeltakatG mutant was a light-dependent peroxidase activity. However, neither glutathione peroxidase nor ascorbate peroxidase accounted for a significant part of this H2O2-scavenging activity. When a small thiol such as dithiothreitol was added to the medium, the rate of H2O2 decomposition in the DeltakatG mutant increased more than 10-fold, indicating that a thiol-specific peroxidase, for which thioredoxin may be the physiological electron donor, is present. Oxidized thioredoxin is likely to be reduced again by photosynthetic electron transport. Therefore, under laboratory conditions, there are only two enzymatic mechanisms for H2O2 decomposition present in Synechocystis sp. strain PCC 6803. One is catalyzed by a catalase-peroxidase, and the other is catalyzed by thiol-specific peroxidase.  相似文献   

2.
3.
4.
Signal transduction protein P(II) is dephosphorylated in Synechocystis sp. strain PCC 6803 by protein phosphatase PphA. To determine the impact of PphA-mediated P(II) dephosphorylation on physiology, the phenotype of a PphA-deficient mutant was analyzed. Mutants lacking either PphA or P(II) were impaired in efficient utilization of nitrate as the nitrogen source. Under conditions of limiting photosystem I (PSI)-reduced ferredoxin, excess reduction of nitrate along with impaired reduction of nitrite occurred in P(II) signaling mutants, resulting in excretion of nitrite to the medium. This effect could be reversed by increasing the level of PSI-reduced ferredoxin. We present evidence that nonphosphorylated P(II) controls the utilization of nitrate in response to low light intensity by tuning down nitrate uptake to meet the actual reduction capacity. This control mechanism can be bypassed by exposing cells to excess levels of nitrate. Uncontrolled nitrate uptake leads to light-dependent nitrite excretion even in wild-type cells, confirming that nitrate uptake controls nitrate utilization in response to limiting photon flux densities.  相似文献   

5.
6.

Background  

The membranes of Synechocystis sp. PCC 6803 play a central role in photosynthesis, respiration and other important metabolic pathways. Comprehensive identification of the membrane proteins is of importance for a better understanding of the diverse functions of its unique membrane structures. Up to date, approximately 900 known or predicted membrane proteins, consisting 24.5% of Synechocystis sp. PCC 6803 proteome, have been indentified by large-scale proteomic studies.  相似文献   

7.
8.
We utilized a full genome cDNA microarray to identify the genes that comprise the peroxide stimulon in the cyanobacterium Synechocystis sp. strain PCC 6803. We determined that a gene (slr1738) encoding a protein similar to PerR in Bacillus subtilis was induced by peroxide. We constructed a PerR knockout strain and used it to help identify components of the PerR regulon, and we found that the regulatory properties were consistent with the hypothesis that PerR functions as a repressor. This effort was guided by finding putative PerR boxes in positions upstream of specific genes and by careful statistical analysis. PerR and sll1621 (ahpC), which codes for a peroxiredoxin, share a divergent promoter that is regulated by PerR. We found that isiA, encoding a Chl protein that is induced under low-iron conditions, was strongly induced by a short-term peroxide stress. Other genes that were strongly induced by peroxide included sigD, sigB, and genes encoding peroxiredoxins and Dsb-like proteins that have not been studied yet in this strain. A gene (slr1894) that encoded a protein similar to MrgA in B. subtilis was upregulated by peroxide, and a strain containing an mrgA knockout mutation was highly sensitive to peroxide. A number of genes were downregulated, including key genes in the chlorophyll biosynthesis pathway and numerous regulatory genes, including those encoding histidine kinases. We used PerR mutants and a thioredoxin mutant (TrxA1) to study differential expression in response to peroxide and determined that neither PerR nor TrxA1 is essential for the peroxide protective response.  相似文献   

9.
10.
11.
S Aoki  T Kondo    M Ishiura 《Journal of bacteriology》1995,177(19):5606-5611
The expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803 was continuously monitored as bioluminescence by an automated monitoring system, using the bacterial luciferase genes (luxAB) of Vibrio harveyi as a reporter of promoter activity. A dnaK-reporting bioluminescent Synechocystis strain was constructed by fusing a promoterless segment of the luxAB gene set downstream of the promoter region of the Synechocystis dnaK gene and introduction of this gene fusion into a BglII site downstream of the ndhB gene in the Synechocystis chromosome. Bioluminescence from this strain was continuously monitored and oscillated with a period of about 22 h for at least 5 days in continuous light. The phase of the rhythm was reset by the timing of the 12-h dark period administered prior to the continuous light. The period of the rhythm was temperature compensated between 25 and 35 degrees C. Thus, the bioluminescence rhythm satisfied the three criteria of circadian rhythms. Furthermore, the abundance of dnaK mRNA also oscillated with a period of about 1 day for at least 2 days in continuous light conditions, indicating circadian control of dnaK gene expression in Synechocystis sp. strain PCC 6803.  相似文献   

12.
13.
The open reading frames sll1625 and sll0823, which have significant sequence similarity to genes coding for the FeS subunits of succinate dehydrogenase and fumarate reductase, were deleted singly and in combination in the cyanobacterium Synechocystis sp. strain PCC 6803. When the organic acid content in the Deltasll1625 and Deltasll0823 strains was analyzed, a 100-fold decrease in succinate and fumarate concentrations was observed relative to the wild type. A similar analysis for the Deltasll1625 Deltasll0823 strain revealed that 17% of the wild-type succinate levels remained, while only 1 to 2% of the wild-type fumarate levels were present. Addition of 2-oxoglutarate to the growth media of the double mutant strain prior to analysis of organic acids in cells caused succinate to accumulate. This indicates that succinate dehydrogenase activity had been blocked by the deletions and that 2-oxoglutarate can be converted to succinate in vivo in this organism, even though a traditional 2-oxoglutarate dehydrogenase is lacking. In addition, reduction of the thylakoid plastoquinone pool in darkness in the presence of KCN was up to fivefold slower in the mutants than in the wild type. Moreover, in vitro succinate dehydrogenase activity observed in wild-type membranes is absent from those isolated from the double mutant and reduced in those from the single mutants, further indicating that the sll1625 and sll0823 open reading frames encode subunits of succinate dehydrogenase complexes that are active in the thylakoid membrane of the cyanobacterium.  相似文献   

14.
The kinetics of genome-wide responses of gene expression during the acclimation of cells of Synechocystis sp. PCC 6803 to salt stress were followed by DNA-microarray technique and compared to changes in main physiological parameters. During the first 30 min of salt stress, about 240 genes became induced higher than 3-fold, while about 140 genes were repressed. However, most changes in gene expression were only transient and observed among genes for hypothetical proteins. At 24 h after onset of salt stress conditions, the expression of only 39 genes remained significantly enhanced. Among them, many genes that encode proteins essential for salt acclimation were detected, while only a small number of genes for hypothetical proteins remained activated. Following the expression of genes for main functions of the cyanobacterial cell, i.e. PSI, PSII, phycobilisomes, and synthesis of compatible solutes, such as ion homeostasis, distinct kinetic patterns were found. While most of the genes for basal physiological functions were transiently repressed during the 1st h after the onset of salt stress, genes for proteins specifically related to salt acclimation were activated. This gene expression pattern reflects well the changes in main physiological processes in salt-stressed cells, i.e. transient inhibition of photosynthesis and pigment synthesis as well as immediate activation of synthesis of compatible solutes. The results clearly document that following the kinetics of genome-wide expression, profiling can be used to envisage physiological changes in the cyanobacterial cell after certain changes in growth conditions.  相似文献   

15.
16.
17.
Genes encoding polypeptides of an ATP binding cassette (ABC)-type ferric iron transporter that plays a major role in iron acquisition in Synechocystis sp. strain PCC 6803 were identified. These genes are slr1295, slr0513, slr0327, and recently reported sll1878 (Katoh et al., J. Bacteriol. 182:6523-6524, 2000) and were designated futA1, futA2, futB, and futC, respectively, for their involvement in ferric iron uptake. Inactivation of these genes individually or futA1 and futA2 together greatly reduced the activity of ferric iron uptake in cells grown in complete medium or iron-deprived medium. All the fut genes are expressed in cells grown in complete medium, and expression was enhanced by iron starvation. The futA1 and futA2 genes appear to encode periplasmic proteins that play a redundant role in iron binding. The deduced products of futB and futC genes contain nucleotide-binding motifs and belong to the ABC transporter family of inner-membrane-bound and membrane-associated proteins, respectively. These results and sequence similarities among the four genes suggest that the Fut system is related to the Sfu/Fbp family of iron transporters. Inactivation of slr1392, a homologue of feoB in Escherichia coli, greatly reduced the activity of ferrous iron transport. This system is induced by intracellular low iron concentrations that are achieved in cells exposed to iron-free medium or in the fut-less mutants grown in complete medium.  相似文献   

18.
In the non-diazotrophic cyanobacterium Synechocystis sp. strain PCC 6803, an osmolality of 30 and 40 mosmol/kg sorbitol and NaCl resulted in 3.5- and 4.5-fold increase of nitrate uptake, respectively. The NaCl-stimulated uptake was abolished by treatment with chloramphenicol. At 25 mosmol/kg or higher, NaCl induced higher nitrate uptake than sorbitol suggesting an ionic effect of Na+. The nitrate uptake in Synechocystis showed K s and V max values of 46 μM and 1.37 μmol/min/mg Chl, respectively. Mutants disrupted in nitrate and nitrite reductase exhibited a decreased nitrate uptake. Ammonium, chlorate, and dl-glyceraldehyde caused a reduction of nitrate uptake. Dark treatment caused a drastic reduction of uptake by 70% suggesting an energy-dependent system. Nitrate transport was sensitive to various metabolic inhibitors including those dissipating proton gradients and membrane potential. The results suggest that nitrate uptake in Synechocystis is stimulated by Na+ ions and requires energy provided by the functioning electron transport chain.  相似文献   

19.
Isopentenyl diphosphate isomerase (IPP isomerase) in many organisms and in plastids is central to isoprenoid synthesis and involves the conversion between IPP and dimethylallyl diphosphate (DMAPP). It is shown that Synechocystis PCC6803 is deficient in IPP isomerase activity, consistent with the absence in its genome of an obvious homologue for the enzyme. Incorporation of [1-(14)C]IPP in cell extracts, primarily into C(20), occurs only upon priming with DMAPP in Synechocystis PCC6803 and in Synechococcus PCC7942. Isoprenoid synthesis in these cyanobacteria does not appear to involve interconversion of IPP and DMAPP, raising the possibility that they are not within the plastid evolutionary lineage.  相似文献   

20.
针对蓝细菌代谢工程改造的需求,成功构建了可以在模式蓝细菌菌株集胞藻PCC6803中高效表达外源基因的3个基因组整合表达平台,以及1个可以在多株蓝细菌中表达的广宿主穿梭表达平台。该表达平台通过选用集胞藻PCC6803中1,5-二磷酸核酮糖缩化酶/氧化酶的启动子驱动外源基因的表达,应用“SD-AUG”翻译融合的策略提高外源蛋白翻译效率,以及加入终止子序列Trbc以提高转录终止效率,实现了对外源基因的高效表达。利用lacZ作为报告基因,检测了所构建表达平台pFQ20在集胞藻中的基因表达效率,结果显示β-半乳糖苷酶的活性为109 Miller。同时,基于pFQ20表达平台在集胞藻PCC6803中表达了来自大肠杆菌的硫酯酶基因tesA’,蛋白印迹实验结果显示了硫酯酶的成功表达。该表达平台为在蓝细菌中开展遗传研究及基因工程改造提供了有用的遗传工具,其构建策略为在蓝细菌中构建高效稳定的外源基因表达元件提供了借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号