首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human neutrophil nuclei typically consist of three of four large heterochromatic lobes joined by thin, DNA-containing filaments. In addition, some lobes exhibit appendages of various sizes and shapes. Classical genetic and cytological studies suggest that some appendages contain specific chromsomes. The studies reported here provide the first detailed analysis of the spatial relationship between individual chromosomes and recognizable structures in neutrophil nuclei using fluorescent in situ hybridization. Analysis of DNA sequences in chromosomes 2, 18, X, and Y demonstrate that specific lobes in a population of neutrophil nuclei do not have a fied chromosome content. This result implies that chromosomes partition randomly among lobes during neutrophil differentiation. However, neutrophil nuclear topography is not entirely fortuitous. For instance, none of the sequences probed in this study mapped to a filament and most centromeres lie in clusters near the nuclear periphery. In addition, one of the X chromosome centromeres in females and the Y chromosome centromere in males consistently associate with specific nuclear appendages found in a subset of neutrophil nuclei. Chromosomes 2 and 18 occupy discrete nd separate territories within individual lobes and neither territory ever extends into a filament. Surprisingly, the sizes of these territories are not proportional to chromosome length, suggesting that individual neutrophil chromosomes vary in their degree of compaction. These results are discussed in the light of models that attempt to explain nuclear morphology in terms of chromosome spatial organization. Received: 10 April 1997 / Accepted: 14 April 1997  相似文献   

2.
The radial positions of the centromeric regions of chromosomes 1 and X were determined in normal male fibroblasts (XY) and in fibroblasts from a patient with a rare case of XXXXY polysomy. The centromeric regions and presumably the whole territories of active X chromosomes were demonstrated to occupy similar, although not identical, positions in XY and XXXXY cells. The centromeres of inactive X chromosomes (Barr bodies) were located closer to the nuclear periphery as compared with the centromeres of active X chromosomes. In addition, it was established that the nuclear radial position of gene-rich chromosome 1 was changed in XXXXY cells as compared to normal XY cells. The data are discussed in the context of the hypothesis postulating that changes in nuclear positioning of chromosomal territories induced by the presence of extra copies of individual chromosomes may contribute to the development of diseases related to different polysomies.  相似文献   

3.
Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.  相似文献   

4.
Nuclear and territorial positioning of p- and q-telomeres and centromeres of chromosomes 3, 8, 9, 13, and 19 were studied by repeated fluorescence in situ hybridization, high-resolution cytometry, and three-dimensional image analysis in human blood lymphocytes before and after stimulation. Telomeres were found on the opposite side of the territories as compared with the centromeres for all chromosome territories investigated. Mutual distances between telomeres of submetacentric chromosomes were very short, usually shorter than centromere-to-telomere distances, which means that the chromosome territory is nonrandomly folded. Telomeres are, on average, much nearer to the center of the cell nucleus than centromeres; q-telomeres were found, on average, more centrally localized as compared with p-telomeres. Consequently, we directly showed that chromosome territories in the cell nucleus are (1) polar and (2) partially oriented in cell nuclei. The distributions of genetic elements relative to chromosome territories (territorial distributions) can be either narrower or broader than their nuclear distributions, which reflects the degree of adhesion of an element to the territory or to the nucleus. We found no tethering of heterologous telomeres of chromosomes 8, 9, and 19. In contrast, both pairs of homologous telomeres of chromosome 19 (but not in other chromosomes) are tethered (associated) very frequently.  相似文献   

5.
Fluorescent in situ hybridization with chromosome specific probes was used in conjunction with laser scanning confocal microscopy to assess the three-dimensional distribution of chromosomes in human T-lymphocyte nuclei. Cells in the G1-phase of the cell cycle exhibit a distinctly non-random chromosome organization: centromeric regions of the ten chromosomes examined are localized on the nuclear periphery, often making contact with the nuclear membrane, while telomeric domains are consistently localized within the interior 50% of the nuclear volume. Chromosome homolog pairing is not observed. Transition from the G1 to G2 cell cycle phase is accompanied by extensive chromosome movement, with centromeres assuming a more interior location. Chromosome condensation and chromatin depleted areas are observed in a small subset of G2 nuclei approaching mitosis. These results demonstrate that dynamic chromosome rearrangements occur in non-mitotic nuclei during the cell cycle.by L. Manuelidis  相似文献   

6.
Nuclei isolated from normal human brain tissue, collected from six autopsies, were hybridized with a panel of nine satellite DNA probes specific for the centromeric regions of chromosomes 1, 6, 7, 10, 11, 17, 18, and the X and Y chromosomes. The results did not confirm the recently reported trisomy 7 and loss of sex chromosomes observed in metaphases obtained from normal brain tissue after short-term cultures; however, cells of all six brains displayed somatic pairing of the chromosome 17 centromeres in approximately 50% of the nuclei.  相似文献   

7.
8.
9.
It has recently been reported that in human sperm cells, the centromeres are clustered in a chromocenter in the interior region of the nucleus. The aim of the present study was to determine the intra-chromocenter organization of the five centromeres of the acrocentric chromosomes responsible for the biosynthesis of rRNA. The acrocentric centromeres were labeled by fluorescence in situ hybridization (FISH) after mild decondensation of the sperm nuclei to preserve the tail structure. The tail was used as a topographical marker for the orientation of the nucleus. The following results were obtained: (a) the association among the five centromeres was higher than expected from random distribution; (b) all the centromeres observed were randomly located within the chromocenter, occupying about 87% of the total area of the internal nucleus; (c) a major subpopulation of centromeres was located in a preferred area occupying 8.3% of the total nuclear area, with a peak 0.6 microm on the lateral axis and 1.0 microm on the apical side of the longitudinal axis; and (d) The dispersion of the centromeres was not influenced by the degree of the nuclear decondensation. We conclude that in human sperm nuclei, the acrocentric centromeres are organized within a nonlocalized structural element in the chromocenter. The chromocenter can range from an expanded size of 87% of the whole nucleus to a preferred size of 8.3% independent of the degree of nuclear decondensation. These findings have important implications for nuclear function (rRNA) that is not directly related to sperm cell function or early embryo development.  相似文献   

10.
BACKGROUND: The three-dimensional (3D) positions of centromeres have been studied in several cell systems. However, data on centromere positions during cellular transformation remain elusive. This study has focused on mouse lymphocytes and investigated the centromere positions in primary, immortalized, and tumor cells. METHODS: Eighty-to-ninety z-slices of each mouse lymphocyte nucleus were acquired using a sampling distance of 107 nm in the xy plane and 200 nm along z for each z-stack, using an Axioplan 2 microscope, an AxioCam HR CCD, a 63x/1.4 oil objective, and the Axiovision 3.1 software (Carl Zeiss, Canada). A constrained iterative algorithm (Schaefer et al., J Microsc 2001;204:99-107) was used for deconvolution. Centromere positions in 3D images were analyzed using CentroView, a program we developed to measure nuclear centromere positions. RESULTS: Using CentroView we determined the positions of centromeres in primary lymphocytes, immortalized and malignant mouse B cells. We show that centromeres exhibit altered nuclear positions in immortalized and malignant B cells. These changes are independent of previously described cell cycle-dependent centromere dynamics. CONCLUSIONS: The 3D positions of centromeres are altered during cellular transformation. In lymphocytes, centromeres are found in more central nuclear positions following immortalization and transformation. These nuclear changes reflect structural remodeling of mammalian nuclei during oncogenesis and may impact on the structural organization of chromosomes. How centromeric changes are linked to nuclear remodeling can now be quantitatively examined using the tools of this study.  相似文献   

11.
To study 3D nuclear distributions of epigenetic histone modifications such as H3(K9) acetylation, H3(K4) dimethylation, H3(K9) dimethylation, and H3(K27) trimethylation, and of histone methyltransferase Suv39H1, we used advanced image analysis methods, combined with Nipkow disk confocal microscopy. Total fluorescence intensity and distributions of fluorescently labelled proteins were analyzed in formaldehyde-fixed interphase nuclei. Our data showed reduced fluorescent signals of H3(K9) acetylation and H3(K4) dimethylation (di-me) at the nuclear periphery, while di-meH3(K9) was also abundant in chromatin regions closely associated with the nuclear envelope. Little overlapping (intermingling) was observed for di-meH3(K4) and H3(K27) trimethylation (tri-me), and for di-meH3(K9) and Suv39H1. The histone modifications studied were absent in the nucleolar compartment with the exception of H3(K9) dimethylation that was closely associated with perinucleolar regions which are formed by centromeres of acrocentric chromosomes. Using immunocytochemistry, no di-meH3(K4) but only dense di-meH3(K9) was found for the human acrocentric chromosomes 14 and 22. The active X chromosome was observed to be partially acetylated, while the inactive X was more condensed, located in a very peripheral part of the interphase nuclei, and lacked H3(K9) acetylation. Our results confirmed specific interphase patterns of histone modifications within the interphase nuclei as well as within their chromosome territories.  相似文献   

12.
Karni RJ  Wangh LJ  Sanchez JA 《Chromosoma》2001,110(4):267-274
The nuclei of human neutrophils typically consist of a linear array of three or four lobes joined by DNA-containing filaments. Terminal lobes are connected to internal lobes via a single filament, while internal lobes have two filaments, each to an adjacent lobe. Some lobes also have appendages of various shapes and sizes. In particular, up to 17% of neutrophil nuclei of healthy women exhibit a drumstick-shaped appendage that contains the inactive X chromosome. This report provides a detailed analysis of the relationship between nuclear morphology and the location of the X and Y chromosomes in human neutrophils. Fluorescent in situ hybridization analysis revealed that the X and the Y chromosomes of male neutrophil nuclei are randomly distributed among nuclear lobes. Similarly, in female neutrophil nuclei with a drumstick appendage, the active X chromosome is also randomly distributed among lobes. In contrast, the inactive X chromosome is preferentially located in a terminal lobe in over 90% nuclei with drumsticks. Within the terminal lobe of nuclei with drumsticks, the inactive X chromosome lies distal to the point of filament attachment in 80% of the nuclei. The inactive X chromosome also exhibits a specific orientation within the drumstick appendage, with over 95% of nuclei having the X centromere located toward the tip of the appendage. Female nuclei without a drumstick appendage also have one of the X chromosomes (presumably the inactive chromosome) preferentially situated in a terminal lobe. Nonrandom distribution of the inactive X chromosome is discussed in the context of a model that considers chromosomes as determinants of neutrophil nuclear morphology.  相似文献   

13.
14.
The structural organisation of chromatin in eukaryotes plays an important role in a number of biological processes. Our results provide a comprehensive insight into the nuclear topography of human peripheral blood granulocytes, mainly neutrophils. The nuclei of granulocytes are characterised by a segmented shape consisting of two to five lobes that are in many cases connected by a thin DNA-containing filament. The segregation of chromosomes into the nuclear lobes was studied using fluorescence in situ hybridisation (FISH). We were able to distinguish different topographic types of granulocytes on the basis of the pattern of segregation. Five topographic types were detected using dual-colour FISH in two-lobed nuclei. The segregation of four sets of genetic structures could be studied with the aid of repeated FISH and a large number of topographic types were observed. In all these experiments a non-random distribution of chromosomes into nuclear lobes was found. The painting of a single type of chromosome in two-lobed nuclei showed the prevalence of symmetric topographic types (on average in 65.5% of cases) with significant variations among individual chromosomes. The results of analysis of five topographic types (defined by two chromosomes in two-lobed nuclei) showed that the symmetric topographic types for both chromosomes are significantly more frequent than predicted. Repeated hybridisation experiments confirmed that the occurrence of certain patterns of chromosome segregation is much higher than that predicted from the combination of probabilities. The frequency of symmetric topographic types for chromosome domains was systematically higher than for genes located on these chromosomes. It appears that the prevalence of symmetric segregation patterns is more probable for large objects such as chromosome domains than for genes located on chromatin loops extending outwards from the surface of the domain defined by specific chromosome paints. This means that one chromosome domain may occur in different lobes of granulocytic nuclei. This observation is supported by the fact that both genes and centromeres were observed on filaments joining different lobes. For all chromosomes, the distances between the membrane and fluorescence gravity centre of the chromosome were measured and correlated with the segregation patterns. A higher percentage of symmetric topographic types was found in those chromosomes that were located closer to the nuclear membrane. Nuclear positioning of all genetic elements in granulocytic nuclei was studied in two-dimensional projection; however, the results were verified using three-dimensional analysis.  相似文献   

15.
Chromosome arrangements in human fibroblasts at mitosis   总被引:1,自引:1,他引:0  
Summary The positions of the centromeres of all 46 human chromosomes were analysed in three dimensional reconstructions of electron micrographs of 10 serially sectioned unpretreated human male fibroblast cells. The reconstructions show that the spatial positioning of the chromosomes during division is not random. The centromeres were arranged on a metaphase plate that was ellipsoidal and that tended to be flat. The distance of centromeres from the centre of the mitotic figure was correlated with chromosome size; small chromosomes tended to be central in all the metaphases. Large chromosomes were more peripheral, especially in cells that were more advanced in mitosis. Thus, there is a tendency for larger chromosomes to move outwards as metaphase advances. In many cells, the A group centromeres were overdispersed, whereas G group centromeres tended to be clustered. The acrocentric chromosomes (D and G groups) also tended to be clustered when analysed together, probably reflecting associations in nucleoli at the previous interphase. The results show that chromosome disposition is non-random and that it changes during division.  相似文献   

16.
17.
Recurring chromosomal abnormalities are associated with specific tumour types. The EWSR1 and FLI1 genes are involved in balanced translocation t(11;22)(q24;q12), which is present in more than 85% of Ewing sarcomas. In our previous study, we have found that the fusion genes pertaining to both derivative chromosomes 11 and 22 in Ewing sarcoma cell nuclei are shifted to the midway nuclear position between the native EWSR1 and FLI1 genes. In this contribution we focused our attention at nuclear positioning of other genetic elements of chromosomes 11 and 22 in order to find if the whole derivative chromosomes or only their translocated parts change their nuclear positions in comparison with the native chromosomes. Using repeated fluorescence in situ hybridization and high-resolution cytometry, 2D radial positions of EWSR1, BCR, FLI1, BCL1 genes and fluorescence weight centres of chromosome territories were compared for intact and derivative chromosomes 11 and 22 in nuclei of three Ewing sarcoma samples. Significant radial shift was obtained for the derivative EWSR1, FLI1 and BCL1 genes and for the derivative chromosome 11 compared with the intact ones and not very significant for chromosome 22 and the BCR gene. Our results also suggest that the mean nuclear positions of fusion genes are determined by the final structure of the derivative chromosomes and do not depend on the location of the translocation event.  相似文献   

18.
Four distinct nuclear satellite DNAs from calf (Bos taurus) were isolated and the physical properties of native, single-stranded and renatured duplex molecules of each of the four satellite DNAs were studied by buoyant density-gradient centrifugation. These DNAs were localized in the calf nucleus and on calf metaphase chromosomes by in situ hybridization. In all cases, the calf satellite DNAs are preferentially situated at the centromeres of the autosomes, whereas the X and Y sex chromosomes contain little or none of the satellite DNAs. C-banding techniques showed constitutive heterochromatin at the centromeres of all the autosomes, but not on the X and Y chromosomes.Calf satellite 1 DNA (p = 1.716 g/ml) is at the centromeres of all of the autosomes. Although calf satellite II DNA (p = 1.722 g/ml) is the most widely dispersed over the karyotype, two-thirds of the grains were over the autosomal centromeres. Calf satellites III (p = 1.706 g/ml) and IV (p = 1.709 g/ml) are localized at the centromeres of most, but not all, of the autosomes. The four satellite DNAs each showed a strongly clumped distribution in interphase nuclei of both confluent and growing calf kidney cells in vitro.  相似文献   

19.
T. Ashley  N. Pocock 《Genetica》1981,55(3):161-169
Evidence is presented to support the proposition that the position of chromosomes within nuclei is determined by the following factors: (1) the location of centromeres on one side of the nucleus and telomeres(ends) on the other (reflecting the telophase orientation brought about by their poleward anaphase migration); (2) attachment of telomeres to the nuclear membrane (site of attachment in relation to the poles and equator being dependent on the length of the individual arms and point 1 above); (3) telomere-to-telomere attachment of nonhomologues in a specific sequence; (4) telomere-to-telomere attachment of certain homologous chromosomes.It is proposed that a specific arrangement of nonhomologues occurs within gametic nuclei following meiosis, while initial homologous alignment takes place during karyogamy (fusion of gametic nuclei). The method of homologous association of telomeres is dependent on whether or not karyogamy within the species is between interphase pronuclei or occurs during the first cleavage division. A model of chromosome behavior for both these type of karyogamy is presented.  相似文献   

20.
In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号