首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using molecular modeling techniques we have built the full atomic structure and performed molecular dynamics simulations for the complexes formed by Escherichia coli RecX protein with a single-stranded oligonucleotide and with RecA presynaptic filament. Based on the modeling and SANS experimental data a sandwich-like filament structure formed two chains of RecX monomers bound to the opposite sides of the single stranded DNA is proposed for RecX::ssDNA complex. The model for RecX::RecA::ssDNA include RecX binding into the grove of RecA::ssDNA filament that occurs mainly via Coulomb interactions between RecX and ssDNA. Formation of RecX::RecA::ssDNA filaments in solution was confirmed by SANS measurements which were in agreement with the spectra computed from the molecular dynamics simulations.  相似文献   

2.
3.
Small angle solution X‐ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero‐assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X‐ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two‐component systems such as a nucleoprotein or a lipid‐protein assembly. Time‐resolved small and wide‐angle solution scattering to study biological processes in real time, and the use of localized heavy‐atom labeling and anomalous solution scattering for applications as FRET‐like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X‐ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.  相似文献   

4.
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X‐ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well‐suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR‐derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state‐of‐the‐art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.  相似文献   

5.
A combination of small angle X-ray scattering and gel techniques was used to follow the kinetics of protein crystal growth as a function of time. Hen egg white lysozyme, at different protein concentrations, was used as a model system. A new sample holder was designed, in which supersaturation is induced in the presence of salt by decreasing the temperature. It had been shown previously that a decrease in temperature and/or an increase in crystallizing agent induces an increase in the attractive interactions present in the lysozyme solutions, the lysozyme remaining monomeric. In the present paper we show that similar behaviour is observed in NaCl when agarose gels are used. During crystal growth, special attention was paid to determine whether oligomers were formed as the protein in solution was incorporated in the newly formed crystals. From these first series of experiments, we did not find any indication of oligomer formation between monomer in solution and crystal. The results obtained are in agreement with the hypothesis that lysozyme crystals in NaCl grow by addition of monomeric particles. Received: 28 July 1997 / Revised version: 4 December 1997 / Accepted: 5 December 1997  相似文献   

6.
Chitinase A1 (ChiA1) from Bacillus circulans WL-12 consists of an N-terminal catalytic domain, two fibronectin type III domains (FnIIIDs), and a C-terminal chitin-binding domain. The full-length structure of ChiA1 was studied by small angle X-ray scattering. The obtained low-resolution structure showed that ChiA1 is an elongated molecule with a length of approximately 145 A composed of a large globular head and a rod-like tail. Combination with known high-resolution structures of individual ChiA1 domains provided a model of the domain arrangement. In this model, two FnIIIDs connect to each other in an extended rod-like shape without large bending between the FnIIIDs, and contribute largely to the length of ChiA1.  相似文献   

7.
While many structures of single protein components are becoming available, structural characterization of their complexes remains challenging. Methods for modeling assembly structures from individual components frequently suffer from large errors, due to protein flexibility and inaccurate scoring functions. However, when additional information is available, it may be possible to reduce the errors and compute near-native complex structures. One such type of information is a small angle X-ray scattering (SAXS) profile that can be collected in a high-throughput fashion from a small amount of sample in solution. Here, we present an efficient method for protein–protein docking with a SAXS profile (FoXSDock): generation of complex models by rigid global docking with PatchDock, filtering of the models based on the SAXS profile, clustering of the models, and refining the interface by flexible docking with FireDock. FoXSDock is benchmarked on 124 protein complexes with simulated SAXS profiles, as well as on 6 complexes with experimentally determined SAXS profiles. When induced fit is less than 1.5 Å interface Cα RMSD and the fraction residues of missing from the component structures is less than 3%, FoXSDock can find a model close to the native structure within the top 10 predictions in 77% of the cases; in comparison, docking alone succeeds in only 34% of the cases. Thus, the integrative approach significantly improves on molecular docking alone. The improvement arises from an increased resolution of rigid docking sampling and more accurate scoring.  相似文献   

8.
The last decade has seen a dramatic increase in the use of small‐angle scattering for the study of biological macromolecules in solution. The drive for more complete structural characterization of proteins and their interactions, coupled with the increasing availability of instrumentation and easy‐to‐use software for data analysis and interpretation, is expanding the utility of the technique beyond the domain of the biophysicist and into the realm of the protein scientist. However, the absence of publication standards and the ease with which 3D models can be calculated against the inherently 1D scattering data means that an understanding of sample quality, data quality, and modeling assumptions is essential to have confidence in the results. This review is intended to provide a road map through the small‐angle scattering experiment, while also providing a set of guidelines for the critical evaluation of scattering data. Examples of current best practice are given that also demonstrate the power of the technique to advance our understanding of protein structure and function.  相似文献   

9.
We present a novel target function based on atomic coordinates that permits quaternary structural refinement of multi-domain protein–protein or protein–RNA complexes. It requires that the high-resolution structures of the individual domains are known and that small angle scattering (SAS) data as well as NMR orientational restraints from residual dipolar couplings (RDCs) of the complex are available. We show that, when used in combination, the translational and rotational restraints contained in SAS intensities and RDCs, respectively, define a target potential function that permits to determine the overall topology of complexes made up of domains with low internal symmetry. We apply the target function on a modestly anisotropic model system, the Barnase/Barstar complex, and discuss factors that influence the structural refinement such as data errors and the geometrical properties of the individual domains.  相似文献   

10.
随着同步辐射装置的建设与发展及各种建模方法的产生与完善,小角X-射线散射(small angle X-ray scattering,SAXS)法已经逐渐成为结构生物学中的一种重要的工具。SAXS可以用于研究溶液中生物大分子的结构及构象变化,蛋白质的组装、折叠等动态过程。本文对SAXS的基本原理、常用的研究技术和建模方法及其应用进行了综述。  相似文献   

11.
Using fluorescence correlation spectroscopy (FCS), we have established an in vitro assay to study RNA dynamics by analyzing fluorophore binding RNA aptamers at the single molecule level. The RNA aptamer SRB2m, a minimized variant of the initially selected aptamer SRB-2, has a high affinity to the disulfonated triphenylmethane dye sulforhodamine B. A mobility shift of sulforhodamine B after binding to SRB2m was measured. In contrast, patent blue V (PBV) is visible only if complexed with SRB2m due to increased molecular brightness and minimal background. With small angle X-ray scattering (SAXS), the three-dimensional structure of the RNA aptamer was characterized at low resolution to analyze the effect of fluorophore binding. The aptamer and sulforhodamine B-aptamer complex was found to be predominantly dimeric in solution. Interaction of PBV with SRB2m led to a dissociation of SRB2m dimers into monomers. Radii of gyration and hydrodynamic radii, gained from dynamic light scattering, FCS, and fluorescence cross-correlation experiments, led to comparable conclusions. Our study demonstrates how RNA-aptamer fluorophore complexes can be simultaneously structurally and photophysically characterized by FCS. Furthermore, fluorophore binding RNA aptamers provide a tool for visualizing single RNA molecules.  相似文献   

12.
Collagen is the predominant load bearing component in many soft tissues including arterial tissue and is therefore critical in determining the mechanical integrity of such tissues. Degradation of collagen fibres is hypothesized to be a strain dependent process whereby the rate of degradation is affected by the magnitude of strain applied to the collagen fibres. The aim of this study is to investigate the ability of small angle light scattering (SALS) imaging to identify strain dependent degradation of collagen fibres in arterial tissue ex vivo, and determine whether a strain induced protection mechanism exists in arterial tissue as observed in pure collagen and other collagenous tissues. SALS was used in combination with histological and second harmonic generation (SHG) analysis to determine the collagen fibre architecture in arterial tissue subjected to strain directed degradation. SALS alignment analysis identified statistically significant differences in fibre alignment depending on the strain magnitude applied to the tissue. These results were also observed using histology and SHG. Our findings suggest a strain protection mechanism may exist for arterial collagen at intermediate strain magnitudes between 0% and 25%. These findings may have implications for the onset and progression of arterial disease where changes in the mechanical environment of arterial tissue may lead to changes in the collagen degradation rate.  相似文献   

13.
Combined small and wide angle X‐ray scattering (SAXS and WAXS) analysis was applied to purified biogenic silica of cultured diatom frustules and of natural populations sampled on marine tidal flats. The overall WAXS patterns did not reveal crystalline phases (WAXS domain between 0.07 to 0.5 nm) in this biogenic silica, which is in line with previous reports on the amorphous character of the SiO2 matrix of diatom frustules. One exception was the silica of the pennate species Cylindrotheca fusiformis Reimann et Lewin, which revealed wide peaks in the WAXS spectra. These peaks either indicate the presence of a yet unknown crystalline phase with a repetitive distance (d‐value ≈0.06 nm) or are caused by the ordering of the fibrous silica fragments; numerous girdle bands. The SAXS spectra revealed the size range of pores (diameter d between 3.0 and 65 nm), the presence of distinct pores (slope transitions), and structure factors (oscillation of the spectra). All slopes varied in the range of ?4.0 to ?2.5, with two clear common regions among species: d < 10 nm (slopes –4, denoted as region I and also called the Porod region), and 10.0 < d < 40.0 nm (slopes ?2.9 to ?3.8, denoted as region II). The existence of these common regions suggests the presence of comparable form (region I) and structure (region II) factors, respectively the shape of the primary building units of the silica and the geometry of the pores. Contrast variation experiments using dibromomethane to fill pores in the SiO2 matrix showed that scattering was caused by pores rather than silica particles. Electron microscopic analysis confirmed the presence of circular, elliptical, and rectangular pores ranging in size from 3 to 65 nm, determining the structure factor. The fine architecture (length/width ratio of pore diameters) and distribution of the pores, however, seemed to be influenced by environmental factors, such as the salinity of and additions of AlCl3 to the growth medium. The results indicate that diatoms deposit silica with pores <50 nm in size and are highly homologous with respect to geometry. Consequently, it is suggested that in diatoms, whether pennate or centric, the formation of silica at a nanoscale level is a uniform process.  相似文献   

14.
The bacterial flagellar motor drives the rotation of helical flagellar filaments to propel bacteria through viscous media. It consists of a dynamic population of mechanosensitive stators that are embedded in the inner membrane and activate in response to external load. This entails assembly around the rotor, anchoring to the peptidoglycan layer to counteract torque from the rotor and opening of a cation channel to facilitate an influx of cations, which is converted into mechanical rotation. Stator complexes are comprised of four copies of an integral membrane A subunit and two copies of a B subunit. Each B subunit includes a C-terminal OmpA-like peptidoglycan-binding (PGB) domain. This is thought to be linked to a single N-terminal transmembrane helix by a long unstructured peptide, which allows the PGB domain to bind to the peptidoglycan layer during stator anchoring. The high-resolution crystal structures of flagellar motor PGB domains from Salmonella enterica (MotBC2) and Vibrio alginolyticus (PomBC5) have previously been elucidated. Here, we use small-angle X-ray scattering (SAXS). We show that unlike MotBC2, the dimeric conformation of the PomBC5 in solution differs to its crystal structure, and explore the functional relevance by characterising gain-of-function mutants as well as wild-type constructs of various lengths. These provide new insight into the conformational diversity of flagellar motor PGB domains and experimental verification of their overall topology.  相似文献   

15.
Using small-angle solution scattering and neutron contrast variation, we have studied the structure of the multi-subunit protein kinase A. We have gained insights into how nature can take a set of common structural domains (or themes) and modulate their interactions via sequence variations and second messenger mediated signaling to affect enzyme activity and receptor binding important for targeting this multi-function enzyme to specific sub-cellular locations. These studies demonstrate the power of neutron contrast variation to expand our knowledge of the dynamic supra-molecular structures that carry out biological function.  相似文献   

16.
This work investigates the structure of native calf thymus chromatin as a function of fiber length and isolation procedures by using X-ray small angle scattering technique. Two methods of chromatin isolation have been compared in order to better understand the differences reported by various authors in terms of chromatin high order structure. In addition to these experimental results the effects of shearing have also been studied. In order to explain the differences among these chromatin preparations we built several models of chromatin fibers (represented as a chain of spherical subunits) assuming increasing level of condensation at increasing salt concentrations. For all these fiber models the corresponding theoretical X-ray scattering curves have been calculated and these results have been used to explain the influence of fiber length on the scattering profiles of chromatin. The comparison between experimental and theoretical curves confirms that the high molecular weight chromatin-DNA prepared by hypotonic swelling of nuclei (without enzymatic digestion) displays a partially folded structure even at low ionic strength, whereas the low molecular weight chromatin-DNA prepared by a brief nuclease digestion appears very weakly folded at the same ionic conditions.  相似文献   

17.
The dynamic behavior of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus was investigated using elastic neutron scattering. The temperature dependence of the atomic motions was correlated with conformational and functional characteristics of the enzyme. The onset of biological function at temperatures higher than approximately 25 degrees C (the hyperthermostable enzyme is essentially inactive at room temperature) was associated with a dynamical transition in the anharmonic motions domain. This transition from the nonactive to the enzymatically active conformation involved structurally similar conformational substates in the energy landscape. From the mean-square displacement of the protein atoms, the molecular flexibility and the effective force constants were calculated at different temperature zones. The results showed that the activity increases at higher temperatures where the intramolecular bonds are weakened and the overall rigidity of the protein is decreased. Further temperature increase resulted in significantly increased atomic fluctuations featuring heat denaturation of the protein.  相似文献   

18.
We present the implementation of a target function based on Small Angle Scattering data (Gabel et al. Eur Biophys J 35(4):313-327, 2006) into the Crystallography and NMR Systems (CNS) and demonstrate its utility in NMR structure calculations by simultaneous application of small angle scattering (SAS) and residual dipolar coupling (RDC) restraints. The efficiency and stability of the approach are demonstrated by reconstructing the structure of a two domain region of the 31 kDa nuclear export factor TAP (TIP-associated protein). Starting with the high resolution X-ray structures of the two individual TAP domains, the translational and orientational domain arrangement is refined simultaneously. We tested the stability of the protocol against variations of the SAS target parameters and the number of RDCs and their uncertainties. The activation of SAS restraints results in an improved translational clustering of the domain positions and lifts part of the fourfold degeneracy of their orientations (associated with a single alignment tensor). The resulting ensemble of structures reflects the conformational space that is consistent with the experimental SAS and RDC data. The SAS target function is computationally very efficient. SAS restraints can be activated at different levels of precision and only a limited SAS angular range is required. When combined with additional data from chemical shift perturbation, paramagnetic relaxation enhancement or mutational analysis the SAS refinement is an efficient approach for defining the topology of multi-domain and/or multimeric biomolecular complexes in solution based on available high resolution structures (NMR or X-ray) of the individual domains.  相似文献   

19.
Solution structures of nucleosomes containing a human histone variant, H2A.Z.1, were measured by small-angle X-ray and neutron scatterings (SAXS and SANS). SAXS revealed that the outer shape, reflecting the DNA shape, of the H2A.Z.1 nucleosome is almost the same as that of the canonical H2A nucleosome. In contrast, SANS employing a contrast variation technique revealed that the histone octamer of the H2A.Z.1 nucleosome is smaller than that of the canonical nucleosome. The DNA within the H2A.Z.1 nucleosome was more susceptible to micrococcal nuclease than that within the canonical nucleosome. These results suggested that the DNA is loosely wrapped around the histone core in the H2A.Z.1 nucleosome.  相似文献   

20.
Small-angle neutron scattering and contrast variation were used to study the solution structure of GroEL and GroEL/GroES chaperonins complexed with a nonnative variant of the polypeptide substrate, subtilisin (PJ9). The subtilisin was 86% deuterated (dPJ9) so that it contrasted sufficiently with the chaperonin, allowing the contrast variation technique to be used to separate the scattering from the two components bound in the complex. Both the native double-ring GroEL and a single-ring mutant were used with dPJ9 bound in a 1:1 stoichiometry per GroEL toroid. This allowed both the position and the shape of dPJ9 in the GroEL/dPJ9 complexes to be determined. A single-ring GroEL/GroES variant complexed with one dPJ9 molecule was used to study the structural changes of dPJ9 in GroEL/GroES/dPJ9 complexes formed with ADP and with ATP. It was found that both the shape and the position of the bound dPJ9 in the GroEL/GroES/dPJ9 complex with ADP were the same as those in the GroEL/dPJ9 complex. However, dPJ9 assumed a more symmetric shape when bound in the GroEL/GroES/dPJ9 complex with ATP. This important observation reflects the relative ability of ATP to promote refolding of protein substrates relative to that of ADP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号