首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetes mellitus (DM), one of the most prevalent metabolic diseases in the world population, is associated with a number of comorbid conditions including obesity, pancreatic endocrine changes, and renal and cardio-cerebrovascular alterations, coupled with peripheral neuropathy and neurodegenerative disease, some of these disorders are bundled into metabolic syndrome. Type 1 DM (T1DM) is an autoimmune disease that destroys the insulin-secreting islet cells. Type 2 DM (T2DM) is diabetes that is associated with an imbalance in the glucagon/insulin homeostasis that leads to the formation of amyloid deposits in the brain, pancreatic islet cells, and possibly in the kidney glomerulus. There are several layers of molecular pathologic alterations that contribute to the DM metabolic pathophysiology and its associated neuropathic manifestations. In this review, we describe the general signature metabolic features of DM and the cross-talk with neurodegeneration. We will assess the underlying molecular key players associated with DM-induced neuropathic disorders that are associated with both T1DM and T2DM. In this context, we will highlight the role of tau and amyloid protein deposits in the brain as well in the pancreatic islet cells, and possibly in the kidney glomerulus. Furthermore, we will discuss the central role of mitochondria, oxidative stress, and the unfolded protein response in mediating the DM-associated neuropathic degeneration. This study will elucidate the relationship between DM and neurodegeneration which may account for the evolution of other neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease as discussed later.  相似文献   

2.
The presence of potentially autoreactive T cells is a necessary, but not sufficient, condition for the development of autoimmune disease. However, the relationship between T cell response and susceptibility to disease is not straightforward. In this report, we use experimental allergic encephalomyelitis as a model to demonstrate that subtle alterations of the T cell response to an encephalitogenic epitope are sufficient to cause a dramatic decrease in disease susceptibility. Transgenic expression of a fusion protein of hen egg lysozyme and an encephalitogenic peptide of myelin basic protein (MBP) residues 84-105, coexpressed with MHC class II, causes profound tolerance to hen egg lysozyme, while maintaining a near normal response to MBP. Detailed analysis of the T cell repertoire of transgenic animals using a panel of T cell hybridomas revealed a highly selective loss of one minor component of the response to the MBP84-104 region. Despite this, transgenic animals were highly resistant to experimental allergic encephalomyelitis induction with the MBP peptide, indicating that minor changes to the T cell repertoire may result in major alterations in disease susceptibility. Possible reasons for this are discussed.  相似文献   

3.
For most eukaryotic organisms, including Saccharomyces cerevisiae, the rapid inhibition of protein synthesis forms part of a response to stress. In order to balance the changing conditions, precise stress-specific alterations to the cell's proteome are required. Therefore, in the background of a global down-regulation in protein synthesis, specific proteins are induced. Given the level of plasticity required to enable stress-specific alterations of this kind, it is surprising that the mechanisms of translational regulation are not more diverse. In the present review, we summarize the impact of stress on translation initiation, highlighting both the similarities and distinctions between various stress responses. Finally, we speculate as to how yeast cells generate stress-responsive programmes of protein production when regulation is focused on the same steps in the translation pathway.  相似文献   

4.
In response to growing needs for quantitative biochemical and cellular assays that address whether the extracellular matrix (ECM) acts as a mechanochemical signal converter to co-regulate cellular mechanotransduction processes, a new assay is presented where plasma fibronectin fibers are manually deposited onto elastic sheets, while force-induced changes in protein conformation are monitored by fluorescence resonance energy transfer (FRET). Fully relaxed assay fibers can be stretched at least 5-6 fold, which involves Fn domain unfolding, before the fibers break. In native fibroblast ECM, this full range of stretch-regulated conformations coexists in every field of view confirming that the assay fibers are physiologically relevant model systems. Since alterations of protein function will directly correlate with their extension in response to force, the FRET vs. strain curves presented herein enable the mapping of fibronectin strain distributions in 2D and 3D cell cultures with high spatial resolution. Finally, cryptic sites for fibronectin's N-terminal 70-kD fragment were found to be exposed at relatively low strain, demonstrating the assay's potential to analyze stretch-regulated protein-protein interactions.  相似文献   

5.
6.
Acute phase proteins in ruminants   总被引:1,自引:0,他引:1  
The physiological response to infections and injuries involves local inflammation and the initiation of events leading to a systemic response, also called acute phase reaction (APR). This multiplicity of changes is distant from the site of injury, and includes fever, leukocytosis and quantitative and qualitative modification of a group of non-structurally related proteins present in blood and other biological fluids, collectively named Acute Phase Proteins (APP). Proteomic investigations of serum or plasma following natural or experimental infection frequently reveal substantial alterations in the APP, several of which are high abundance proteins in these fluids. The present review will focus on the results of recent research on ruminant APP. Highlight points will include: - The structure and the functions of the main APPs in ruminants, as well as the regulatory mechanisms that trigger their systemic and local expression in both physiological and pathological conditions.- The clinical aspects of APPs in ruminants, including the current and future application to veterinary diagnosis and animal production.- The APP in small and wildlife ruminants.- Alteration in APP detected by proteomic investigations.  相似文献   

7.
Yeast cells encounter a variety of environmental stresses during brewing and must respond to ensure cell survival. Cells can respond to stress by inducing a Heat Shock Response in which heat shock proteins (Hsps) are synthesized. In laboratory strains of Saccharomyces cerevisiae, the heat shock protein, Hsp104, plays a major role in the acquisition of tolerance to a variety of stresses such as heat, ethanol and sodium arsenite, and as such acts as an excellent stress indicator. The induction of Hsp104 in bottom-and top-fermenting brewery strains was examined when grown under laboratory and industrial fermentation conditions, and it was found that each brewing strain exhibits its own unique pattern of Hsp104 expression. During industrial fermentations, brewery strains are capable of mounting a stress response at the early stages of fermentation. However, as the fermentation proceeds, the response is repressed. The results suggest that conditions experienced in industrial brewing prevent the activation of the stress response. This study increases our understanding of alterations in gene expression patterns during the brewing process, and yields information that will aid in the definition of best practice in yeast management.  相似文献   

8.
Skeletal muscle fibre transitions occur in many biological processes, in response to alterations in neuromuscular activity, in muscular disorders, during age-induced muscle wasting and in myogenesis. It was therefore of interest to perform a comprehensive proteomic profiling of muscle transformation. Chronic low-frequency stimulation of the rabbit tibialis anterior muscle represents an established model system for studying the response of fast fibres to enhanced neuromuscular activity under conditions of maximum activation. We have conducted a DIGE analysis of unstimulated control specimens versus 14- and 60-day conditioned muscles. A differential expression pattern was observed for 41 protein species with 29 increased and 12 decreased muscle proteins. Identified classes of proteins that are changed during the fast-to-slow transition process belong to the contractile machinery, ion homeostasis, excitation-contraction coupling, capillarization, metabolism and stress response. Results from immunoblotting agreed with the conversion of the metabolic, regulatory and contractile molecular apparatus to support muscle fibres with slower twitch characteristics. Besides confirming established muscle elements as reliable transition markers, this proteomics-based study has established the actin-binding protein cofilin-2 and the endothelial marker transgelin as novel biomarkers for evaluating muscle transformation.  相似文献   

9.
Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment) or genetic (Deltafur) alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB), a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.  相似文献   

10.
Cell volume alteration represents an important factor contributing to the pathology of late-onset diseases. Previously, it was reported that protein biosynthesis and degradation are inversely (trans) regulated during cell volume regulation. Upon cell shrinkage, protein biosynthesis was up-regulated and protein degradation down-regulated. Cell swelling showed opposite regulation. Recent evidence suggests a decrease of protein biodegradation activity in many neurodegenerative diseases and even during aging; both also show prominent cell shrinkage. To clarify the effect of cell volume regulation on the overall protein turnover dynamics, we investigated mouse embryonic stem cells under hyper- and hypotonic osmotic conditions using a 2-D gel based proteomics approach. These conditions cause cell swelling and shrinkage, respectively. Our results demonstrate that the adaption to altered osmotic conditions and therefore cell volume alterations affects a broad spectrum of cellular pathways, including stress response, cytoskeleton remodeling and importantly, cellular metabolism and protein degradation. Interestingly, protein synthesis and degradation appears to be cis-regulated (same direction) on a global level. Our findings also support the hypothesis that protein alterations due to osmotic stress contribute to the pathology of neurodegenerative diseases due to a 60% expression overlap with proteins found altered in Alzheimer's, Huntington's, or Parkinson's disease. Eighteen percent of the proteins altered are even shared with all three disorders.  相似文献   

11.
Listeria monocytogenes is capable of withstanding low pH after initial exposure to sublethal acidic conditions, a phenomenon termed the acid tolerance response (B. O'Driscoll, C. G. M. Gahan, and C. Hill, Appl. Environ. Microbiol. 62:1693-1698, 1996). Treatment of L. monocytogenes LO28 with chloramphenicol during acid adaptation abrogated the protective effect, suggesting that de novo protein synthesis is required for the acid tolerance response. Analysis of protein expression during acid adaptation by two-dimensional gel electrophoresis revealed changes in the levels of 53 proteins. Significant protein differences were also evident between nonadapted L. monocytogenes LO28 and a constitutively acid-tolerant mutant, ATM56. In addition, the analysis[S_TABC] revealed differences in protein expression between cells induced with a weak acid (lactic acid) and those induced with a strong acid (HCl). Comparison of both acid-adapted LO28 and ATM56 revealed that both are capable of maintaining their internal pH (pH(infi)) at higher levels than nonadapted control cells during severe acid stress. Collectively, the data demonstrate the profound alterations in protein synthesis which take place during acid adaptation in L. monocytogenes and ultimately lead to an increased ability to survive severe stress conditions.  相似文献   

12.
Endoplasmic reticulum architecture: structures in flux   总被引:1,自引:0,他引:1  
The endoplasmic reticulum (ER) is a dynamic pleiomorphic organelle containing continuous but distinct subdomains. The diversity of ER structures parallels its many functions, including secretory protein biogenesis, lipid synthesis, drug metabolism and Ca2+ signaling. Recent studies are revealing how elaborate ER structures arise in response to subtle changes in protein levels, dynamics, and interactions as well as in response to alterations in cytosolic ion concentrations. Subdomain formation appears to be governed by principles of self-organization. Once formed, ER subdomains remain malleable and can be rapidly transformed into alternative structures in response to altered conditions. The mechanisms that modulate ER structure are likely to be important for the generation of the characteristic shapes of other organelles.  相似文献   

13.
The p53 protein is one of the most important tumor suppressor proteins. The most prevailing property of this tumor suppressor protein is its activation in response to DNA damage which counteracts the propagation of genetic alterations to daughter cells under conditions that provoke mutagenesis. In response to DNA damage and some other kinds of cellular stress the turnover of p53 is reduced or completely switched-off, which leads to a strong increase in the amount of the p53 protein and subsequently to the implementation of cell cycle arrest and apoptosis. Although post-translational modifications of p53 certainly contribute to the activation of p53 under physiologic conditions, an increase in the amount of the protein e.g. after overexpression, is sufficient for p53's deadly activities. This makes this tumor suppressor protein an interesting target for cancer therapy. This article summarizes the most important principles for the regulation of p53, with a particular focus on recent findings. Furthermore, open questions and possible future directions shall be discussed.  相似文献   

14.
In the 1990's, evidence has accumulated that various unfavourable environmental conditions substantially affect the turnover of the D1 protein of reaction centre II, the psb A gene product. Biochemical, molecular and physiological studies in higher plants indicate that alterations of D1 protein turnover occur under drought, nutrition deficiency, heat, chemical stress, ozone fumigation as well as UV-B and visible photo-stresses. The behaviour of photosystem II under these various stress conditions indicates that the response of D1 protein turnover can be interpreted as a general adaptive response to environmental extremes.  相似文献   

15.
Mechanical properties of proteins are important for a wide range of biological processes including cell adhesion, muscle contraction, and protein translocation across biological membranes. It is necessary to reveal how proteins achieve their required mechanical stability under natural conditions in order to understand the biological processes and also to use the knowledge for constructing new biomaterials for medical and industrial purposes. In this connection, it is important to know how a protein will behave in response to various impacts. Theoretical and experimental works on mechanical unfolding of globular proteins will be considered in detail in this review.  相似文献   

16.
We have used the technique of multiple pin peptide synthesis to identify three major continuous epitopes in the recombinant bovine (rb) GH molecule. We have synthesized these peptides, residues 24-40, 139-152 and 179-189, as N-terminally acetylated, C-terminal amides and confirmed their reactivity in a standard solid-phase ELISA. Subsequently, for epitope 139-152, we have synthesized a peptide affinity column and used this to isolate antibodies with this epitope specificity from whole antiserum. In addition, we demonstrate that under native conditions in a liquid phase RIA, these antibodies will precipitate [125I]rbGH. Further, peptide 139-152 itself also cross-reacts in an rbGH RIA inhibiting binding by up to 20%. Our data suggest that during the immune response to rbGH in guinea-pigs a substantial part of the B-cell response is directed to the 139-152 region and that this part of the protein is a native epitope.  相似文献   

17.
Proteomics is performed in microgravity research in order to determine protein alterations occurring qualitatively and quantitatively, when single cells or whole organisms are exposed to real or simulated microgravity. To this purpose, antibody-dependent (Western blotting, flow cytometry, Luminex® technology) and antibody-independent (mass spectrometry, gene array) techniques are applied. The anticipated findings will help to understand microgravity-specific behavior, which has been observed in bacteria, as well as in plant, animal and human cells. To date, the analyses revealed that cell cultures are more sensitive to microgravity than cells embedded in organisms and that proteins changing under microgravity are highly interactive. Furthermore, one has to distinguish between primary gravity-induced and subsequent interaction-dependent changes of proteins, as well as between direct microgravity-related effects and indirect stress responses. Progress in this field will impact on tissue engineering and medicine and will uncover possibilities of counteracting alterations of protein expression at lowered gravity.  相似文献   

18.
19.
It is known that reticulocytes formed in animals in response to phenylhydrazine treatment have a shorter life span than those formed as a consequence of bleeding. The experiments presented illustrate that the reticulocytes formed consequent to the action of this drug exhibit membrane alterations, in the absence of intracellular oxidative changes (e.g., to hemoglobin), which might be expected to contribute to their decreased survival. These membrane alterations include the formation of flourescent chromolipids, a decrease in spectrin polypeptides, and an increase in high molecular weight membrane protein polymers. It is suggested that these effects are unique to the reticulocytes formed as a response to phenylhydrazine since they are a consequence of the peroxidation of membrane phospholipids initiated by this agent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号