首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gurden H  Uchida N  Mainen ZF 《Neuron》2006,52(2):335-345
Functional imaging signals arise from metabolic and hemodynamic activity, but how these processes are related to the synaptic and electrical activity of neurons is not well understood. To provide insight into this issue, we used in vivo imaging and simultaneous local pharmacology to study how sensory-evoked neural activity leads to intrinsic optical signals (IOS) in the well-defined circuitry of the olfactory glomerulus. Odor-evoked IOS were tightly coupled to release of glutamate and were strongly modulated by activation of presynaptic dopamine and GABA-B receptors. Surprisingly, IOS were independent of postsynaptic transmission through ionotropic or metabotropic glutamate receptors, but instead were inhibited when uptake by astrocytic glutamate transporters was blocked. These data suggest that presynaptic glutamate release and uptake by astrocytes form a critical pathway through which neural activity is linked to metabolic processing and hence to functional imaging signals.  相似文献   

2.
Abstract— Thin sections prepared from the olfactory cortex of the guinea pig were incubated in a medium containing [14C]glutamate, and release of radioactive compounds and electrical activity were subsequently examined in the presence of l -cysteate. The postsynaptic potential was almost completely suppressed in the medium containing l -cysteate, whereas the presynaptic potential was unaffected. Repetitive stimulation of the excitatory input of the lateral olfactory tract enhanced release of radioactive glutamate. The facilitatory effect of lateral olfactory tract stimulation increased with increase in stimulus frequency and was dependent on calcium. Release of radioactive gluiamine was not enhanced by lateral olfactory tract stimulation. Phenobarbitone sodium markedly depressed both the postsynaptic potential and the effect of lateral olfactory tract stimulation on glutamate release. These results indicate that stimulation to the lateral olfactory tract enhances liberation of glutamate from the tract nerve terminals.  相似文献   

3.
The tripartite synapse denotes the junction of a pre- and postsynaptic neuron modulated by a synaptic astrocyte. Enhanced transmission probability and frequency of the postsynaptic current-events are among the significant effects of the astrocyte on the synapse as experimentally characterized by several groups. In this paper we provide a mathematical framework for the relevant synaptic interactions between neurons and astrocytes that can account quantitatively for both the astrocytic effects on the synaptic transmission and the spontaneous postsynaptic events. Inferred from experiments, the model assumes that glutamate released by the astrocytes in response to synaptic activity regulates store-operated calcium in the presynaptic terminal. This source of calcium is distinct from voltage-gated calcium influx and accounts for the long timescale of facilitation at the synapse seen in correlation with calcium activity in the astrocytes. Our model predicts the inter-event interval distribution of spontaneous current activity mediated by a synaptic astrocyte and provides an additional insight into a novel mechanism for plasticity in which a low fidelity synapse gets transformed into a high fidelity synapse via astrocytic coupling.  相似文献   

4.
Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors.  相似文献   

5.
Long-term potentiation (LTP) of synaptic transmission is considered a cellular mechanism for neural plasticity and memory formation. Previously, we showed that in the carp olfactory bulb, LTP occurs at the dendrodendritic mitral-to-granule cell synapse following tetanic electrical stimulation applied to the olfactory tract, and suggested that it is involved in the process of olfactory memory formation. As a first step towards understanding mechanisms underlying plasticity at this synapse, we examined the effects of various drugs (glutamate and GABA receptor agonists and antagonists, noradrenaline, and drugs affecting cAMP signaling) on dendrodendritic mitral-to-granule cell synaptic transmission in an in vitro preparation. Two forms of LTP are involved: a postsynaptic form (tetanus-evoked LTP) and a presynaptic form. The postsynaptic form is evoked at the granule cell dendrite following tetanic olfactory tract stimulation and is suppressed by the NMDA receptor antagonist, D-AP5, enhanced by noradrenaline, and occluded by the metabotropic glutamate receptor agonist, trans-ACPD. The presynaptic form occurs at the mitral cell dendrite following blockade of the GABAA receptor by picrotoxin and bicuculline, or via activation of cAMP signaling by forskolin and 8-Br-cAMP.  相似文献   

6.
The synaptic cleft may be represented as a very thin disk of extracellular fluid. It is possible that at high stimulation frequencies the interval between pulses would be insufficient for diffusion of Ca2+ from the periphery of the cleft to replace extracellular Ca2+ depleted at the center of the cleft as a result of activation of postsynaptic, Ca2(+)-permeable channels. Computer modeling was employed to assess the impact of activation of glutamate receptor channels (GRCs) in the postsynaptic membrane on the level of extracellular Ca2+ within the synaptic cleft. The model includes calcium influx from the synaptic cleft into the postsynaptic compartment through GRC and calcium efflux through calcium pumps and Na/Ca exchangers. Concentrations of extracellular Ca2+ inside the cleft are estimated by using a compartmental model incorporating flux across the postsynaptic membrane and radial diffusion from the edges of the cleft. The simulations suggest that substantial extracellular Ca2+ depletion can occur in the clefts during activation of GRCs, particularly at high stimulation frequencies used to induce long-term potentiation (LTP). Only minimal transitory changes in extracellular Ca2+ are observed at low frequencies. These frequency-dependent alterations in extracellular Ca2+ dynamics are a direct reflection of the activity of GRCs and could be involved in the modulation of presynaptic function via a retrograde messenger mechanism, if there are extracellular Ca2+ sensors on the presynaptic membranes. The recently cloned extracellular Ca2(+)-sensing receptors that are known to be present in nerve terminals in hippocampus and other areas of the brain could potentially play such a role.  相似文献   

7.
The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.  相似文献   

8.
Recent experimental studies have shown that astrocytes respond to external stimuli with a transient increase of the intracellular calcium concentration or can exhibit self-sustained spontaneous activity. Both evoked and spontaneous astrocytic calcium oscillations are accompanied by exocytosis of glutamate caged in astrocytes leading to paroxysmal depolarization shifts (PDS) in neighboring neurons. Here, we present a simple mathematical model of the interaction between astrocytes and neurons that is able to numerically reproduce the experimental results concerning the initiation of the PDS. The timing of glutamate release from the astrocyte is studied by means of a combined modeling of a vesicle cycle and the dynamics of SNARE-proteins. The neuronal slow inward currents (SICs), induced by the astrocytic glutamate and leading to PDS, are modeled via the activation of presynaptic glutamate receptors. The dependence of the bidirectional communication between neurons and astrocytes on the concentration of glutamate transporters is analyzed, as well. Our numerical results are in line with experimental findings showing that astrocyte can induce synchronous PDSs in neighboring neurons, resulting in a transient synchronous spiking activity.  相似文献   

9.
This review summarizes the various experiments that have been carried out to determine if the expression of long-term potentiation (LTP), in particular N-methyl-D-aspartate (NMDA) receptor-dependent LTP, is presynaptic or postsynaptic. Evidence for a presynaptic expression mechanism comes primarily from experiments reporting that glutamate overflow is increased during LTP and from experiments showing that the failure rate decreases during LTP. However, other experimental approaches, such as monitoring synaptic glutamate release by recording astrocytic glutamate transporter currents, have failed to detect any change in glutamate release during LTP. In addition, the discovery of silent synapses, in which LTP rapidly switches on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function at NMDA-receptor-only synapses, provides a postsynaptic mechanism for the decrease in failures during LTP. It is argued that the preponderance of evidence favours a postsynaptic expression mechanism, whereby NMDA receptor activation results in the rapid recruitment of AMPA receptors as well as a covalent modification of synaptic AMPA receptors.  相似文献   

10.
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and synaptic glutamate release are blocked, and are found to be mediated by glutamate released from astrocytes acting preferentially on extrasynaptic NMDA receptors. The slow currents can be triggered by stimuli that evoke Ca2+ oscillations in astrocytes, including photolysis of caged Ca2+ in single astrocytes. As revealed by paired recording and Ca2+ imaging, a striking feature of this NMDA receptor response is that it occurs synchronously in multiple CA1 neurons. Our results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.  相似文献   

11.
The subsynaptic distribution of kainate receptors is still a matter of much debate given its importance to understand the way they influence neuronal communication. Here, we show that, in synapses of the rat hippocampus, presynaptic kainate receptors are localized within the presynaptic active zone close to neurotransmitter release sites. The activation of these receptors with low concentrations of agonists induces the release of [(3)H]glutamate in the absence of a depolarizing stimulus. Furthermore, this modulation of [(3)H]glutamate release by kainate is more efficient when compared with a KCl-evoked depolarization that causes a more than two-fold increase in the intra-terminal calcium concentration but no apparent release of [(3)H]glutamate, suggesting a direct receptor-mediated process. Using a selective synaptic fractionation technique that allows for a highly efficient separation of presynaptic, postsynaptic and non-synaptic proteins we confirmed that, presynaptically, kainate receptors are mainly localized within the active zone of hippocampal synapses where they are expected to be in a privileged position to modulate synaptic phenomena.  相似文献   

12.
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.  相似文献   

13.
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.  相似文献   

14.
Maejima T  Hashimoto K  Yoshida T  Aiba A  Kano M 《Neuron》2001,31(3):463-475
We report a type of synaptic modulation that involves retrograde signaling from postsynaptic metabotropic glutamate receptors (mGluRs) to presynaptic cannabinoid receptors. Activation of mGluR subtype 1 (mGluR1) expressed in cerebellar Purkinje cells (PCs) reduced neurotransmitter release from excitatory climbing fibers. This required activation of G proteins but not Ca2+ elevation in postsynaptic PCs. This effect was occluded by a cannabinoid agonist and totally abolished by cannabinoid antagonists. Depolarization-induced Ca2+ transients in PCs also caused cannabinoid receptor-mediated presynaptic inhibition. Thus, endocannabinoid production in PCs can be initiated by two distinct stimuli. Activation of mGluR1 by repetitive stimulation of parallel fibers, the other excitatory input to PCs, caused transient cannabinoid receptor-mediated depression of climbing fiber input. Our data highlight a signaling mechanism whereby activation of postsynaptic mGluR retrogradely influences presynaptic functions via endocannabinoid system.  相似文献   

15.
Reliable synaptic transmission depends not only on the release machinery and the postsynaptic response mechanism but also on removal or degradation of transmitter from the synaptic cleft. Accumulating evidence indicates that postsynaptic and glial excitatory amino acid transporters (EAATs) contribute to glutamate removal. However, the role of presynaptic EAATs is unclear. Here, we show in the mouse retina that glutamate is removed from the synaptic cleft at the rod to rod bipolar cell (RBC) synapse by presynaptic EAATs rather than by postsynaptic or glial EAATs. The RBC currents evoked by electrical stimulation of rods decayed slowly after pharmacological blockade of EAATs. Recordings of the evoked RBC currents from EAAT subtype-deficient mice and the EAAT-coupled anion current reveal that functional EAATs are localized to rod terminals. Model simulations suggest that rod EAATs are densely packed near the release site and that rods are equipped with an almost self-sufficient glutamate recollecting system.  相似文献   

16.
Brief glutamatergic stimulation of neurons from fetal mice, cultured in vitro for 6 days, activates the mTOR-S6 kinase, ERK1/2 and Akt pathways, to an extent approaching that elicited by brain-derived neurotrophic factor. In contrast, sustained glutamatergic stimulation inhibits ERK, Akt, and S6K. Glutamatergic activation of S6K is calcium/calmodulin-dependent and is prevented by inhibitors of calcium/calmodulin-dependent protein kinase 2, phosphatidylinositol 3-OH-kinase and by rapamycin. 2-Amino-5-phosphonovaleric acid, an inhibitor of N'-methyl-D-aspartate receptors, abolishes glutamatergic activation of ERK1/2 but not the activation of mTOR-S6K; the latter is completely abolished by inhibitors of voltage-dependent calcium channels. Added singly, dopamine gives slight, and norepinephrine a more significant, activation of ERK and S6K; both catecholeamines, however, enhance glutamatergic activation of S6K but not ERK. After 12 days in culture, the response to direct glutamatergic activation is attenuated but can be uncovered by suppression of gamma-aminobutyric acid interneurons with bicuculline in the presence of the weak K(+) channel blocker 4-aminopyridine (4-AP). This selective synaptic activation of mTOR-S6K is also resistant to APV and inhibited by Ca(2+) channel blockers and higher concentrations of glutamate. Elongation factor 2 (EF2) is phosphorylated and inhibited by the eEF2 kinase (CaM kinase III); the latter is inhibited by the S6K or Rsk. Bicuculline/4-AP or KCl-induced depolarization reduces, whereas higher concentrations of glutamate increases, EF2 phosphorylation. Thus the mTOR-S6K pathway in neurons, a critical component of the late phase of LTP, is activated by glutamatergic stimulation in a calcium/calmodulin-dependent fashion through a calcium pool controlled by postsynaptic voltage-dependent calcium channels, whereas sustained stimulation of extrasynaptic glutamate receptors is inhibitory.  相似文献   

17.
Neuronal activity evokes a localised change in cerebral blood flow in a response known as neurovascular coupling (NVC). Although NVC has been widely studied the exact mechanisms that mediate this response remain unclear; in particular the role of astrocytic calcium is controversial. Mathematical modelling can be a useful tool for investigating the contribution of various signalling pathways towards NVC and for analysing the underlying cellular mechanisms. The lumped parameter model of a neurovascular unit with both potassium and nitric oxide (NO) signalling pathways and comprised of neurons, astrocytes, and vascular cells has been extended to include the glutamate induced astrocytic calcium pathway with epoxyeicosatrienoic acid (EET) signalling and the stretch dependent TRPV4 calcium channel on the astrocytic endfoot. Results show that the potassium pathway governs the fast onset of vasodilation while the NO pathway has a delayed response, maintaining dilation longer following neuronal stimulation. Increases in astrocytic calcium concentration via the calcium signalling pathway and/or TRPV4 channel to levels consistent with experimental data are insufficient for inducing either vasodilation or constriction, in contrast to a number of experimental results. It is shown that the astrocyte must depolarise in order to produce a significant potassium flux through the astrocytic BK channel. However astrocytic calcium is shown to strengthen potassium induced NVC by opening the BK channel further, consequently allowing more potassium into the perivascular space. The overall effect is vasodilation with a higher maximal vessel radius.  相似文献   

18.
Basal synaptic transmission involves the release of neurotransmitters at individual synapses in response to a single action potential. Recent discoveries show that astrocytes modulate the activity of neuronal networks upon sustained and intense synaptic activity. However, their ability to regulate basal synaptic transmission remains ill defined and controversial. Here, we show that astrocytes in the hippocampal CA1 region detect synaptic activity induced by single-synaptic stimulation. Astrocyte activation occurs at functional compartments found along astrocytic processes and involves metabotropic glutamate subtype 5 receptors. In response, astrocytes increase basal synaptic transmission, as revealed by the blockade of their activity with a Ca(2+) chelator. Astrocytic modulation of basal synaptic transmission is mediated by the release of purines and the activation of presynaptic A(2A) receptors by adenosine. Our work uncovers an essential role for astrocytes in the regulation of elementary synaptic communication and provides insight into fundamental aspects of brain function.  相似文献   

19.
Activity-dependent changes in ionotropic glutamate receptors at the postsynaptic membrane are well established and this regulation plays a central role in the expression of synaptic plasticity. However, very little is known about the distributions and regulation of ionotropic receptors at presynaptic sites. To determine if presynaptic receptors are subject to similar regulatory processes we investigated the localisation and modulation of AMPA (GluR1, GluR2, GluR3) and kainate (GluR6/7, KA2) receptor subunits by ultrasynaptic separation and immunoblot analysis of rat brain synaptosomes. All of the subunits were enriched in the postsynaptic fraction but were also present in the presynaptic and non-synaptic synaptosome fractions. AMPA stimulation resulted in a marked decrease in postsynaptic GluR2 and GluR3 subunits, but an increase in GluR6/7. Conversely, GluR2 and GluR3 increased in the presynaptic fraction whereas GluR6/7 decreased. There were no significant changes in any of the compartments for GluR1. NMDA treatment decreased postsynaptic GluR1, GluR2 and GluR6/7 but increased presynaptic levels of these subunits. NMDA treatment did not evoke changes in GluR3 localisation. Our results demonstrate that presynaptic and postsynaptic subunits are regulated in opposite directions by AMPA and NMDA stimulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号