首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GDP inhibits paclitaxel-induced tubulin assembly without GTP when the tubulin bears GDP in the exchangeable site (E-site). Initially, we thought inhibition was mediated through the E-site, since small amounts of GTP or Mg2+, which favors GTP binding to the E-site, reduced inhibition by GDP. We thought trace GTP released from the nonexchangeable site (N-site) by tubulin denaturation was required for polymer nucleation, but microtubule length was unaffected by GDP. Further, enhancing polymer nucleation reduced inhibition by GDP. Other mechanisms involving the E-site were eliminated experimentally. Upon finding that ATP weakly inhibited paclitaxel-induced assembly, we concluded that another ligand binding site was responsible for these inhibitory effects, and we found that GDP was not binding at the taxoid, colchicine, or vinca sites. There may therefore be a lower affinity site on tubulin to which GDP can bind distinct from the E- and N-sites, possibly on α-tubulin, based on molecular modeling studies.  相似文献   

2.
The kinetics of assembly of MAP2-tubulin microtubule protein were examined as a function of the GTP concentration in order to test the hypothesis that CTP-induced assembly results from the generation of GTP by nucleoside diphosphate kinase. These studies show that (a) there is no assembly below a minimum GTP concentration and that this represents a nucleation requirement, (b) the rate of elongation is inconsistent with a single assembly-species, and (c) the elongation rate increases markedly as the GTP concentration is raised, although GTP is not absolutely required for elongation. These assembly kinetics have been compared with those with increasing CTP concentrations, by using microtubule protein containing a very low nucleoside diphosphate kinase activity of known substrate specificity. Neither nucleation nor the observed rates of elongation can be attributed to the formation of GTP, either (a) in terms of the generation of free GTP and subsequent binding to tubulin or (b) by the direct charging of GDP bound to the tubulin exchangeable site. The results show that nucleoside diphosphate kinase is not required for CTP-induced microtubule assembly, and suggest that CTP directly effects microtubule assembly.  相似文献   

3.
Much interest has currently been attached to the length distribution of microtubules polymerized in vitro and the related question of their possible 'dynamic instability'. Fundamental to this question is the mechanism of microtubule nucleation, which controls the rates of assembly and disassembly of microtubule protein in vitro. These kinetics are affected by a number of factors, including both the guanine nucleotides, GTP and GDP, and magnesium ion. Mg2+ exerts complex effects, as indicated by the existence of an optimal Mg2+ concentration for the maximum assembly rate of microtubule protein, and we investigate these effects in this report. At [Mg2+] greater than 0.5 mM, the characteristic lag-phase is substantially increased and the rate of assembly is greatly reduced without affecting the critical concentration significantly. We show that increasing [Mg2+] has two effects on the assembly process: nucleation is less efficient and the intrinsic rate constant for the elongation reaction is reduced. Lowering [Mg2+] (less than 0.5 mM) also inhibits nucleation. These effects of varying [Mg2+] can be explained predominantly in terms of enhanced stability of the microtubule-associated protein-containing oligomeric species present in the microtubule protein preparation. [Mg2+] is thus found to be a further important factor in microtubule nucleation, and hence, in determining length distributions in assembling microtubules.  相似文献   

4.
The removal of tightly bound GDP from the exchangeable nucleotide-binding site of tubulin has been performed with alkaline phosphatase under conditions which essentially retain the assembly properties of the protein. When microtubule protein is treated with alkaline phosphatase, nucleotide is selectively removed from tubulin dimer rather than from MAP (microtubule-associated protein)-containing oligomeric species. Tubulin devoid of E-site (the exchangeable nucleotide-binding site of the tubulin dimer) nucleotide shows enhanced proteolytic susceptibility of the beta-subunit to thermolysin and decreased protein stability, consistent with nucleotide removal causing changes in protein tertiary structure. Pyrophosphate ion (3 mM) is able to promote formation of normal microtubules in the complete absence of GTP by incubation at 37 degrees C either with nucleotide-depleted microtubule protein or with nucleotide-depleted tubulin dimer to which MAPs have been added. The resulting microtubules contain up to 80% of tubulin lacking E-site nucleotide. In addition to its effects on nucleation, pyrophosphate competes weakly with GDP bound at the E-site. It is deduced that binding of pyrophosphate at a vacant E-site can promote microtubule assembly. The minimum structural requirement for ligands to induce tubulin assembly apparently involves charge neutralization at the E-site by bidentate ligation, which stabilizes protein domains in a favourable orientation for promoting the supramolecular protein-protein interactions involved in microtubule formation.  相似文献   

5.
ATP and UTP support microtubule assembly through the action of brain nucleoside-5'-diphosphate kinase on GDP. Penningroth and Kirschner (1977) J. Mol. Biol. 115, 643-673) have proposed that microtubule assembly may occur by either of two mechanisms: indirectly, through nucleoside-5'-diphosphate kinase-catalyzed phosphorylation of uncomplexed GDP and directly by nucleoside-5'-diphosphate kinase-mediated transphosphorylation of tubulin-bound GDP at low tubulin concentrations. We find the rates of GDP and GTP release (0.68 and 0.32 min-1, respectively) are sufficiently fast relative to assembly to permit GDP release, phosphorylation, and GTP binding as the sole mechanism of nucleoside-5'-diphosphate kinase action in microtubule assembly. Computer simulation studies accord with the conclusion that GDP release is rapid relative to microtubule assembly. The specific activity of the nucleoside-5'-diphosphate kinase is 1.7 nmol/min/mg of microtubular protein under the conditions studied. Pulse-chase experiments with tubulin . [14C]GDP complex and the rapidity of GDP phosphorylation by the kinase are in agreement with this scheme. Finally, it was observed that the extent and rate of microtubule assembly depends upon the [ATP]/[ADP] ratio.  相似文献   

6.
Current models of microtubule assembly from pure tubulin involve a nucleation phase followed by microtubule elongation at a constant polymer number. Both the rate of microtubule nucleation and elongation are thought to be tightly influenced by the free GTP-tubulin concentration, in a law of mass action-dependent manner. However, these basic hypotheses have remained largely untested due to a lack of data reporting actual measurements of the microtubule length and number concentration during microtubule assembly.Here, we performed simultaneous measurements of the polymeric tubulin concentration, of the free GTP-tubulin concentration, and of the microtubule length and number concentration in both polymerizing and depolymerizing conditions. In agreement with previous work we find that the microtubule nucleation rate is strongly dependent on the initial GTP-tubulin concentration. But we find that microtubule nucleation persists during microtubule elongation. At any given initial tubulin-GTP concentration, the microtubule nucleation rate remains constant during polymer assembly, despite the wide variation in free GTP-tubulin concentration. We also find a remarkable constancy of the rate of microtubule elongation during assembly. Apparently, the rate of microtubule elongation is intrinsic to the polymers, insensitive to large variations of the free GTP-tubulin concentration. Finally we observe that when, following assembly, microtubules depolymerize below the free GTP-tubulin critical concentration, the rate-limiting factor for disassembly is the frequency of microtubule catastrophe. At all time-points during disassembly, the microtubule catastrophe frequency is independent of the free GTP-tubulin concentration but, as the microtubule nucleation rate, is strongly dependent on the initial free GTP-tubulin concentration. We conclude that the dynamics of both microtubule assembly and disassembly depend largely on factors other than the free GTP-tubulin concentration. We propose that intrinsic structural factors and endogenous regulators, whose concentration varies with the initial conditions, are also major determinants of these dynamics.  相似文献   

7.
P B Schiff  S B Horwitz 《Biochemistry》1981,20(11):3247-3252
Taxol increases the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells [Schiff, P. B., Fant, J., & Horwitz, S. B. (1979) Nature (London) 277, 665-667; Schiff, P. B., & Horwitz, S. B. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 1561-1565]. We report herein that taxol has the ability to promote microtubule assembly in the absence of microtubule-associated proteins, rings, and added guanosine 5'-triphosphate (GTP or organic buffer. The drug enhances additional microtubule assembly when added to microtubules at apparent steady state. This additional assembly can be attributed to both elongation of existing microtubules and spontaneous nucleation of new microtubules. Taxol-treated microtubules have depressed dissociation reactions as determined by dilution experiments. The drug does not inhibit the binding of GTP or the hydrolysis of GTP or guanosine 5'-diphosphate (GDP) in our microtubule protein preparations. Taxol does not competitively inhibit the binding of colchicine to tubulin.  相似文献   

8.
In this paper we expand upon a previously reported observation of the effects of GDP on microtubule assembly. A ratio of GDP to GTP of ten (1 mm-GDP and 0.1 mm-GTP) is generally sufficient to completely block microtubule assembly, but only limited depolymerization is induced if GDP is added after assembly has reached a plateau in the presence of GTP. When added during polymerization, GDP arrests further elongation, and greater steady-state levels of assembly are obtained the later the time of addition of GDP. To explain this behavior we examined the rates of assembly and disassembly and the apparent critical concentration (C0) of tubulin in the presence of GDP. GDP-tubulin polymerizes very slowly as compared to GTP-tubulin, while depolymerization rates, as determined by dilution, are nearly identical in GTP and GDP. The C0 value calculated from the assembly and disassembly rates in GTP is within experimental error of the C0 value at steady-state determined directly. In the presence of GDP, however, the C0 value calculated from rate measurements is at least 60 times greater than that determined by equilibrium analysis. Our results indicate that the net assembly rate in GDP is not a valid measure of the reaction occurring at steady-state. A limited amount of depolymerization may occur upon addition of GDP to microtubules, and this appears to be due to a decrease in the fraction of protein able to participate in the polymerization reaction. The amount of tubulin “inactivated” by GDP is increased by the removal of microtubule-associated proteins. GDP-tubulin will stabilize existing microtubules, even when its polymerization cannot be demonstrated. These results are inconsistent with present models of microtubule assembly, and a new model involving co-operative interaction of microtubule-associated protein-tubulin oligomers at microtubule ends is proposed.  相似文献   

9.
It was recently reported that GTP-bound Ran induces microtubule and pseudo-spindle assembly in mitotic egg extracts in the absence of chromosomes and centrosomes, and that chromosomes induce the assembly of spindle microtubules in these extracts through generation of Ran-GTP. Here we examine the effects of Ran-GTP on microtubule nucleation and dynamics and show that Ran-GTP has independent effects on both the nucleation activity of centrosomes and the stability of centrosomal microtubules. We also show that inhibition of Ran-GTP production, even in the presence of duplicated centrosomes and kinetochores, prevents assembly of a bipolar spindle in M-phase extracts.  相似文献   

10.
Low molar ratios of heparin inhibited in vitro assembly of bovine brain microtubule proteins and disassembled preformed microtubules. Addition of purified microtubule-associated proteins counteracted the assembly inhibition by heparin. Our results suggest that the polyanion heparin affects microtubule assembly by binding to the microtubule-associated proteins. This complex can not support nucleation or stabilize the microtubule structure although it still can associate with the tubulin polymer. In the presence of heparin, the critical concentration needed for microtubule assembly was increased. Furthermore, the absolute assembly difference induced by heparin, the delta A350, was only dependent on the concentration and the molecular weight of heparin, not of the total microtubule protein concentration, or the addition of microtubule-associated proteins. Commercial, standard heparin (Mr 6000-25 000) had an I50 of about 0.1/tubulin dimer. The heparin fraction(s) with a high molecular weight had a stronger effect than those with lower molecular weight. Substoichiometric amounts of taxol completely relieved the inhibition of assembly by heparin, although aberrant forms were present. These microtubules had a reduced amount of coassembled microtubule-associated proteins, and furthermore contained heparin.  相似文献   

11.
We have re-examined the effect of varying GDP concentrations on the kinetics of GTP-induced assembly of microtubules from microtubule protein, and on the elongation of pre-existing microtubules subjected to a temperature jump relaxation from 21.5 to 37 degrees C. The assembly kinetics follow a simple model for assembly which involves a fast equilibrium of tubulin-GTP and tubulin-GDP coupled to the elongation process due to tubulin-GTP. The initial rate of the relaxation process is found to be dependent upon the GTP/GDP ratio, in confirmation of the results of Engelborghs and Van Houtte (Biophys. Chem. 14 (1981) 195). As an alternative to the interpretation previously advanced by them, involving modification of the reactivity of microtubule ENDs by GDP, we show that this result is consistent with the above model with one reasonable modification, namely, that the ratio of the affinities of tubulin for GTP and GDP should vary with temperature. The analysis shows that a decrease in this ratio of approx. 2-fold at 37 degrees C accounts for the observed effects. We conclude that more complex mechanisms involving consideration of modification of the reactivity of microtubule ENDs by GDP are not required to explain these results. This finding has important implications for current models of GDP-induced microtubule disassembly.  相似文献   

12.
The gamma-tubulin ring complex (gammaTuRC) is a large multi-protein complex that is required for microtubule nucleation from the centrosome. Here, we show that the GCP-WD protein (originally named NEDD1) is the orthologue of the Drosophila Dgrip71WD protein, and is a subunit of the human gammaTuRC. GCP-WD has the properties of an attachment factor for the gammaTuRC: depletion or inhibition of GCP-WD results in loss of the gammaTuRC from the centrosome, abolishing centrosomal microtubule nucleation, although the gammaTuRC is intact and able to bind to microtubules. GCP-WD depletion also blocks mitotic chromatin-mediated microtubule nucleation, resulting in failure of spindle assembly. Mitotic phosphorylation of GCP-WD is required for association of gamma-tubulin with the spindle, separately from association with the centrosome. Our results indicate that GCP-WD broadly mediates targeting of the gammaTuRC to sites of microtubule nucleation and to the mitotic spindle, which is essential for spindle formation.  相似文献   

13.
Summary GTP hydrolysis associated with polymerization is a distinctive feature of microtubule assembly. This reaction may be fundamentally linked to the dynamic properties of microtubules in vivo. Kinetic analysis of the connection between microtubule assembly and associated GTP hydrolysis indicates that these two events are kinetically uncoupled, GTP hydrolysis occurring after tubulin incorporation in the microtubule. As a consequence, the combination of the diffusionnal incorporation of GTP in microtubules at steady-state and of subsequent GTP hydrolysis results in the formation of a steady-state GTP cap at microtubule ends. The interplay between GTP and GDP at microtubule ends is examined. Inhibition by GDP of steady-state GTP hydrolysis at microtubule ends and of microtubule elongation is understood within a tight reversible binding of GDP at microtubule ends generating inactive elongation sites. Nucleotides are freely exchangeable at microtubule ends. This result indicates that the nature of the nucleotide present at microtubule ends must be considered in a model for microtubule assembly.These data are pooled in order to define the general features of a model describing microtubule assembly and treadmilling in terms somewhat different from previously proposed models.  相似文献   

14.
The structural transitions occurring during the assembly and disassembly of pig brain microtubule protein were investigated by time-resolved X-ray scattering using synchrotron radiation. The reactions were introduced by a slow temperature scan (2 deg.C/min) from 0 °C to 37 °C and back. Several structurally distinct states could be resolved during one cycle of assembly/disassembly. During the temperature rise, one observes four main phases: prenucleation events, microtubule nucleation, growth, and postassembly events.Heating from 0 °C to 22 °C results in a biphasic breakdown of rings and other aggregates, while the apparent mean diameter increases from 38 to 41 nm. Parallel time-resolved electron microscopic observations suggest that the initial solution contains several types of aggregates, mostly double concentric and single rings, but also rod-like particles, clusters of rings and other aggregates. All of these tend to break down with increasing temperature. Double concentric rings seem to dissociate into large and small single rings before both types of rings break down into protofilament fragments and tubulin subunits. From the breakdown products, associations of several protofilament fragments are formed, which are important for initiating microtubule nucleation. Assembly of nuclei begins around 22 °C. Microtubule elongation takes place between 25 and 30 °C. They grow mainly by addition of tubulin subunits but not via rings.During the reverse temperature scan, microtubules shorten by the release of subunits and/or small protofilament fragments from their ends. The degree of disassembly is strongly increased below 22 °C. Below about 10 °C rings are reformed, probably from the fragments, but their final number is much less than initially.Conditions that prevent microtubule nucleation such as GDP or Ca2+ also stabilize rings, even at 37 °C. Thus, rings are viewed as storage aggregates of tubulin and microtubule associated proteins, whose breakdown is a prerequisite for microtubule formation, and whose reformation is independent of microtubule breakdown.The midpoints of microtubule growth and breakdown differ by about 12 deg.C so that the system shows hysteresis-like behavior. It is dependent on microtubule formation and is not seen when the temperature is cycled below that required for nucleation. Thus, even during a slow temperature scan, microtubule assembly is kinetically limited by nucleation. By contrast, depolymerization proceeds close to equilibrium.The radius of gyration of the tubulin heterodimers is 3.1 nm. The weight average diameter of rings in cold solutions is 38 nm, that of microtubules is 24.5 nm.At radiation dose rates of about 100 rad/s. radiation damage is of minor importance, as judged by the criterion of polymerizability. Total doses of up to 500,000 rad can be applied.Some concepts of analyzing time-resolved X-ray scattering data are presented. They make use of the fact that the scattering intensities vary continuously both with scattering angle and time. Cross-correlation of different regions of the pattern, and comparison of their temperature derivatives, reveals structural transitions not seen by other techniques.  相似文献   

15.
Survivin is a member of the chromosomal passenger complex implicated in kinetochore attachment, bipolar spindle formation, and cytokinesis. However, the mechanism by which survivin modulates these processes is unknown. Here, we show by time-lapse imaging of cells expressing either green fluorescent protein (GFP)-alpha-tubulin or the microtubule plus-end binding protein GFP-EB1 that depletion of survivin by small interfering RNAs (siRNAs) increased both the number of microtubules nucleated by centrosomes and the incidence of microtubule catastrophe, the transition from microtubule growth to shrinking. In contrast, survivin overexpression reduced centrosomal microtubule nucleation and suppressed both microtubule dynamics in mitotic spindles and bidirectional growth of microtubules in midbodies during cytokinesis. siRNA depletion or pharmacologic inhibition of another chromosomal passenger protein Aurora B, had no effect on microtubule dynamics or nucleation in interphase or mitotic cells even though mitosis was impaired. We propose a model in which survivin modulates several mitotic events, including spindle and interphase microtubule organization, the spindle assembly checkpoint and cytokinesis through its ability to modulate microtubule nucleation and dynamics. This pathway may affect the microtubule-dependent generation of aneuploidy and defects in cell polarity in cancer cells, where survivin is commonly up-regulated.  相似文献   

16.
Effects of pH on tubulin-nucleotide interactions   总被引:1,自引:0,他引:1  
Significant GTP-independent, temperature-dependent turbidity development occurs with purified tubulin stored in the absence of unbound nucleotide, and this can be minimized with a higher reaction pH. Since microtubule assembly is optimal at lower pH values, we examined pH effects on tubulin-nucleotide interactions. While the lowest concentration of GTP required for assembly changed little, GDP was more inhibitory at higher pH values. The amounts of exogenous GTP bound to tubulin at all pH values were similar, but the amounts of exogenous GDP bound and endogenous GDP (i.e., GDP originally bound in the exchangeable site) retained by tubulin rose as reaction pH increased. Endogenous GDP was more efficiently displaced by exogenous GTP than GDP at all pH values, but displacement by GTP was 10-15% greater at pH 6 than at pH 7. Dissociation constants for GDP and GTP were about 1.0 microM at pH 6 and 0.02 microM at pH 7. A small increase in the affinity of GDP relative to that of GTP occurs at pH 7 as compared to pH 6, together with a 50-fold absolute increase in the affinity of both nucleotides for tubulin at pH 7. The time courses of microtubule assembly and GTP hydrolysis were compared at pH 6 and pH 7. At pH 6, the two reactions were simultaneous in onset and initially stoichiometric. At pH 7, although the reactions began simultaneously, hydrolysis seemed to lag substantially behind assembly. Unhydrolyzed radiolabeled GTP was not incorporated into microtubules, however, indicating that GTP hydrolysis is actually closely coupled to assembly. The apparent lag in hydrolysis probably results from a methodological artifact rather than incorporation of GTP into the microtubule with delayed hydrolysis.  相似文献   

17.
Centrosomes are the major sites for microtubule nucleation in mammalian cells, although both chromatin- and kinetochore-mediated microtubule nucleation have been observed during spindle assembly. As yet, it is still unclear whether these pathways are coregulated, and the molecular requirements for microtubule nucleation at kinetochore are not fully understood. This work demonstrates that kinetochores are initial sites for microtubule nucleation during spindle reassembly after nocodazole. This process requires local RanGTP accumulation concomitant with delocalization from kinetochores of the hydrolysis factor RanGAP1. Kinetochore-driven microtubule nucleation is also activated after cold-induced microtubule disassembly when centrosome nucleation is impaired, e.g., after Polo-like kinase 1 depletion, indicating that dominant centrosome activity normally masks the kinetochore-driven pathway. In cells with unperturbed centrosome nucleation, defective RanGAP1 recruitment at kinetochores after treatment with the Crm1 inhibitor leptomycin B activates kinetochore microtubule nucleation after cold. Finally, nascent microtubules associate with the RanGTP-regulated microtubule-stabilizing protein HURP in both cold- and nocodazole-treated cells. These data support a model for spindle assembly in which RanGTP-dependent abundance of nucleation/stabilization factors at centrosomes and kinetochores orchestrates the contribution of the two spindle assembly pathways in mammalian cells. The complex of RanGTP, the export receptor Crm1, and nuclear export signal-bearing proteins regulates microtubule nucleation at kinetochores.  相似文献   

18.
Colchicine.tubulin complex (CD) inhibits microtubule assembly. We examined this inhibition under conditions where spontaneous nucleation was suppressed and assembly was restricted to an elongation polymerization. We found that CD inhibited assembly by a mechanism which preserved the ability of microtubule ends to add tubulin. This observation is inconsistent with the end-poisoning model which recently was proposed as a general mechanism for assembly inhibition by CD. Our data are consistent with the following model: (a) microtubules formed in the presence of CD are CD-tubulin copolymers; (b) these copolymers can have appreciable numbers of incorporated CDs which are, most likely, randomly distributed in the copolymers; (c) CD-tubulin copolymers have assembly-competent ends with association and dissociation rate constants which decrease as the CD/tubulin ratio in the copolymers, (CD/T)MT, increases; and (d) the critical tubulin concentrations required for microtubule assembly increase in the presence of CD, indicating that copolymer affinity for tubulin decreases as (CD/T)MT increases.  相似文献   

19.
Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran‐mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC‐ and Ran‐mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo‐like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC‐ and Ran‐mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.  相似文献   

20.
Microtubules are capable of performing synchronized oscillations of assembly and disassembly which has been explained by reaction mechanisms involving tubulin subunits, oligomers, microtubules, and GTP. Here we address the question of how microtubule nucleation or their number concentration affects the oscillations. Assembly itself requires a critical protein concentration (Cc), but oscillations require in addition a critical microtubule number concentration (CMT). In spontaneous assembly this can be achieved with protein concentrations Cos well above the critical concentration Cc because this enhances the efficiency of nucleation. Seeding with microtubules can either generate oscillations or suppress them, depending on how the seeds alter the effective microtubule number concentration. The relative influence of microtubule number and total protein concentrations can be varied by the rate at which assembly conditions are induced (e.g. by a temperature rise): Fast T-jumps induce oscillations because of efficient nucleation, slow ones do not. Oscillations become damped for several reasons. One is the consumption of GTP, the second is a decrease in microtubule number, and the third is that the ratio of microtubules in the two phases (growth-competent and shrinkage-competent) approach a steady state value. This ratio can be perturbed, and the oscillations restarted, by a cold shock, addition of seeds, addition of GTP, or fragmentation. Each of these is equivalent to a change in the effective microtubule number concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号