首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aromatic amino acid is present in the binding site of a number of sugar binding proteins. The interaction of the saccharide with the aromatic residue is determined by their relative position as well as orientation. The position-orientation of the saccharide relative to the aromatic residue was found to vary in different sugar-binding proteins. In the present study, interaction energies of the complexes of galactose (Gal) and of glucose (Glc) with aromatic residue analogs have been calculated by ab initio density functional (U-B3LYP/ 6-31G**) theory. The position-orientations of the saccharide with respect to the aromatic residue observed in various Gal-, Glc-, and mannose-protein complexes were chosen for the interaction energy calculations. The results of these calculations show that galactose can interact with the aromatic residue with similar interaction energies in a number of position-orientations. The interaction energy of Gal-aromatic residue analog complex in position-orientations observed for the bound saccharide in Glc/Man-protein complexes is comparable to the Glc-aromatic residue analog complex in the same position-orientation. In contrast, there is a large variation in interaction energies of complexes of Glc- and of Gal- with the aromatic residue analog in position-orientations observed in Gal-protein complexes. Furthermore, the conformation wherein the O6 atom is away from the aromatic residue is preferred for the exocyclic -CH2OH group in Gal-aromatic residue analog complexes. The implications of these results for saccharide binding in Gal-specific proteins and the possible role of the aromatic amino acid to ensure proper positioning and orientation of galactose in the binding site have been discussed.  相似文献   

2.
Structural analyses of several bacterial ATP-binding cassette (ABC) transporters indicate that an aromatic amino acid residue in a nucleotide-binding domain (NBD) interacts with the adenine ring of the bound ATP and contributes to the ATP binding. Substitution of this aromatic residue with a polar serine residue in bacterial histidine transporter completely abolished both ATP binding and ATP-dependent histidine transport. However, substitution of the aromatic amino acid residue in the human cystic fibrosis transmembrane conductance regulator with a polar cysteine residue did not have any effect on the ATP-dependent chloride channel function of the protein. To determine whether the other eucaryotic ABC transporters use the strategy analogous to that in some bacterial ABC transporters, the aromatic Trp653 residue in NBD1 and the Tyr1302 residue in NBD2 of human multidrug resistance-associated protein 1 (MRP1) was mutated to either a different aromatic residue or a polar cysteine residue. Substitution of the aromatic residue with a different aromatic amino acid, such as W653Y or Y1302W, did not affect ATP-dependent leukotriene C4 (LTC4) transport. In contrast, substitution of the aromatic residue with a polar cysteine residue, such as W653C or Y1302C, decreased the affinity for ATP, resulting in greatly increased Kd values for ATP binding or Km values for ATP in ATP-dependent LTC4 transport. Interestingly, although substitution of the aromatic Trp653 in NBD1 of MRP1 with a polar cysteine residue greatly decreases the affinity for ATP, the ATP-dependent LTC4 transport activities are much higher than that of wild-type MRP1, supporting our hypothesis that the increased release rate of the bound ATP from the mutated NBD1 facilitates the protein to start a new cycle of ATP-dependent solute transport.  相似文献   

3.
Tryptophan at the 62nd position (Trp62) of hen egg-white lysozyme is an amino acid residue whose action is essential for its enzymatic activity. Its indole ring may possibly come into direct contact with sugar residues of the substrate, and thus contribute significantly to substrate binding. For further elucidation of its role in catalytic processes, this amino acid was converted to other aromatic residues, such as Tyr, Phe, and His, by site-directed mutagenesis. All the mutations were found to enhance the bacteriolytic activity but to decrease the hydrolytic activity toward an artificial substrate, glycol chitin. Such a change in substrate preference appears remarkable considering the smaller size of the aromatic residue on the mutant enzyme at the 62nd position.  相似文献   

4.
Abstract Using site-saturation mutagenesis, we have established all possible amino acid substitutions at Tyr26 and Phe73 that are compatible with biological activity of the gene 5 protein in vivo. No substitutions were found at either site that gave rise to a fully functional gene 5 protein, indicating that these two amino acid residues are crucial. However, partial activity was found if either residue was replaced by another aromatic amino acid (Y26F, Y26W, F73Y, F73W). The results suggest that both Tyr26 and Phe73 are important for base stacking in the nucleoprotein complex. The functional consequences of the removal of the hydroxyl group from Tyr26 argue that this residue may, in addition, be involved in hydrogen bond formation to confer greater stability on the complex. In contrast, the addition of such a group to Phe73 reduces activity.  相似文献   

5.
To investigate the value of the 2',6'-dimethylphenylalanine (Dmp) residue as an aromatic amino acid substitution, we prepared analogues of the mu opioid receptor-selective dermorphin tetrapeptide Tyr-D-Arg-Phe-betaAla-NH(2) (YRFB) in which Dmp or its D-isomer replaced Tyr(1) or Phe(3). Replacing Phe(3) with Dmp essentially tripled mu receptor affinity and the receptor's in vitro biological activities as determined with the guinea pig ileum (GPI) assay but did not change delta receptor affinity. Despite an inversion of the D configuration at this position, mu receptor affinity and selectivity remained comparable with those of the L-isomer. Replacing the N-terminal Tyr residue with Dmp produced a slightly improved mu receptor affinity and a potent GPI activity, even though the substituted compound lacks the side chain phenolic hydroxyl group at the N-terminal residue. Dual substitution of Dmp for Tyr(1) and Phe(3) produced significantly improved mu receptor affinity and selectivity compared with the singly substituted analogues. Subcutaneous injection of the two analogues, [Dmp(3)]YRFB and [Dmp(1)]YRFB, in mice produced potent analgesic activities that were greater than morphine in the formalin test. These lines of evidence suggest that the Dmp residue would be an effective aromatic amino acid surrogate for both Tyr and Phe in the design and development of novel opioid mimetics.  相似文献   

6.
The amino acid sequences of several bacterial toxin ADP-ribosyltransferases, rabbit skeletal muscle transferases, and RT6.2, a rat T-cell NAD glycohydrolase, contain three separate regions of similarity, which can be aligned. Region I contains a critical histidine or arginine residue, region II, a group of closely spaced aromatic amino acids, and region III, an active-site glutamate which is at times seen as part of an acidic amino acid-rich sequence. In some of the bacterial ADP-ribosyltransferases, the nicotinamide moiety of NAD has been photo-crosslinked to this glutamate, consistent with its position in the active site. The similarities within these three regions, despite an absence of overall sequence similarity among the several transferases, are consistent with a common structure involved in NAD binding and ADP-ribose transfer.  相似文献   

7.
Gene 2.5 of bacteriophage T7 encodes a single-stranded DNA (ssDNA)-binding protein (gp2.5) that is an essential component of the phage replisome. Similar to other prokaryotic ssDNA-binding proteins, gp2.5 has an acidic C terminus that is involved in protein-protein interactions at the replication fork and in modulation of the ssDNA binding properties of the molecule. We have used genetic and biochemical approaches to identify residues critical for the function of the C terminus of gp2.5. The presence of an aromatic residue in the C-terminal position is essential for gp2.5 function. Deletion of the C-terminal residue, phenylalanine, is detrimental to its function, as is the substitution of this residue with non-aromatic amino acids. Placing the C-terminal phenylalanine in the penultimate position also results in loss of function. Moderate shortening of the length of the acidic portion of the C terminus is tolerated when the aromatic nature of the C-terminal residue is preserved. Gradual removal of the acidic C terminus of gp2.5 results in a higher affinity for ssDNA and a decreased ability to interact with T7 DNA polymerase/thioredoxin. The replacement of the charged residues in the C terminus with neutral amino acids abolishes gp2.5 function. Our data show that both the C-terminal aromatic residue and the overall acidic charge of the C terminus of gp2.5 are critical for its function.  相似文献   

8.
The internalization signals of several constitutively recycling receptors have recently been identified as regions of four or six amino acids that include an aromatic residue, usually tyrosine. Here, we show that transplanted signals from the low density lipoprotein receptor (LDLR) and cation-independent mannose-6-phosphate receptor (Man-6-PR) promote rapid internalization of the transferrin receptor (TR), directly establishing that recognition signals are interchangeable, self-determined structural motifs and that signals from type I membrane proteins are active in a type II receptor. We also show that the chemical and spatial patterns of critical residues in both four- and six-residue internalization motifs are consistent with a tight turn structure. A six-residue LDLR signal is needed for activity in TR, suggesting that an amino-terminal aromatic side chain is obligatory. In contrast, the carboxy-terminal aromatic side chain in the TR signal can be replaced by a large hydrophobic residue. Thus, internalization signals apparently require an aromatic amino-terminal residue and either an aromatic or large hydrophobic carboxy-terminal residue rather than a conserved tyrosine per se. Consistent with this conclusion, predicted internalization signals from the poly-Ig receptor, YSAF, and asialoglycoprotein receptor (ASGPR) subunit H1, YQDL, also promote internalization of TR.  相似文献   

9.
Eighteen analogs of Met-enkephalin were synthesized in order to examine those features of the N-terminal tyrosine (Tyr) residue responsible for activity on the mouse vas deferens. The most critical part of the tyrosine side-chain was its phenolic hydroxyl group which, in terms of biological activity, was highly sensitive to small changes and to the inclusion of fluorine or methyl groups in the aromatic ring. In contrast, the free amino group was not as sensitive to alterations. Single amino acid extensions had only modest effects on activity; however, beta and D-amino acid extensions virtually destroyed activity. Although the Tyr residue might be considered a promising part of the opiate peptides for the development of competitive antagonists, none of our inactive analogs were able to antagonize enkephalin and were, therefore, without binding affinity towards opiate receptors in the vas deferens.  相似文献   

10.
T G Chu  M Orlowski 《Biochemistry》1984,23(16):3598-3603
A soluble metalloendopeptidase isolated from rat brain preferentially cleaves bonds in peptides having aromatic residues in the P1 and P2 position. An additional aromatic residue in the P3' position greatly increases the binding affinity of the substrate, suggesting the presence of an extended substrate recognition site in the enzyme, capable of binding a minimum of five amino acid residues [Orlowski, M., Michaud, C., & Chu, T.G. (1983) Eur. J. Biochem. 135, 81-88]. A series of N-carboxymethyl peptide derivatives structurally related to model substrates and containing a carboxylate group capable of coordinating with the active site zinc atom were synthesized and tested as potential inhibitors. One of these inhibitors, N-[1(RS)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, was found to be a potent competitive inhibitor of the enzyme with a Ki of 1.94 microM. The two diastereomers of this inhibitor were separated by high-pressure liquid chromatography. The more potent diastereomer had a Ki of 0.81 microM. The inhibitory potency of the less active diastereomer was lower by 1 order of magnitude. Decreasing the hydrophobicity of the residue binding the S1 subsite of the enzyme by, for example, replacement of the phenylethyl group with a methyl residue decreased the inhibitory potency by almost 2 orders of magnitude. Deletion of the carboxylate group decreased the inhibitory potency by more than 3 orders of magnitude. Shortening the inhibitor chain by a single alanine residue had a similar effect. Binding of the inhibitor to the enzyme increased its thermal stability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
S Blumberg  B L Vallee 《Biochemistry》1975,14(11):2410-2419
Synthesis of a series of active N-hydroxysuccinimide esters of aliphatic and aromatic amino acids has yielded a new class of reagents for the covalent modification of proteolytic enzymes such as thermolysin. The activities of aliphatic acyl amino acid thermolysins are from 1.7 to 3.6 times greater than that of the native enzyme when hydrolyzing durylacryloyl-Gly-Leu-NH2, the substrate employed most widely. By comparison, the aromatic acylamino acid derivatives are "superactive," their activities being as much as 70-fold greater. Apparently, the aromatic character of the amino acid introduced is a critical variable in the determination of the functional response. The increased activity is completely restored to that of the native enzyme by deacylation with nucleophiles, such as hydroxylamine, and the rate of restoration of native activity is a function of the particular acyl group incorporated. Preliminary evidence regarding the chemical properties of the modified enzyme suggests that tyrosine, rather than lysine, histidine, or arginine, may be the residue modified. The functional consequences of successive modification with different reagents, moreover, indicate that each of them reacts with the same protein residue. The competitive inhibitors beta-phenyl-propionyl-Phe and Zn-2+ do not prevent modification with these active esters. Hence, the site(s) of their inhibitory action differ(s) from that at which modification occurs. The structure of the substrate is also a significant variable which determines the rate at which each acyl amino acid thermolysin hydrolyzes peptides. Depending on the particular substrate, the activity of aromatic derivatives can be as much as 400-fold greater than that of the native enzyme, and the resultant activity patterns can be ordered in a series characteristic for each enzyme derivative.  相似文献   

13.
A model peptide, FKCRRWQWRMKKLGA, residues 17-31 of bovine lactoferricin, has been subjected to structure-antibacterial activity relationship studies. The two Trp residues are very important for antibacterial activity, and analogue studies have demonstrated the significance of the size, shape and aromatic character of the side chains. In the current study we have replaced Trp residues in the model peptide with bulky aromatic amino acids to elucidate further the importance of size and shape. The counterproductive Cys residue in position 3 was also replaced by these aromatic amino acids. The largest aromatic amino acids employed resulted in the most active peptides. The peptides containing these hydrophobic residues were generally more active against Staphylococcus aureus than against Escherichia coli, indicating that the bacterial specificity as well as the antibacterial efficiency can be altered by employing large hydrophobic aromatic amino acid residues.  相似文献   

14.
The use of pepsin as a catalyst for the synthesis of peptide bonds was investigated. It is shown that the enzyme enables the preparation of several protected dipeptides and tripeptides containing two adjacent aromatic residues of the type P-Al-Phe-Y, P-PHe-Ar-Y, or P-AR-Phe-Y where P and Y are amino and carboxyl protecting groups, AL is an aliphatic amino acid residue, and Ar is an aromatic, amino acid residue. They yields are in the rang 25–97%. The high yields, combined with the enzyme's stereospecificity, permit the isolation of optically pure enantiomers from racemic mixtures. For example, when Z-DL -Ph-OH is allowed to react with an excess of H-L -Phe-NH2, the stereoisomer Z-L -Phe-L -Phe-NH2 is obtained in practically quantitative yield. At the same time, the unreacted, optically pure Z-D -Phe-OH can be recovered (Z = carbobenzyloxy, Phe = phenylalanine). The advantages and disadvantages of the enzymatic coupling procedure as a possible routine method for peptide synthesis are discussed.  相似文献   

15.
A molecular mechanics study (grid search and energy minimization) of the highly δ receptor-selective δ opioid antagonist H-Tyr-Tic-Phe-OH (TIP; Tic: tetrahydroisoquinoline-3-car-boxylic acid) resulted in four low energy conformers with energies within 2 kcal/mol of that of the lowest energy structure. These four conformers contain trans peptide bonds only and represent compact structures showing various patterns of aromatic ring stacking. The centrally located Tic residue imposes several conformational constraints on the N-terminal dipeptide segment; however, the results of molecular dynamics simulations indicated that this tripeptide still shows some structural flexibility, particularly at the Phe3 residue. Analogous studies performed with the structurally related μ receptor-selective μ agonist H-Tyr-D -Tic-Phe-NH2 resulted in low energy structures that were also compact but showed patterns of ring stacking different from those obtained with TIP. Superim-position of low energy conformers of TIP and H-Tyr-D -Tic-Phe-NH2 revealed that the Phe3 residues of the L -Tic- and the D -Tic peptide were always located on opposite sides of the plane defined by the Tic residue, thus providing an explanation for the distinct activity profiles of the two compounds in structural terms. Attempts to demonstrate spatial overlap between the pharmacophoric moieties of low energy conformers of TIP and the nonpeptide δ antagonist naltrindole were made by superimposing either the Tyr1 and Tic2 aromatic rings and the N-terminal amino group or the Tyr1 and Phe3 aromatic rings and the N-terminal amino group of the peptide with the corresponding aromatic rings and nitrogen atom in the alkaloid structure. In each case a low energy structure of TIP was found that showed good spatial overlap of all three specified pharmacophoric groups. These two conformers may represent candidate structures for the δ receptor-bound conformation of TIP. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Saponins display various biological activities including anti-tumor activity. Recently intensive research has been focused on developing saponins for tumor therapies. The diosgenyl saponin dioscin is one of the most common steroidal saponins and exhibits potent anticancer activity in several human cancer cells through apoptosis-inducing pathways. In this paper, we describe the synthesis of several diosgenyl saponin analogues containing either a 2-amino-2-deoxy-β-d-glucopyranosyl residue or an α-l-rhamnopyranosyl-(1→4)-2-amino-2-deoxy-β-d-glucopyranosyl residue with different acyl substituents on the amino group. The cytotoxic activity of these compounds was evaluated in MCF-7 breast cancer cells and HeLa cervical cancer cells. Structure–activity relationship studies show that the disaccharide saponin analogues are in general less active than their corresponding monosaccharide analogues. The incorporation of an aromatic nitro functionality into these saponin analogues does not exhibit significant effect on their cytotoxic activity.  相似文献   

17.
Open-channel blockers such as tetraethylammonium (TEA) have a long history as probes of the permeation pathway of ion channels. High affinity blockade by extracellular TEA requires the presence of an aromatic amino acid at a position that sits at the external entrance of the permeation pathway (residue 449 in the eukaryotic voltage-gated potassium channel Shaker). We investigated whether a cation-pi interaction between TEA and such an aromatic residue contributes to TEA block using the in vivo nonsense suppression method to incorporate a series of increasingly fluorinated Phe side chains at position 449. Fluorination, which is known to decrease the cation-pi binding ability of an aromatic ring, progressively increased the inhibitory constant K(i) for the TEA block of Shaker. A larger increase in K(i) was observed when the benzene ring of Phe449 was substituted by nonaromatic cyclohexane. These results support a strong cation-pi component to the TEA block. The data provide an empirical basis for choosing between Shaker models that are based on two classes of reported crystal structures for the bacterial channel KcsA, showing residue Tyr82 in orientations either compatible or incompatible with a cation-pi mechanism. We propose that the aromatic residue at this position in Shaker is favorably oriented for a cation-pi interaction with the permeation pathway. This choice is supported by high level ab initio calculations of the predicted effects of Phe modifications on TEA binding energy.  相似文献   

18.
To investigate the effectiveness of a 2',6'-dimethylphenylalanine (Dmp) residue as an aromatic amino acid surrogate, endomorphin 2 (EM(2): Tyr-Pro-Phe-Phe-NH(2)) analogues were prepared, in which the constitutive aromatic amino acids (Tyr(1), Phe(3), or Phe(4)) were replaced by Dmp or its isomer, D-Dmp. Replacement of Phe(3) by Dmp increased the affinity over 10-fold for both mu- and delta-opioid receptors, without affecting receptor selectivity. In contrast, replacement of Phe(4) considerably reduced the mu-receptor affinity and selectivity. These data indicated that the Dmp-substitution of Phe(3), but not Phe(4), in EM(2) is favorable for improving mu-receptor specificity. Inversion of the chirality of the substituted Dmp residue resulted in marked decrease in the mu-receptor affinity. Replacement of Tyr(1) by Dmp yielded an analogue that exhibited only a limited decrease in mu-receptor affinity and GPI potency, despite the lack of a phenolic hydroxyl group at the N-terminal residue. In contrast, D-Dmp(1)- or Phe(1)-substitution of Tyr(1) resulted in a significant decrease in mu-receptor affinity and GPI potency. These results suggested that the Dmp residue can mimic Tyr(1), which is one of the critical structural elements of opioid peptides.  相似文献   

19.
Development of potent inhibitors of the coxsackievirus 3C protease   总被引:1,自引:0,他引:1  
Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro.  相似文献   

20.
Residues of Phe, Tyr and Trp in the complexes of their oligonucleotide amidates and polynucleotides of A-U of G-C nucleotide composition are most likely localized in the minor groove of the Watson--Crick part of the triple helix where they interact with bases but do not intercalate into the helix. Formation of the complexes is accompanied with a change in the relative localization of amino acids and bases. The major geometrical parameters of the triple helices of the complexes are not changed by the residues of aromatic amino acids (according to CD data). A slight violation of stacking interactions between bases is observed along with an increase of the cooperativity of melting of the complexes of A-U composition (according to UV absorption data). The effect of the residues of aromatic amino acids on the stability of triple helices is determined by the nucleotide composition of the latter, i.e. complexes of A-U composition are destabilized with the Phe, Tyr and Trp residues, whereas the Trp residue does not affect the stability of the complexes of G-C composition. The hydrophobic character of aromatic amino acids and their different affinity for bases of different structure seem to account for this difference in stability. The dependence of the thermal stability of RNH-dp(An).2poly(U)-complexes on the structure of the amide radical (residues of glycin, aromatic amino acids, alkyl- and arylalkyl amines) testifies the ability of the radical to "regulate" the interaction between the oligomer and the complementary polynucleotide. This capacity for "regulation" is not observed in the system of G-C composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号