首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 35-year-old male was investigated for primary infertility. Clinical examination showed an intelligent man with normal facial appearance and moustache and small firm testes. Testicular histopathology revealed marked atrophy of the testes with no spermatogenesis and absence of germ cells. Hormonal profile showed elevated levels of FSH,LH and low levels of testosterone. Chromosome analysis from whole blood culture showed cells with 46,XX/46,XY/47,XXY/48,XXXY/48,XXYY mosaicism. The predominant cell line was 47,XXY (87.86%). 46,XY/47,XXY mosaicism is not uncommon. However, mosaicism of multiple sex chromosome aneuploidy is rarely observed. This is the first report of mosaicism in Klinefelter's syndrome variant with five cell lines.  相似文献   

2.
Prior to entry into meiosis, XX germ cells in the fetal ovary undergo X chromosome reactivation. The signal for reactivation is thought to emanate from the genital ridge, but it is unclear whether it is specific to the developing ovary. To determine whether the signals are present in the developing testis as well as the ovary, we examined the expression of X-linked genes in germ cells from XXY male mice. To facilitate this analysis, we generated XXY and XX fetuses carrying X chromosomes that were differentially marked and subject to nonrandom inactivation. This pattern of nonrandom inactivation was maintained in somatic cells but, in XX as well as XXY fetuses, both parental alleles were expressed in germ cell-enriched cell populations. Because testis differentiation is temporally and morphologically normal in the XXY testis and because all germ cells embark upon a male pathway of development, these results provide compelling evidence that X chromosome reactivation in fetal germ cells is independent of the somatic events of sexual differentiation. Proper X chromosome dosage is essential for the normal fertility of male mammals, and abnormalities in germ cell development are apparent in the XXY testis within several days of X reactivation. Studies of exceptional germ cells that survive in the postnatal XXY testis demonstrated that surviving germ cells are exclusively XY and result from rare nondisjunctional events that give rise to clones of XY cells.  相似文献   

3.
Gonadal effects of the Denys-Drash syndrome (DDS) mutation Wt1tmT396 were examined in chimaeric and heterozygous mice. Since the only heterozygote was 41,XXY, Sertoli cell function was assessed by comparison with age-matched control XXY testes. Control XXY Sertoli cells showed immunoexpression of WT1 and androgen receptor (AR) indistinguishable from wild-type (40,XY), but expressed anti-Mullerian hormone (AMH). In contrast, DDS Sertoli cells showed only faint immunoexpression of WT1 and did not express AR or AMH. While XY↔XY DDS chimaeras were male, XX↔XY chimaeras were predominantly female. In the rare XX↔XY DDS males the Sertoli cell lineage was largely derived from Wt1 mutant XY cells. We conclude that DDS mutant cells can form Sertoli cells, that the dominant mutation does not cause male sex reversal in mice but distorts the sex ratio of XX↔XY chimaeras, and that there may be a link between WT1, AMH and AR expression by Sertoli cells in vivo.  相似文献   

4.
Male mammals with two X chromosomes are sterile due to the demise of virtually all germ cells; however, the underlying reasons for the germ cell loss remain unclear. The use of a breeding scheme for the production of XXY male mice has allowed us to experimentally address the question of when and why germ cells die in the XXY testis and whether the defect is due to the presence of an additional X chromosome in the soma, the germ cells themselves, or both. Our studies demonstrate that altered X-chromosome dosage acts to impair germ cell development in the testis at a much earlier stage than suggested by previous studies of XX sex-reversed males or XX/XY chimeras. Specifically, we noted significantly reduced germ cell numbers in the XXY testis during the period of germ cell proliferation in the early stages of testis differentiation. Although the somatic development of the XXY testis is morphologically and temporally normal, our studies indicate that germ cell demise reflects a defect in somatic/germ cell communication, since, in an in vitro system, the proliferative potential of fetal germ cells from XXY males is indistinguishable from that of normal males. Mol. Reprod. Dev. 49:101–111, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
An adult male common shrew with an XXY sex chromosome constitution was found in a natural population. The external appearance of the animal and size of the accessory glands were normal but the testes were as small as those of immature shrews. Histological preparations of the testis revealed seminiferous tubules containing only one type of cell, probably Sertoli cells, and interstitial cell hyperplasia.  相似文献   

6.
Klinefelter's syndrome (KS) is the most common sex chromosome abnormality identified in human males. This syndrome is generally associated with infertility. Men with KS may have a 47,XXY or a 46,XY/47,XXY karyotype. Studies carried out in humans and mice suggest that only XY cells are able to enter and complete meiosis. These cells could originate from the XY cells present in mosaic patients or from XXY cells that have lost one X chromosome. In pig, only 3 cases of pure 39,XXY have been reported until now, and no meiotic analysis was carried out. For the first time in pig species we report the analysis of a 38,XY/39,XXY boar and describe the origin of the supplementary X chromosome and the chromosomal constitutions of the germ and Sertoli cells.  相似文献   

7.
Using BrdU-labeling and acridine orange staining, the behavior of X-chromosome replication was studied in 28 XXX and 19 XXY digynous mouse triploids. In some of these the paternal and maternal X chromosome could by cytologically distinguished. Such embryos were obtained by mating chromosomally normal females with males carrying Cattanach's X chromosome which contains an autosomal insertion that substantially increases the length of this chromosome. In the XXX triploids there were two distinct cell lines, one with two late-replicating X chromosomes, and the other with only one late-replicating X. The XXY triploids were also composed of two cell populations, one with a single late-replicating X and the other with no late replicating X chromosome. Assuming that the late-replicating X is genetically inactive, in both XXX and XXY triploids, cells from the embryonic region tended to have only one active X chromosome, whereas those from the extra-embryonic membranes tended to have two active X chromosomes. The single active X chromosome was either paternal or maternal in origin, but two active X chromosomes were overwhelmingly maternal in origin, suggesting paternal X-inactivation in extra-embryonic tissues.  相似文献   

8.
We have analyzed patterns of DNA replication in X chromosomes from diploid cultured human fibroblasts and from three triploid 69,XXY fibroblast strains, using BrdU--33258 Hoechst--Giemsa techniques. Both X chromosomes in each of these Barr body-negative triploid strains were early-replicating. The results of gene dosage studies using (1) a histochemical stain to measure X-linked glucose-6-phosphate dehydrogenase (G6PD) activity in single cells and (2) cellulose acetate electrophoresis of G6PD activity in cell extracts also indicated that both Xs in these strains were genetically active. When we compared the synchrony of X chromosome DNA replication kinetics both between cells and within cells containing multiple inactive Xs, a marked variability and asynchrony was observed for late-replicating X chromosomes. In a culture of 47,XXX fibroblasts administered an 8-h terminal pulse of dT after growth in BrdU-containing medium, asynchrony was detected between the two late-replicating Xs in approximately 70% of cells examined. No such asynchrony was observed between the two early-replicating Xs in similarly cultured 69,XXY cells; in the triploid strains, the two Xs were distinguished by asynchronous replication in only approximately 15% of cells. The striking variability in late X chromosome replication kinetics appears, then, to be a property unique to inactive Xs and is not inherent to all X chromosomes.  相似文献   

9.
Summary Herein is described an attempts to establish chromosome pairing-interchange relationships in Drosophila melanogaster female. For this purpose, the formation of half-translocations was studied in XXY and XX females bearing compounds of the second pair of autosomes. With respect to XXY females, it was expected that the free Y chromosome would pair with these compounds and that half-translocations involving 2L would arise. In as much as compound chromosomes in XX females had no partner for pairing, the formation of half-translocations involving 2L was not expected.Half-translocations were registered in the F1 from crosses of XX and XXY females to b j pr cn/T(Y;2)C males. The cross was designed to permit the detection of very rarely occurring non-homologue interchanges.Offspring number was 335 in XX females and 550 in XXY females. The majority of offspring consisted of individuals arisen from the spontaneous restitution of compounds and the formation of 2n egg cells. Based on phenotype, the offspring of XX females contained 4 individuals with half-translocations involving 2L; there were 48 such flies among the offspring of XXY females. As confirmed by progeny analysis, 38 half-translocations occurred in XXY females and none in XX females. Of the 31 spontaneous interchanges in XXY females 28 were recorded between the Y and the left compound, one between the Y and the right compound, and one between the X and the left compound. Non-homologue interchanges were of oogonial origin judging by the fact that individuals with half-translocations arose in clusters. Unlike Y — left compound interchanges, the interchanges between autosomal compounds seem to be of meiotic origin.  相似文献   

10.
The most common type of karyotype abnormality detected in infertile subjects is represented by Klinefelter's syndrome, and the most frequent non-chromosomal alteration is represented by Y chromosome long arm microdeletions. Here we report our experience and a review of the literature on sperm sex chromosome aneuploidies in these two conditions. Non mosaic 47,XXY Klinefelter patients (12 subjects) show a significantly lower percentage of normal Y-bearing sperm and slightly higher percentage of normal X-bearing sperm. Consistent with the hypothesis that 47,XXY germ cells may undergo and complete meiosis, aneuploidy rate for XX- and XY-disomies is also increased with respect to controls, whereas the percentage of YY-disomies is normal. Aneuploidy rates in men with mosaic 47,XXY/46,XY (11 subjects) are lower than those observed in men with non-mosaic Klinefelter's syndrome, and only the frequency of XY-disomic sperm is significantly higher with respect to controls. Although the great majority of children born by intracytoplasmic sperm injection from Klinefelter subjects are chromosomally normal, the risk of producing offspring with chromosome aneuploidies is significant. Men with Y chromosome microdeletions (14 subjects) showed a reduction of normal Y-bearing sperm, and an increase in nullisomic and XY-disomic sperm, suggesting an instability of the deleted Y chromosome causing its loss in germ cells, and meiotic alterations leading to XY non-disjunction. Intracytoplasmic injection of sperm from Y-deleted men will therefore transmit the deletion to male children, and therefore the spermatogenic impairment, but raises also concerns of generating 45,X and 47,XXY embryos.  相似文献   

11.
Human sperm chromosomes from a 46,XY/ 47,XXY male were obtained using the technique of in vitro penetration of zona-free hamster eggs. The analysis of 543 sperm complements shows a significantly increased incidence (0.9%) of hyperhaploid gonosomal 24,XY sets, with a lack of the expected corresponding gonosomal hypohaploidies, and a normal rate of autosomal non-disjunctions. These results support the suggestion that 47,XXY cells are able to go through meiosis and to form spermatozoa. Only 24,XY sperm chromosomal constitutions were observed suggesting a preferential pairing of homologous sex chromosomes in 47,XXY spermatocytes.  相似文献   

12.
About 1 in 650 boys are born with an extra X chromosome (47,XXY or Klinefelter syndrome). 47,XXY is associated with vulnerabilities in socio‐emotional development. This study was designed to assess types of cognitive deficits in individuals with 47,XXY that may contribute to social‐emotional dysfunction, and to evaluate the nature of such deficits at various levels: ranging from basic visuospatial processing deficits, impairments in face recognition (FR), to emotion expression impairments. A total of 70 boys and men with 47,XXY, aged 8 to 60 years old, participated in the study. The subtests feature identification, FR and identification of facial emotions of the Amsterdam Neuropsychological Tasks were used. Level of intellectual functioning was assessed with the child and adult versions of the Wechsler Intelligence Scales. Reaction time data showed that in the 47,XXY group, 17% had difficulties in visuospatial processing (no social load), 26% had difficulties with FR (medium social load) and an even higher number of 33% had difficulties with facial expressions of emotions (high‐social load). Information processing impairments increased as a function of “social load” of the stimuli, independent of intellectual functioning. Taken together, our data suggest that on average individuals with XXY may have more difficulties in information processing when “social load” increases, suggesting a specific difficulty in the higher‐order labeling and interpretation of social cues, which cannot be explained by more basic visuospatial perceptual skills. Considering the increased risk for social cognitive impairments, routine assessment of social cognitive functioning as part of neuropsychological screening is warranted.  相似文献   

13.
This paper reports the electrocardiogram measures and blood pressure of 12 men with 47,XYY, 14 men with 47,XXY, and 52 matched controls with 46,XY. The abnormal karyotypes were identified in a systematic population search for XYY and XXY men. The subjects and their matched controls were examined in a double-blind fashion. Electrocardiogram measures of 47,XYY and 47,XXY men were found to differ from those of 46,XY controls. The XYYs had longer P-R intervals, shorter QRS complexes, and nonsignificantly longer R-R intervals than their matched controls. The XXYs showed longer R-R intervals and trends for for prolonged P-R intervals and shorter QRS complexes when compared with their controls. Trends toward increased within-group variability in the XYY and XXY groups were observed in five of six variance tests, suggesting that the sex chromosome aneuploids have a cardiac condition anomaly. Blood pressure measures of 47,XYY and 47,XXY men were found not to differ from those of 46,XY men. None of the measures revealed a significant difference between the XYYs and the XXYs.  相似文献   

14.
After feeding FUdR (5-fluorodeoxyuridine) to female Drosophila melanogaster, highly significant increases in the frequencies of both XO and XXY exceptions were observed in their offspring. The XXY exceptions and part of the XO exceptions result from maternal nondisjunction of the X-chromosomes. Part of the XO exceptions can be assumed to be produced by X-chromosome breakage followed by bridge formation. The analysis of the brood pattern observed suggests that interphase cells (premeiotic oocytes, oogonia) are especially sensitive in the induction of both XO and XXY exceptions by FUdR. In addition, and contrary to the results obtained with other objects, FUdR seems to induce chromosomal damage (presumably chromatid and/or isochromatid breaks) not only in interphase but also in prophase cells. The mechanisms of the induction of X-chromosomal aneuploids by FUdR are discussed.  相似文献   

15.
Synaptonemal complex studies in a mosaic 46,XY/47,XXY male   总被引:10,自引:2,他引:8  
Summary We describe the results of synaptonemal complex (SCs) studies by light (LM) and electron microscopy (EM) in a sterile 46,XY/47,XXY male mosaic. Meiotic studies showed an arrest at the first spermatocyte level. Pachytene figures showed three types of cells: (1) cells with normal SCs, normal sex vesicle, and a 23,XY constitution; (2) cells with no sex vesicle, normal pairing of SCs, and a 24, (?) constitution; and (3) cells with a normal sex vesicle and fragmented SCs.  相似文献   

16.
A male mouse with irregular white spotting, typical of piebald, s, arose during an experiment designed to search for mutations induced in spermatogonial cells by ethylnitrosourea (ENU). On being examined cytologically it was found to carry 40 chromosomes but was effectively XXY since one of the two X chromosomes present was distally fused to a Y chromosome. In common with the previously described XXY mice, all of which carried 41 chromosomes, the mouse was sterile with a total absence of germ cells. Because of this, it was not possible to determine if the white spotting was inherited. The spotting could not be related to any observable abnormality of chromosomes known to carry spotting genes, nor could it be linked in any way with the X and Y fusion. It was concluded from the cytological considerations and the time interval (6 months) that had elapsed between mutagen treatment and birth of the offspring, that whereas the spotting was probably the result of ENU damage in a spermatogonial stem cell, the XY fusion was probably a later and spontaneous event.  相似文献   

17.
Complex investigation of 5 enzymes was carried out in a cell strain with triploidy 69, XXY, derived from a human spontaneous abortus. The activity of 3 enzymes (acid phosphatase, lactate and malate dehydrogenases) in triploid cells proved to be significantly increased as compared to those of 3 diploid strains, whereas the activity of alkaline phosphatase was decreased. The activity of glutamate-oxalacetate transaminase did not change. The absence of the pronounced genetic dose effect and different alteration of the activities of the enzymes studied may be considered as an expression of a disbalance of enzymes in cytogenetically defective cells.  相似文献   

18.
Lymphocyte cultures from five patients with chromosomal mosaicism (two 47,XY,+21/46,XY, one 47,XX,+21/46,XX, one 45,X/46,XX, and one 47,XXY/46,XY) were studied using sister chromatid differential staining technique for cell kinetic evaluation. Aneuploid and normal cell lines were compared to identify changes in cellular proliferation in vitro that could be related to cellular selective advantage and cell-line-proportion changes occurring with age. Comparison of the percentage of cells in different cell generations in 48, 72, and 96 h-cultures shows no differences between the aneuploid and normal cell lines indicating that cell-cycle kinetics is similar in these cells in vitro.  相似文献   

19.
20.
Summary We have found that a group of 53 chromatin-positive males consisting of XXY, XX and XY/XXY individuals had significantly lower average value of plasma testosterone than a group of 82 normal men. A comparison of these different chromosome variants and their plasma testosterone showed distinctly lowest value in males with 46,XX karyotype.
Zusammenfassung Wir haben gefunden, daß eine Gruppe von 53 chromatinpositiven Männern, bestehend aus einzelnen XXY, XX und XY/XXY, einen durchschnittlich niedrigeren Wert an Plasmatestosteron hatten als eine Gruppe von 82 normalen Männern. Ein Vergleich von verschiedenen Chromosomenvarianten und deren Plasmatestosteron zeigte genau den niedrigsten Wert bei Männern mit 46,XX-Karyotyp.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号