首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Lipogenesis was studied in vivo by giving mice 250mg. meals of [U-(14)C]glucose and measuring the disposition and incorporation of label. About 48% of the (14)C dose was eliminated as (14)CO(2) in the first 2hr. At 60min. after administration, 1.0, 1.9 and 11.9% of the dose was recovered as liver glycogen, liver fatty acid and carcass fatty acid respectively. Of the [(14)C]glucose converted into fat in the epididymal pads about 90% was present as glyceride fatty acid and 10% as glyceride glycerol. 2. Hepatic synthesis of fatty acid was depressed by dietary fat to a much greater extent than was synthesis outside the liver. Both feeding with fat and starvation decreased the proportion of the label taken up by adipose tissue present as fat (triglyceride) and increased the proportion of triglyceride label present as glyceride glycerol. These results are consistent with the hypothesis that the primary action of both these conditions in decreasing fat synthesis is to inhibit synthesis of fatty acids. 3. Turnover of body fat labelled in vivo from [U-(14)C]glucose was estimated from the decline in radioactivity measured over the first 24hr. of the experiment. The half-life of liver and extrahepatic fatty acids (excluding epididymal fat) was 16hr. and 3 days respectively. In contrast, no measurable decrease in radioactivity of the fatty acids of epididymal fat was observed for 7 days after administration of the [U-(14)C]glucose.  相似文献   

2.
The in vivo formation of labelled very low density lipoproteins (VLDL) from (U-14C)-glycerol, (2-3H)-glycerol and (1-14C)-palmitate was studied in fed female rats. The rate of disappearance of radioactivity from plasma after the i.v. injection with these tracers was similar for (U-14C)-glycerol and (1-14C)-palmitate. With (2-3H)-glycerol, plasma radioactivity at 10 min was lower than with the other substrates although it did not change thereafter. A certain proportion of radioactivity administered as glycerol appeared in plasma lipids, mainly in the VLDL glyceride glycerol fraction, although when (U-14C)-glycerol was the substrate, a considerable portion also appeared in the esterified fatty acids of these lipoproteins. When using (1-14C)-palmitate, practically all the circulating labelled esterified fatty acids appeared in the VLDL fraction, while the labelled free fatty acids appeared in lipoprotein of higher density, presumable free fatty acid-albumin complexes. This data is discussed in terms of the role of the liver in the rapid, continuous cycling of these substrates to yield VLDL-glycerides for their extrahepatic utilization.  相似文献   

3.
The utilization in vivo of [1-(14)C] palmitate was studied in hepatectomized-nephrectomized rats and their sham-operated controls. After i.v. injection of the tracer, the [14C] lipids in plasma disappeared more slowly in eviscerated animals than in their controls. More label reappeared in plasma as esterified fatty acids in the latter group. At 30 min after the tracer, the amount of label found in the lipidic fraction of carcass and heart was much greater in eviscerated animals than in their controls although the percentile distribution of labelled lipidic fractions remained stable, a considerable proportion being present in the esterified fatty acid form. On the basis of these findings, the rapid increase in the plasma levels of FFA in eviscerated animals must be the result of augmented lipolytic activity more than reduced utilization of these metabolites.  相似文献   

4.
Labelled ketone bodies were produced readily from [U-(14)C]palmitate, [2-(14)C]palmitate and [1-(14)C]glycerol by sheep rumen-epithelial and liver tissues in vitro. On a tissue-nitrogen basis, both tissues had similar capacities for ketogenesis. Palmitate was a ketogenic substrate in both rumen-epithelial tissue and liver, and more of its (14)C appeared in ketone bodies than in the (14)CO(2) liberated. Glycerol was actively metabolized to ketone bodies, but more readily underwent complete oxidation to carbon dioxide; this complete oxidation was most pronounced in rumen-epithelial tissue from ketotic ewes. These experiments with labelled compounds confirm earlier observations that rumen-epithelial tissue, like liver, actively forms ketone bodies from long-chain fatty acids and show further that normal rumen-epithelial tissue can convert palmitate into ketone bodies as readily as into carbon dioxide. Free glycerol, which is metabolized only by liver tissue in non-ruminants, is also metabolized by rumen epithelium. The rumen epithelium thus has unique metabolic capacity among extrahepatic tissues.  相似文献   

5.
A glucosyl group from uridine diphosphate [U-14C]glucose is incorporated into a phosphoglycolipid, probably a glucosylphosphatidylglycerol, by a disrupted membrane enzyme preparation from a gram-negative, moderately halophilic bacterium, Pseudomonas halosaccharolytica ATCC 29423. The conversion of [14C]phosphatidylglycerol into phosphoglycolipid by the particulate preparation was also enhanced in the presence of non-labelled UDP-glucose. A chemical degradation study of labelled phosphoglycolipid showed the bulk of the radioactivity from UDP[U-14C]glucose to be associated with the glucose moiety, which also appeared to be attached to the hydroxyl group of a second glycerol.  相似文献   

6.
Triglyceride-rich lipoproteins from adult rat plasma were labelled in vivo with 3H in the esterified fatty acids and 14C in the labelled glyceride glycerol of neutral lipids by injecting i.v. sodium 9-10 (n)-[3H] palmitate and [U-14C] glycerol, after which the prelabelled lipoproteins were purified by ultracentrifugation and dialysis. The lipoproteins were incubated in vitro, in the presence or not of heparin, with pieces of epididymal fat pads or isolated adipocytes from fed rats. The disappearance of both [3H]- and [14C] lipids from the media was greater when incubations were performed with adipocytes than with fat-pad pieces and it increased with heparin in both preparations. More 3H-label than 14C was found in the tissue lipids, a higher percentage being present in adipocytes than in fat-pad pieces, and the amount of label in tissue lipids was always enhanced by heparin. Some 14C-label appeared as esterified fatty acids in both tissue preparations and it also was enhanced by the presence of heparin. These findings are in agreement with the recognized influence of heparin on the release of lipoprotein lipase and show the direct relationship between heparin action and tissue ability to take up products of lipoprotein triglyceride breakdown. They also demonstrate the ability of adipose tissue to metabolize glycerol coming from the hydrolysis of lipoprotein glycerides.  相似文献   

7.
Rabbit liver cells, in which fatty acid synthesis was suppressed by the rabbit serum component of the medium, were grown through 8- to 120-fold increases in cell numbers and mass of cell lipid in the presence of [U-14 C]-glucose. Triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine were isolated from the total cell lipid and deacylated. Carbons 1 and 3 of the glycerol from the triacylglycerols and the no. 1 glycerol carbons of the two deacylated phospholids were oxidized by periodate and isolated as the dimedon derivative of formaldehyde. The specific activities of the glycerol carbons indicated that 58, 44, and 37 percent of the glycerol of the triacylglycerols. phosphatidylcholine, and phosphatidylethanolamine, respectively, were derived from the glucose of the medium. An additional 8 percent and 1-2 percent of the glycerol of each lipid was derived, respectively, from [U-14 C] glycerol and U14C-labeled amino acids added to the medium. In agreement with an experiment with albumin-bound [9,10- minus 3H]-oleic acid, and with smilar earlier experiments, it appears likely that appriacylglycerols originated from serum lipoproteins, or their partial hydrolysis products. An appreciable part of the ethanolamine of the cells' phosphatidylethanolamine originated from exogenous U- minus 14 C-labeled amino acids. Phosphatidyl-ethanolamine, however, was not a primary source of phosphatidylcholine. Labeling of the fatty acids of triacylglycerols and phospholipids by radioactive glucose, glycerol and amino acids was negligible.  相似文献   

8.
Release of endogenous amino acids labelled via D-[U-14C]glucose was compared with that of several exogenous labelled amino acids using slices of guinea pig cerebral cortex. Electrical field stimulation evoked a selective release of endogenous [14C]glutamate, [14C]aspartate, and gamma-amino[14C]butyrate (14C-labelled GABA). The selectivity of release correlated well with 14C incorporation into endogenous amino acids. Calculations of the fraction of the tissue radioactivity released indicated that the selectivity was not an artifact due to differential incorporation. Because glucose in mammalian brain is metabolized almost entirely by the so-called 'large compartment', it is tentatively concluded that the releasable 'transmitter pool' of glutamate, aspartate, and GABA is located in this 'large compartment'.  相似文献   

9.
The appearance of plasma [14C]glucose in the inferior cava vein after a pulse of 0.2 mmol of [U-14C]L-alanine or [U-14C]glycerol/200 g body wt given through the portal vein was studied in fed 21 day pregnant rats and virgin controls under pentobarbital anesthesia. In both groups values were much higher when [U-14C]glycerol was the administered tracer than when [U-14C]L-alanine, and they were augmented in pregnant versus virgin animals at 1 min when receiving [U-14C]glycerol and at 2 min when receiving [U-14C]L-alanine. 20 min after the tracers rats receiving [U-14C]glycerol showed much higher liver [14C]glycogen and [14C]glyceride glycerol than those receiving [U-14C]L-alanine. Radioactivity present in liver as [14C]glyceride glycerol was greater in pregnant than in virgin rats receiving [U-14C]glycerol whereas radioactivity corresponding to [14C]fatty acids was lower in the former group receiving either tracer. At 20 min after maternal treatments fetuses showed lower plasma [14C]glycerol than [14C]alanine values but plasma [14C]glucose and liver [14C]glycogen values were much greater in fetuses from mothers receiving [U-14C]glycerol than [U-14C]L-amine. Besides showing the higher gluconeogenic efficiency in pregnant than in virgin rats, results indicate that at late gestation glycerol is used as a preferential substrate for both glucose and glyceride glycerol synthesis in liver.  相似文献   

10.
Studies have been made on the intensity of oxidation of [U-14C]-palmitate, [1-14C]- and [6-14C]-glucose by slices of the liver and skeletal muscles of new-born, 1-day, 5-day and adult Wistar rats and domestic pigs. It was found that the level of 14CO2 production from these substrates is higher in tissues of rats than in those of pigs. At early stages of ontogenesis, in tissues of both species intensive oxidation of glucose is observed together with oxidation of fatty acids. In the course of ontogenetic development, the intensity of glucose utilization significantly decreases, whereas the level of fatty acid catabolism remains relatively unaffected.  相似文献   

11.
1. The in vitro basal lipid metabolism of rat pancreatic fragments was compared with that in adipose tissue fragments and liver slices. 2. [1-14C]Acetate added to the media was mostly incorporated into palmitic acid and to a lesser extent into oleic acid. In addition, pancreatic tissue exhibited a marked capacity for elongation of polyunsaturated fatty acids by [1-14C]acetate and resulting desaturation when compared to adipose tissue and liver. 3. Data obtained in the presence of [U-14C]glucose, [1-14C]palmitate and 3H20 indicate that acetyl-CoA derived from glucose and from beta-oxidation of fatty acids contributed to de novo lipogenesis. 4. Oxidation of [1-14C]palmitic acid was 9-13 times higher in the pancreas than in adipose tissue or liver when expressed on a wet weight basis. 5. The fatty acid moiety of pancreatic glycerolipids could be derived from de novo synthesis, fatty acids added to the medium, or from fatty acids formed from the hydrolysis of endogenous lipids. The glycerol moiety could be derived either from glucose, or directly from glycerol through participation of glycerol kinase.  相似文献   

12.
The experiment was performed on rats to which a single injection of [U-14C]glucose had been administered. Results were observed from the 7th to the 281st day following contamination. At 280 days only the lipids in the brain contained radioactivity, the highest degree of specific activity being found in the cerebrosides.  相似文献   

13.
The influence of feeding rats a high-energy diet for 7 days on fatty acid synthesis in brown adipose tissue, white adipose tissue and liver of the rat was investigated. The incorporation of 3H2O and [U-14C]glucose into fatty acid was measured in vivo. The rats fed the high-energy diets had higher rates of fatty acid synthesis in white adipose tissue than the controls fed on chow, while fatty acid synthesis in brown adipose tissue and liver was either decreased or unchanged relative to that of controls fed on chow. After an oral load of [U-14C]glucose the incorporation of radioactivity into tissue fatty acid was several-fold higher in brown adipose tissue than in white adipose tissue in rats fed on chow. In rats fed the high-energy diets, incorporation of radioactivity into fatty acid in brown adipose tissue was decreased while that into white adipose tissue was either increased (Wistar rats) or unchanged (Lister rats).  相似文献   

14.
In confirmation of the findings of Gaitonde et al. (1974), a decrease in the brain concentration of threonine and serine, and an increase in glycine, were observed in rats maintained on a thiamin-deficient diet. Similar changes were found in the blood, and the concentration of several other amino acids in the blood decreased significantly. There was a correlation between the concentrations of threonine, serine, aspartate and asparagine in the brain and blood. In experiments in which [U-14C]threonine was injected into rats most of the radioactivity in the brain and blood of control rats was, as expected, in threonine in the acid soluble metabolites. In contrast, a considerable proportion of radioactivity was also found in other amino acids, namely glutamate, glutamine, aspartate, gamma-aminobutyrate and alanine, in the brain of thiamin-deficient rats. [U-14C]Threonine was also converted into 14C-labelled lactate and glucose, but the extent of this conversion was severalfold higher in thiamin-deficient than in control rats. This finding gave evidence of the stimulation in thiamin-deficient rats of the catabolism of [U-14C]threonine to [14C]lactate by the aminoacetone pathway catalysed by threonine dehydrogenase, and into succinate via propionate by the alpha-oxobutyrate pathway catalysed by threonine dehydratase (deaminase). The measurement of specific radioactivities of glutamate, aspartate and glutamine after injection of [U-14C]threonine, indicated a stimulation of the activities of threonine dehydrogenase and threonine dehydratase (deaminase) in the brain of thiamin-deficient rats. The specific radioactivities of glutamate, asparatate and glutamine int he brain were consistent with an alteration in the metabolism of threonine, mainly in the 'large' compartment of the brain of thiamin-deficient rats. The measurement of relative specific radioactivity of proteins after injection of [U-14C]threonine indicated a marked decrease in the synthesis of proteins, mainly in the liver of thiamin-deficient rats.  相似文献   

15.
1. The incorporation of [(35)S]sulphate in vivo into the acid-soluble intermediates extracted from young rat skin showed three sulphated hexosamine-containing components. 2. The rates of synthesis of these components were determined in vivo by measuring the incorporation of radioactivity from [U-(14)C]glucose into their isolated hexosamine moieties. 3. The incorporation of radioactivity from [U-(14)C]glucose into the isolated hexosamine and uronic acid moieties of the acid glycosaminoglycans was also measured. These results, combined with those obtained on the intermediary pathways of hexosamine and uronic acid biosynthesis previously determined in this tissue, indicated that the acid-soluble sulphated hexosamine-containing components were not precursors of the sulphated hexosamine found in the acid glycosaminoglycans. 4. The rates of synthesis of the acid glycosaminoglycan fractions were calculated from the incorporation of radioactivity from [U-(14)C]glucose into the hexosamine moiety. The sulphated components containing principally dermatan sulphate, chondroitin 6-sulphate and in smaller amounts, chondroitin 4-sulphate, heparan sulphate and heparin appeared to be turning over about twice as rapidly as hyaluronic acid and about four times as rapidly as the small keratan sulphate fraction. The relative rates of synthesis of the sulphated glycosaminoglycans were calculated from the incorporation of [(35)S]sulphate and were in agreement with those from (14)C-labelling studies.  相似文献   

16.
Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-(14)C]linoleic acid, [U-(14)C]glucose, or [1-(14)C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-(14)C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-(14)C]glucose and [1-(14)C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-(14)C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.  相似文献   

17.
[1-14C]Dolichol mixed in vitro with rat serum and injected intravenously into rats was rapidly cleared from the circulation in a manner consistent with a two-compartment model. About 80% of the radioactivity recovered from animals killed after 1 day was in the liver, with smaller amounts being found in lung, carcass (internal organs removed), gastrointestinal tract and contents, and spleen. The kidneys, testes and heart contained little radioactivity, and the brain did not appear to take up any [1-14C]dolichol. The half-life for the turnover of radioactivity from [1-14C]dolichol in tissues varied considerably, being 2 days for the lung, 17 for liver and about 50 days for the carcass. After 1 day, and also after 4 and 21 days, most of the radioactivity in all tissues was as [1-14C]dolichol and as [1-14C]dolichyl fatty acyl ester, although a small amount of incorporation of [1-14C]dolichol radioactivity into phospholipids was also observed. Faeces collected over the first 4 days after injection contained 13% of the [1-14C]dolichol dose, but urine and expired air contained only small amounts of radioactivity. Radioactivity in faeces was nearly all as unchanged [1-14C]dolichol and as [1-14C]dolichyl fatty acyl ester. The [1-14C]dolichol remaining in liver after 21 days appeared to be in a pool (possibly lysosomes) where most of it was not subject to excretion.  相似文献   

18.
Specific radioactivities of molecular species of phosphatidyl choline(PC), phosphatidyl ethanolamine(PE) and 1,2-diacylglycerol were determined in rabbit brain 15 and 30 min after intraventricular injection of 10OpCi of either [U-14C]glucose or [U-14C]glycerol. The rate of de nouo synthesis of glycerophospholipids and their molecular species could be determined after glycerol labelling, since 94.0–99.7% of 14C activity was recovered in glyceryl moieties of brain lipids. After injection of glucose radioactivity was measured in both glyccrol and acyl residues of lipids. High incorporation rates were measured in species of PC, PE and 1,2-diacylglycerol with oleic acid in position 2 and with palmitic, stearic or oleic acids in position 1. The conclusion may therefore be drawn that these molecular species were preferably synthesized de novo by selective acylation of glycerol 3-phosphate. The lowest specific activities were observed for 1,2-dipalmitoyl- and l-stearoyl-2- arachidonoyl-glycerol, -PC and -PE. These turnover rates point to incorporation of arachidonate, and probably also of palmitate in dipalmitoyl-PC, amounting to 20% of total PC, via deacylation-acylation- cycle.  相似文献   

19.
1. The fate of (+)-[U-(14)C]catechin and (+)-[ring A-(14)C]catechin has been studied in the guinea pig and rat. 2. (+)-[U-(14)C]Catechin was shown to give rise to labelled phenolic acids, labelled phenyl-gamma-valerolactones and (14)CO(2). 3. (+)-[ring A-(14)C]-Catechin did not give rise to labelled phenolic acids, but labelled phenyl-gamma-valerolactones were detected together with a higher proportion of (14)CO(2). 4. Administered [(14)C]delta-(3-hydroxyphenyl)-gamma-valerolactone gave rise to labelled m-hydroxyphenylpropionic acid in the rat whereas administered [(14)C]m-hydroxyphenylpropionic acid gave rise to a compound yielding labelled m-hydroxybenzoic acid on hydrolysis. 5. The distribution of radioactivity in the urine and faeces of (+)-[(14)C]catechin-fed animals is described; a high proportion of residual radioactivity was found in urine that had been exhaustively extracted with diethyl ether.  相似文献   

20.
1. The incorporation of [U-(14)C]glucose into several lipid components of lung and liver slices, and the activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ;malic' enzyme (EC 1.1.1.40) and NADP-isocitrate dehydrogenase (EC 1.1.1.42) of the cell cytosol were examined in normal, starved and re-fed rats. 2. Lipogenesis and the activities of these enzymes in liver were decreased markedly in rats starved for 72h. Re-feeding starved rats on a fat-free diet for 72h resulted in the well documented hyperlipogenic response in liver, particularly in its ability to convert glucose into neutral lipid, and increased activities of glucose 6-phosphate dehydrogenase, ;malic' enzyme and 6-phosphogluconate dehydrogenase to values approx. 700, 470 and 250% of controls respectively. 3. Approx. 70% of the total label in lung lipids was present in the phospholipid fraction. Hydrolysis of lung phospholipids revealed that lipogenesis from glucose was considerable, with approx. 40% of the total phospholipid radioactivity present in the fatty acid fraction. 4. Incorporation of glucose into total lung lipids was decreased by approx. 40% in lung slices of starved rats and was returned to control values on re-feeding. Although phospholipid synthesis from glucose was decreased in lung slices of starved rats, the decrease proportionally was greater for the fatty acid fraction (approx. 50%) as compared with the glycerol fraction (approx. 25%). 5. The activities of lung glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and NADP-isocitrate dehydrogenase were not affected by the dietary alterations. ;Malic' enzyme activity was not detected in lung cytosol preparations. 6. The results are discussed in relation to the surface-active lining layer (surfactant) of the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号