首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ultrastructure of germ cell development in the human fetal testis   总被引:8,自引:0,他引:8  
Summary Electron-microscopic examination of the human fetal testis between 10 and 20 weeks gestation reveals the presence of two distinct cell types within the tubules: Sertoli cells and germ cells. The latter are distinguished by their spherical shape, smooth nuclear membranes, globular mitochondria and paucity of cytoplasmic organelles. The gonocytes, or primitive germ cells, occur as single cells in the central portions of the tubules. Their chromatin is finely granular and evenly dispersed. Nucleoli are centrally placed and of uniform electron density. Various stages in the migration of gonocytes to the tubular periphery are indicated by the extension of cytoplasmic processes toward the basal lamina. Bands of microtubules are present within the processes. Spermatogonia are arranged in pairs and groups at the tubular periphery. They lack the nucleolar and mitochondrial characteristics of adult spermatogonia. Except for slight changes in chromatin density and nucleolar structure, the fetal spermatogonia retain the ultrastructural characteristics of gonocytes. Intercellular bridges connect adjacent spermatogonia. Degeneration affecting large numbers of germ cells, but primarily gonocytes, begins with nuclear infolding and chromatin condensation and eventually involves both nuclear and cytoplasmic structures. The degenerated cells are removed by phagocytosis by adjacent Sertoli cells. Large phagosomes are present in the cytoplasm of many of the Sertoli cells.Supported by a grant from the Ford Foundation and by General Research Support Grant RR055511 from the National Institutes of Health. Technical assistance was provided by Mrs. Lucy A. Conner.  相似文献   

2.
Quiescent gonocytes were isolated from fetal testes of rat 18-day post coitum and cultured alone or on monolayers of somatic cells from different origins. The gonocytes specifically adhered to Sertoli cells, isolated from 21 to 23-day-old rat testes; this adherence was necessary for their survival in vitro. Addition of follicle-stimulating hormone and testosterone to these cultures did not increase the viability of the gonocytes. Serum was found to be deleterious to the germ cells. Electron-microscopic examination of Sertoli-cell-gonocyte co-cultures revealed the presence of numerous adhesion plaques between these cells, indicating that Sertoli cells and gonocytes are able to communicate in vitro. Gonocytes, in co-culture with Sertoli cells, were viable for at least 9 days. The gonocytes did not spontaneously resume proliferation. The simple culture system described in the present paper should be useful in studying the nature of the factors that are responsible for sending the quiescent gonocytes into the cell cylce and for stimulating the formation of A spermatogonia, a process characterizing the start of spermatogenesis.  相似文献   

3.
We have demonstrated a role for activin A, follistatin, and FSH in male germ cell differentiation at the time when spermatogonial stem cells and committed spermatogonia first appear in the developing testis. Testis fragments from 3-day-old rats were cultured for 1 or 3 days with various combinations of these factors, incubated with bromodeoxyuridine (BrdU) to label proliferating cells, and then processed for stereological analysis and detection of BrdU incorporation. Gonocyte numbers were significantly elevated in cultures treated with activin, while the combination of FSH and the activin antagonist, follistatin, increased the proportion of spermatogonia in the germ cell population after 3 days. All fragment groups treated with FSH contained a significantly higher proportion of proliferating Sertoli cells, while activin and follistatin each reduced Sertoli cell division. In situ hybridization and immunohistochemistry on normal rat testes demonstrated that gonocytes, but not spermatogonia, contain the activin beta(A) subunit mRNA and protein. In contrast, gonocytes first expressed follistatin mRNA and protein at 3 days after birth, concordant with the transition of gonocytes to spermatogonia. Collectively, these data demonstrate that germ cells have the potential to regulate their own maturation through production of endogenous activin A and follistatin. Sertoli cells were observed to produce the activin/inhibin beta(A) subunit, the inhibin alpha subunit, and follistatin, demonstrating that these cells have the potential to regulate germ cell maturation as well as their own development. These findings indicate that local regulation of activin bioactivity may underpin the coordinated development of germ cells and somatic cells at the onset of spermatogenesis.  相似文献   

4.
The localization of albumin and transferrin was examined immunohistochemically in germ cells and Sertoli cells during rat gonadal morphogenesis and postnatal development of the testis. These proteins appeared as early as the 13th day of gestation in migrating primordial germ cells before Sertoli cell differentiation. In the fetal testis, strong immunoreactivity was only detected in the gonocytes. In the prepubertal testis, spermatogonia, primary spermatocytes, and some Sertoli cells accumulate albumin and transferrin. At puberty, different patterns of immunostaining of the germ cells were observed at the various stages of the cycle of the seminiferous epithelium. Diplotene spermatocytes at stage XIII, spermatocytes in division at stage XIV, and round spermatids at stages IV–VIII showed maximal staining. Labeling was evident in the cytoplasm of adult Sertoli cells. Albumin and transferrin staining patterns paralleled each other during ontogenesis.  相似文献   

5.
The regulation of early fetal germ cell growth has not been studied in cell culture, probably due to the poor survival of these cells. However, cell culture is the only system in which the control of cell growth can be studied independently of the influence of secreted testicular factors, which are diluted in the medium. We successfully cultured dispersed testicular cells from 16.5-day-old rat fetuses in defined medium and compared the growth of these cells with that of cells from 3-day-old neonates. In this system, fetal gonocytes displayed low levels of mitotic activity and their numbers remained stable. In contrast, neonatal gonocytes displayed high levels of mitotic activity and increased in number, these characteristics resembling those observed in vivo. We found that retinoic acid had deleterious effects on the number of gonocytes but did not affect Sertoli cell proliferation in fetal and neonatal cell cultures. Moreover, in fetal cell cultures, the decrease in the number of gonocytes resulted from a decrease in mitotic activity, probably due to a direct effect of retinoids on fetal gonocytes. Among the selective agonists for the retinoic acid receptor (RARalpha agonist, RARbeta agonist, and RARgamma agonist) and the retinoic X receptor (pan-RXR agonist) tested, only the RARalpha agonist reproduced the effects of retinoic acid at concentrations lower than its Kd value in both fetal and neonatal cell cultures. As both RARalpha and RXRalpha are present in fetal and neonatal gonocytes, we suggest that retinoic acid exerts its effects on gonocytes via a RARalpha-RXRalpha heterodimer, with RARalpha functioning as an active partner and RXRalpha as a passive partner. In this culture system, we show for the first time that triiodothyronine (T3) inhibits testicular fetal Sertoli cell and germ cell growth. We also tested intracellular signaling factors and found that a cAMP analog increased Sertoli cell proliferation and germ cell survival in both fetal and neonatal cells whereas phorbol esters (PMA) strongly inhibited the proliferation of fetal but not of neonatal gonocytes. None of the tested factors (T3, dbcAMP, and PMA) seemed to interact with the all-trans retinoic acid pathway. Thus, fetal gonocytes and neonatal gonocytes differ in intrinsic properties, and their growth is not regulated in the same manner. Despite their low level of mitotic activity, fetal gonocytes were more sensitive to various factors than neonatal gonocytes.  相似文献   

6.
Summary The testes of adult male Syrian hamsters underwent involution within six weeks after optic enucleation. The diameter of the seminiferous tubules was 39% less than controls. Sertoli cells, spermatogonia, and primary spermatocytes were still present, but all steps of spermatids were completely absent from the involuted testes. Lipid droplets filled the Sertoli cell cytoplasm and often encroached upon the nucleus. Sertoli cells had sparse mitochondria and smooth endoplasmic reticulum, but Golgi cisternae were abundant. Typical SertoliSertoli junctions attached contiguous Sertoli cells. With lanthanum tracers it was demonstrated that these junctions were impenetrable; therefore, the bloodtestis barrier was deemed intact. Irregularly shaped protrusions often arose from the peritubular tissue and extended inward toward the seminiferous epithelium, often displacing the cytoplasm of the Sertoli cells and spermatogonia. The core of these protrusions consisted of irregular extensions of myoid cell cytoplasm surrounded by the myoid cells' basal lamina. External to the myoid cell basal lamina were bundles of collagen filaments with the basal lamina of the seminiferous epithelium forming the outermost layer of these protrusions. The apices of the Sertoli cells gave rise to numerous leaf-like processes that extended into and obliterated the lumen of the tubules. The Sertoli cell basal cytoplasm often contained phagocytized degenerating germ cells that appeared to give rise to the lipid droplets that filled the Sertoli cell cytoplasm. Acid phosphatase rich lysosome-like organelles were seen fusing with the degenerating germ cells and lipid droplets. The degenerating germ cells also were shown to contain acid phosphatase activity.  相似文献   

7.
Summary In seven hypo- or aspermic patients, electron microscopic investigations of the intercellular connections of the seminiferous tubule were performed. The analysis of cell junctions of Sertoli cells and germ cells revealed irregularities of the Sertoli-cell junctions, hypoplasias of occluding junctions, hypo- and hyperplasias of the Sertoli-spermatid cell junctions and abnormal formation of Sertoli cell junctions with early spermatids, spermatocytes, and spermatogonia. Gap junction-like cell membrane specializations were very rare. Intercellular cytoplasmic bridges of germ cells were always present together with these cells. One hypoplastic bridge connecting two spermatogonia was found.The results allow a preliminary classification of impaired spermatogenesia. The changes of intercellular connections might disturb the blood-testis barrier as well as the intercellular communication in the seminiferous tubule. Evidence is available to support the suggestion that genetic causes play a considerable role in the etiology of the germ cell aplasia and the spermatogenic maturation arrest.  相似文献   

8.
Di(n-butyl) phthalate (DBP) is commonly used in personal care products and as a plasticizer to soften consumer plastic products. Male rats exposed to DBP in utero have malformations of the male reproductive tract and testicular atrophy characterized by degeneration of seminiferous epithelium and decreased sperm production. In the fetal testis, in utero exposure to DBP reportedly resulted in reduced testosterone levels, Leydig cell aggregates, and multinucleated gonocytes (MNG). We investigated whether exposure in utero to DBP affects rat fetal Sertoli cells and compromises interactions between Sertoli and germ cells in the developing testis. Histological examination showed that MNG occurred at low frequency in the normal fetal rat testis. Exposure in utero at the dose level of DBP above estimated environmental or occupational human exposure levels significantly increased the number of these abnormal germ cells. Postnatally, MNG exhibited aberrant mitoses and were detected at the basal lamina. MNG were not apoptotic in the fetal and postnatal rat testes, as indicated by TUNEL. Sertoli cells in DBP-exposed fetal testis had retracted apical processes, altered organization of the vimentin cytoskeleton, and abnormal cell-cell contacts with gonocytes. The effect of DBP on Sertoli cell morphology at the level of light microscopy was reversed after birth and cessation of exposure. Our data indicate that fetal Sertoli cells are targeted by exposure in utero to DBP and suggest that abnormal interactions between Sertoli and germ cells during fetal life play a role in the development of MNG.  相似文献   

9.
10.
The interrelationships of the Sertoli cells and germ cells in the Syrian hamster were examined using the electron microscope. Demosome-like junctions were observed attaching Sertoli cells to spermatogonia and spermatocytes. In the region of the junctions dense plaques lay on the cytoplasmic surfaces of the plasmalemma of the opposing cells. Sertoli cell cytoplasmic filaments converged in the area of the junctions and inserted into the subsurface densities. Filaments were not observed associated with the subsurface densities of the germ cells. In the region of the junctions a 15...20 nm gap, filled with an attenuate amorphous substance, separated the plasmalemmata. Another attachment device termed "junctional specialization" occurred between Sertoli cells, and preleptotene spermatocytes and all successive developmental steps in the germ cell line in the hamster. The junctional specializations consisted of a mantel of Sertoli cell cytoplasmic filament lying subjacent to the Sertoli cell plasmalemma and an opposed cisterna of the endoplasmic reticulum. In stages VII-VIII preleptotene supermatocytes were observed in transit from the basal compartment to the adluminal compartment. While Sertoli-Sertoli junctions adluminal to the spermatocytes remained intact, typical Sertoli-Sertoli junctions formed between opposed Sertoli cell processes basal to the spermatocytes. It is proposed that, during the passage of spermatocytes in to the adluminal compartment, junctional specializations associated with preleptotene spermatocytes in the basal compartment migrate basal to the spermatocytes and contribute to formation of Sertoli-Sertoli junctions. Treatment of seminiferous tubules with hypertonic media was used to demonstrate that the junctional specializations function in cell-to-cell adhesion. Data indicated that these junctions function to retain the developing spermatids within the seminiferous epithelijm until the time of spermiation. At spermination the junctional specializations disappear and the spermatids drift off into the tubule lumen.  相似文献   

11.
Summary The structure of guppy (Poecilia reticulata) spermatogonia and spermatocytes has been studied using electron microscopy. The spermatogonia, situated at the apex of the seminiferous tubule, are almost all surrounded by a network of Sertoli cells; they have very diffuse chromatin and one or two large nucleoli. The cytoplasm contains relatively few organelles, although annulate lamellae are found. The mitochondria have few cristae and are concentrated at one pole of the cell; they are sometimes found with intermitochondrial cement. These spermatogonia are separated from each other, having no intercellular bridges or inclusion in Sertoli cells, and are relatively undifferentiated; they correspond to stem cells. The spermatogonia beneath the apex are organized into cysts. First-generation spermatogonia are more dense and heterogeneous, their nuclei becoming smaller and their chromatin becoming denser during successive generations. In spermatocytes, the synaptinemal complex exists as a modified form until metaphase. The concentration of organelles in the cytoplasm increases and the organelles become more diversified as spermatogenesis progresses. Many cytoplasmic bridges are observed (several per cell), indicating that the cells remain in contact after several divisions. These changes in germ cell structure have been related to some of the characteristic features of spermatogenesis in guppy, e.g. the large number of spermatogonial generations and the complexity of spermiogenesis.  相似文献   

12.
Using subtractive hybridization and polymerase chain reaction, we developed a differential cloning system, the fragmented cDNA subtraction method, that requires only small amounts of materials. The cloning system was used to isolate several cDNA fragments expressed more abundantly in the premeiotic day 3 post-natal mouse testis than in the adult mouse testis. The isolated cDNA fragments included cDNA encoding the murine cyclin D2. Northern blot and in situ hybridization analyses revealed that, during testis development, cyclin D2 expression was most abundant in the neonatal proliferating Sertoli cells. Those type A spermatogonia that were thought to divide mitotically also expressed cyclin D2 mRNA. Other spermatogenic cells, such as mitotically arrested gonocytes in neonatal testis and meiotically dividing germ cells in adult testis as well as adult Sertoli cells, were negative for the cyclin D2 signal. Adult W/W v mutant mice lacking germ cells expressed cyclin D2 mRNA in terminally differentiated Sertoli cells. Elimination of germ cells other than the undifferentiated type A spermatogonia by treating wild-type mice with an anti-c- kit monoclonal antibody did not result in the expression of cyclin D2 in Sertoli cells. These results demonstrate that there are lineage- and developmental-specific expression patterns of cyclin D2 mRNA during mouse testis development. At the same time, it is suggested that primitive type A spermatogonia affect the cyclin D2 expression of Sertoli cells.  相似文献   

13.
The present study compares the ultrastructural features of Sertoli cells and germ cells between scrotal testes of healthy boars and abdominal testes of unilateral and bilateral cryptorchid boars. In healthy boars, spermatogonia are flat cells lying in close association with the basal lamina. As differentiation progresses, spermatogonia acquire an oval profile and lose their contact with the basal lamina. Spermatocytes are round cells moving from the basal compartment of the seminiferous epithelium to the luminal compartment. Spermatids exhibit complex morphological changes leading to the formation of spermatozoa. Sertoli cells extend from the basal lamina to the tubular lumen. The nucleus encloses fine euchromatin and one or two nucleoli; the nuclear envelope has a few deep infoldings. The lateral cell membranes form junctional specializations that constitute the blood-testis barrier. The cytoplasm encloses smooth endoplasmic reticulum, vesicles, aggregates, and scattered mitochondria. The seminiferous epithelium of abdominal testes from unilateral and bilateral cryptorchid boars contains few spermatogonia with an abnormal appearance; the alteration in germ cell number is more severe in the bilateral disease. In unilateral cryptorchid boars, spermatogonia appear as either large pyramidal cells or roundish cells; in bilateral cryptorchid boars, spermatogonia show roundish profiles and degenerative patterns. Abdominal testes of both unilateral and bilateral cryptorchid boars are constituted by immature Sertoli cells that show abnormal cytoplasmic content, defective development of the blood-testis barrier, and atypical nuclear appearance; in bilateral cryptorchid boars, immature Sertoli cells exhibit degenerative signs. At postpubertal age, unilateral and bilateral cryptorchidism induce total arrest of spermatogenesis at spermatogonial stage as a result of an abnormal differentiation of the Sertoli cells. Moreover, the degeneration of abdominal testes initiates earlier in bilateral cryptorchidism than in unilateral cryptorchidism.  相似文献   

14.
15.
16.
The stem cell properties of gonocytes and prospermatogonia at prepubertal stages are still largely unknown: it is not clear whether gonocytes and prospermatogonia are a special cell type or similar to adult undifferentiated spermatogonia. To characterize these cells, we have established transgenic mice carrying EGFP (enhanced green fluorescence protein) cDNA under control of an Oct4 18-kb genomic fragment containing the minimal promoter and proximal and distal enhancers; Oct4 is reported to be expressed in undifferentiated spermatogonia at prepubertal stages. Generation of transgenic mice enabled us to purify gonocytes and prospermatogonia from the somatic cells of the testis. Transplantation studies of testicular cells so far have been done with a mixture of germ cells and somatic cells. This is the first report that establishes how to purify germ cells from total testicular cells, enabling evaluation of cell-autonomous repopulating activity of a subpopulation of prospermatogonia. We show that prospermatogonia differ markedly from adult spermatogonia in both the size of the KIT-negative population and cell cycle characteristics. The GFP(+) KIT(-) fraction of prospermatogonia has much higher repopulating activity than does the GFP(+)KIT(+) population in the adult environment. Interestingly, the GFP(+)KIT(+) population still exhibits repopulating activity, unlike adult KIT-positive spermatogonia. We also show that ALCAM, activated leukocyte cell adhesion molecule, is expressed transiently in gonocytes. Sertoli cells and myoid cells also express ALCAM at the same stage, suggesting that ALCAM may contribute to gonocyte-Sertoli cell adhesion and migration of gonoyctes toward the basement membrane.  相似文献   

17.
Summary The synthesis of one of the main glycoproteins of the basement membrane, the laminin, was demonstrated by ultrastructural immunolocalization during rat foetal (16th day to 20th day of gestation) and postnatal development of the testis. The lamina densa, part of seminiferous tubular basement membrane, is labeled uniformly at all studied stages. The lamina lucida is not well defined before the postnatal stages, at which times discrete immunostaining extends from the lamina densa to the adjacent seminiferous epithelial cells (spermatogonia and Sertoli cells). The extracellular matrix around the peritubular cells is not labeled before birth. Intracellular immunostaining was detected as early as the 16th day of gestation in both Sertoli cells and cells around the seminiferous tubules which will transform later into peritubular cells. It was located in rough endoplasmic reticulum (RER) cisternae and secretory vesicles. After 18–20 days of postnatal life, the immunostaining faints progressively. Some positive material is seen in the RER of the gonocytes at all studied stages.Sertoli cells and peritubular cells are the main producing cells of laminin after the 16th of gestation. The laminin secreted by gonocytes may play an important role in adhesion of gonocytes to the lamina densa and adjacent Sertoli cells before their transition from basal compartment to adluminal compartment.  相似文献   

18.
The synthesis of one of the main glycoproteins of the basement membrane, the laminin, was demonstrated by ultrastructural immunolocalization during rat foetal (16th day to 20th day of gestation) and postnatal development of the testis. The lamina densa, part of seminiferous tubular basement membrane, is labeled uniformly at all studied stages. The lamina lucida is not well defined before the postnatal stages, at which times discrete immunostaining extends from the lamina densa to the adjacent seminiferous epithelial cells (spermatogonia and Sertoli cells). The extracellular matrix around the peritubular cells is not labeled before birth. Intracellular immunostaining was detected as early as the 16th day of gestation in both Sertoli cells and cells around the seminiferous tubules which will transform later into peritubular cells. It was located in rough endoplasmic reticulum (RER) cisternae and secretory vesicles. After 18-20 days of postnatal life, the immunostaining faints progressively. Some positive material is seen in the RER of the gonocytes at all studied stages. Sertoli cells and peritubular cells are the main producing cells of laminin after the 16th of gestation. The laminin secreted by gonocytes may play an important role in adhesion of gonocytes to the lamina densa and adjacent Sertoli cells before their transition from basal compartment to adluminal compartment.  相似文献   

19.
Hormonal regulation of spermatogenesis and spermiogenesis   总被引:1,自引:0,他引:1  
Normal testicular function is dependent upon hormones acting through endocrine and paracrine pathways both in vivo and in vitro. Sertoli cells provide factors necessary for the successful progression of spermatogonia into spermatozoa. Sertoli cells have receptors for follicle stimulating hormone (FSH) and testosterone which are the main hormonal regulators of spermatogenesis. Hormones such as testosterone, FSH and luteinizing hormone (LH) are known to influence the germ cell fate. Their removal induces germ cell apoptosis. Proteins of the Bcl-2 family provide one signaling pathway which appears to be essential for male germ cell homeostasis. In addition to paracrine signals, germ cells also depend upon signals derived from Sertoli by direct membrane contact. Somatostatin is a regulatory peptide playing a role in the regulation of the proliferation of the male gametes. Activin A, follistatin and FSH play a role in germ cell maturation during the period when gonocytes resume mitosis to form the spermatogonial stem cells and differentiating germ cell populations. In vitro cultures systems have provided evidence that spermatogonia in advance stage of differentiation have specific regulatory mechanisms that control their fate. This review article provides an overview of the literature concerning the hormonal pathways regulating spermatogenesis.  相似文献   

20.
Changes in number of nuclear pores in different states of physiologica activity have been reported, but little is known about changing patterns of distribution in the course of cell differentiation. Pore distribution in male germ cells was studied in freeze fracture preparations of immature and mature rodent testis. As in other somatic cells, pores were uniformly and apparently randomly distributed in Sertoli cell nuclei. The nucleus of gonocytes and spermatogonia showed varying degrees of pore clustering. Spermatocytes invariably exhibited very striking pore aggregation with close hexagonal packing in pore-rich areas, and large pore-free areas. In early spermatids, pores appeared to be randomly distributed. As the acrosome formed and spread over the apical pole of the nucleus, pores disappeared ahead of its advancing margin and became more concentrated in the post-acrosomal region. The relationship of pore complexes to the chromosomes and the role of the fibrous lamina are discussed. The question as to whether the changing patterns observed involve movement of pores within fluid nuclear membranes, or a dissolution and reformation of new pores remains unanswered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号