共查询到20条相似文献,搜索用时 9 毫秒
1.
BACKGROUND: Achieving specificity of delivery represents a major problem limiting the clinical application of retroviral vectors for gene therapy, whilst lack of efficiency and longevity of gene expression limit non-viral techniques. Ultrasound and microbubble contrast agents can be used to effect plasmid DNA delivery. We therefore sought to evaluate the potential for ultrasound/microbubble-mediated retroviral gene delivery. METHODS: An envelope-deficient retroviral vector, inherently incapable of target cell entry, was combined with cationic microbubbles and added to target cells. The cells were exposed to pulsed 1 MHz ultrasound for 5 s and subsequently analysed for marker gene expression. The acoustic pressure profile of the ultrasound field, to which transduction efficiency was related, was determined using a needle hydrophone. RESULTS: Ultrasound-targeted gene delivery to a restricted area of cells was achieved using virus-loaded microbubbles. Gene delivery efficiency was up to 2% near the beam focus. Significant transduction was restricted to areas exposed to > or = 0.4 MPa peak-negative acoustic pressure, despite uniform application of the vector. An acoustic pressure-dependence was demonstrated that can be exploited for targeted retroviral transduction. The mechanism of entry likely involves membrane perturbation in the vicinity of oscillating microbubbles, facilitating fusion of the viral and cell membranes. CONCLUSIONS: We have established the basis of a novel retroviral vector technology incorporating favourable aspects of existing viral and non-viral gene delivery vectors. In particular, transduction can be controlled by means of ultrasound exposure. The technology is ideally suited to targeted delivery following systemic vector administration. 相似文献
2.
3.
4.
5.
BACKGROUND: Synthetic vectors such as polymers have the potential to reduce the safety problems associated with viral vectors; however, their low transfection efficiency limits their clinical utility. To study the critical steps involved in an efficient transgene expression, there is a need for creative approaches that allow a systematic correlation between gene carrier structure and properties necessary for successful gene transfer. Using recombinant techniques a prototype vector comprised of tandem repeating units fused to a targeting moiety was biosynthesized to mediate gene transfer in mammalian cell lines. The carrier was designed to have the structure of (KHKHKHKHKK)6-FGF2 where lysine (K) residues would allow complexation with plasmid DNA, basic fibroblast growth factor (FGF2) to target cells over-expressing FGF2 receptors (FGFR), and histidine (H) residues to facilitate escape from the endosomal compartments. METHODS: The gene carrier was biosynthesized in E. coli, purified using a Ni-NTA column, characterized, complexed with pDNA, and the complexes were used to transfect NIH 3T3, T-47D and COS-1 mammalian cell types known to express FGFR. RESULTS: Results demonstrate the successful cloning and expression of the gene carrier with over 95% purity. The molecular weight of the gene carrier was determined by MALDI-TOF to be 27 402. Amino acid content analysis and Western blot confirmed the expression of the gene carrier in E. coli. The vector was able to condense pDNA, induce cell proliferation in NIH 3T3 fibroblasts, and mediate transgene expression in NIH 3T3, T-47D and COS-1 mammalian cell types. CONCLUSION: Genetic engineering techniques show promise for systematic investigation of structure-activity relationships of non-viral gene delivery vectors. 相似文献
6.
Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. 相似文献
7.
8.
9.
Background
Dry powder dispersion devices offer potential for delivering therapeutic macromolecules to the pulmonary epithelia. Previously, freeze‐drying (lyophilisation) has been the accepted method for preparing dried formulations of proteins and non‐viral gene vectors despite the respirability of such powders being inadequate without further processing. In this study we compare the utility of freeze‐drying and spray‐drying, a one‐step process for producing dry and respirable powders, as methods for preparing non‐viral respiratory gene delivery systems.Methods
Lipid:polycation:pDNA (LPD) vectors comprising 1,2‐dioleoyl‐3‐trimethylammoniumpropane (DOTAP), protamine sulphate and pEGFP‐N1 in 3% lactose solution were either snap‐frozen and lyophilised or spray‐dried. Lyophilised powder was used as recovered or following coarse grinding. Structural integrity of dehydrated pDNA was assessed by agarose gel electrophoresis and powder particle size determined by laser diffraction. The apparent structure of the systems was visualised by scanning and transmission electron microscopy with the biological functionality quantified in vitro (A549 human lung epithelial cell line) by Green Fluorescent Protein (GFP) associated fluorescence.Results
Lyophilisation produced large, irregularly shaped particles prior to (mean diameter ~21 µm) and following (mean diameter ~18 µm) coarse grinding. Spray‐drying produced uniformly shaped spherical particles (mean diameter ~4 µm). All dehydrated formulations mediated reporter gene expression in A549 cells with the spray‐dried formulation generally proving superior even when compared with freshly prepared LPD complexes. Biological functionality of the LPD dry powders was not adversely affected following 3 months storage.Conclusions
Spray‐drying has utility for producing stable, efficient and potentially respirable non‐viral dry powder systems for respiratory gene delivery. Copyright © 2002 John Wiley & Sons, Ltd.10.
Eva Flick Peter Mark Catharina Nesselmann Cornelia A. Lux Hans‐Heinrich Gatzen Alexander Kaminski Andreas Liebold Karola Lützow Andreas Lendlein Ren‐Ke Li Nan Ma 《Journal of cellular and molecular medicine》2011,15(9):1989-1998
Transplantation of mesenchymal stem cells (MSCs) derived from adult bone marrow has been proposed as a potential therapeutic approach for post‐infarction left ventricular (LV) dysfunction. However, age‐related functional decline of stem cells has restricted their clinical benefits after transplantation into the infarcted myocardium. The limitations imposed on patient cells could be addressed by genetic modification of stem cells. This study was designed to improve our understanding of genetic modification of human bone marrow derived mesenchymal stem cells (hMSCs) by polyethylenimine (PEI, branched with Mw 25 kD), one of non‐viral vectors that show promise in stem cell genetic modification, in the context of cardiac regeneration for patients. We optimized the PEI‐mediated reporter gene transfection into hMSCs, evaluated whether transfection efficiency is associated with gender or age of the cell donors, analysed the influence of cell cycle on transfection and investigated the transfer of therapeutic vascular endothelial growth factor gene (VEGF). hMSCs were isolated from patients with cardiovascular disease aged from 41 to 85 years. Optimization of gene delivery to hMSCs was carried out based on the particle size of the PEI/DNA complexes, N/P ratio of complexes, DNA dosage and cell viability. The highest efficiency with the cell viability near 60% was achieved at N/P ratio 2 and 6.0 μg DNA/cm2. The average transfection efficiency for all tested samples, middle‐age group (<65 years), old‐age group (>65 years), female group and male group was 4.32%, 3.85%, 4.52%, 4.14% and 4.38%, respectively. The transfection efficiency did not show any correlation either with the age or the gender of the donors. Statistically, there were two subpopulations in the donors; and transfection efficiency in each subpopulation was linearly related to the cell percentage in S phase. No significant phenotypic differences were observed between these two subpopulations. Furthermore, PEI‐mediated therapeutic gene VEGF transfer could significantly enhance the expression level. 相似文献
11.
12.
BACKGROUND: A number of genetic defects in humans are due to point mutations in a single, often tightly regulated gene. Genetic treatment of such defects is preferably done by correcting only the altered base pair at the endogenous locus rather than by a gene replacement strategy involving viral vectors. Promisingly high repair rates have been achieved in some systems with the non-viral approach of transfecting chimeric RNA/DNA oligonucleotides (chimeraplasts). However, since this technique does not yet perform robustly, several parameters thought to be important in oligonucleotide-mediated gene repair were examined. METHODS: A series of transgenic HEK-293 cell clones has been established harboring high or low copy numbers of a point-mutated 'enhanced green fluorescent protein' (EGFP) gene as the target. At the level of single living cells, repair efficiencies were measured by fluorescence-activated cell sorting (FACS) regarding topology (single-stranded, double-stranded), exonuclease protection (four phosphorothioate linkages at both ends), polarity (sense, antisense), and length (13mer, 19mer, 35mer, 69mer) of the oligonucleotide. RESULTS: When targeting chromosomal loci, up to 0.2% corrected cells were obtained with single-stranded unmodified oligodeoxynucleotides, whereas a chimeraplast, its DNA analogue, and double-stranded DNA fragments were practically non-functional. Correction efficiencies correlated with target gene copy numbers. Modifying exonuclease resistance, polarity or length of single-stranded oligodeoxynucleotides did not enhance repair efficacy above the sub-percentage range. CONCLUSIONS: Successful chromosomal reporter gene repair in HEK-293 cells required an oligodeoxynucleotide to be single-stranded. In concert with the gene copy number correlation, functional interaction between the repair molecule and the target site seems to be one bottleneck in targeted gene repair. 相似文献
13.
14.
15.
Background
Methods for gene transfer to the cornea that yield high‐level expression without inflammation or trauma are currently lacking. Because electroporation has proven effective for gene transfer in other tissues in terms of expression levels and safety, this study quantitatively evaluated its use in the cornea.Methods
To evaluate the use of electroporation in the mouse cornea, plasmids expressing either luciferase or green fluorescent protein were injected intracorneally or subconjunctivally and square‐wave electric pulses were immediately applied to the eyes. Gene expression was quantified at later times and trauma and inflammation were monitored visually and by measuring interleukin‐6 (IL‐6) production.Results
The application of electric pulses to eyes injected with plasmid resulted in nanogram levels of gene product expression. At an optimal field strength of 200 V/cm, no trauma, corneal edema or inflammation was observed. However, at higher field strengths, corneal damage was detected. Compared with injection of DNA alone, up to 1000‐fold more gene product was produced using electroporation. Expression was detected as early as 6 h post‐electroporation, remained high for 3 days, and decreased by 7 days. Gene expression was detected over the entire surface of the cornea in both epithelial and stromal layers.Conclusions
These results demonstrate that electroporation is an excellent method for delivering genes to multiple cell layers within the mouse cornea and that it results in extremely high levels of gene expression with little, if any, inflammatory response or tissue damage, making this a very useful technique for corneal gene transfer. Copyright © 2001 John Wiley & Sons, Ltd.16.
Efficient and non‐toxic gene delivery by anionic lipoplexes based on polyprenyl ammonium salts and their effects on cell physiology 下载免费PDF全文
Monika Rak Anna Ochałek Ewa Bielecka Joanna Latasiewicz Katarzyna Gawarecka Jolanta Sroka Jarosław Czyż Katarzyna Piwowarczyk Marek Masnyk Marek Chmielewski Tadeusz Chojnacki Ewa Swiezewska Zbigniew Madeja 《The journal of gene medicine》2016,18(11-12):331-342
17.
18.
19.
20.
Schmieder AH Grabski LE Moore NM Dempsey LA Sakiyama-Elbert SE 《Biotechnology and bioengineering》2007,96(5):967-976
The purpose of this research was to develop and characterize a gene delivery vehicle with a poly(ethylene glycol) (PEG) backbone with the aim of overcoming limitations, such as cytotoxicity and rapid clearance, associated with current commonly used non-viral carriers. PEG was functionalized with DNA-binding peptides (DBPs) to make a vehicle (DBP-PEG) capable of condensing DNA. Complexes of plasmid DNA and DBP-PEG were formed and characterized by measuring particle size, zeta potential, and transfection efficiency as a function of N:P charge ratios (DBP-PEG amino groups:DNA phosphate). Dynamic light scattering showed that DBP-PEG was able to condense DNA efficiently resulting in a population of particles in the range of 250-300 nm. Neutral or slightly positive zeta potentials were measured for charge ratios of 3.5:1 and greater. DBP-PEG/DNA complexes, made with plasmids encoding the green fluorescent protein (GFP) and beta-Galactosidase (beta-Gal) genes, were used to transfect Chinese hamster ovary (CHO) cells. DBP-PEG/DNA was capable of transfecting cells and maximum transfection efficiency was observed for N:P ratios from 4:1 to 5:1, corresponding to zeta potentials from -4 to +1.6 mV. The effect of the DBP-PEG vehicle on cell viability was assayed. DBP-PEG was associated with a higher percentage of viable cells ( approximately 95%) than either polyethylenimine (PEI) or poly-L-lysine (PLL), and with transfection efficiency greater than PLL, but with somewhat lower than PEI. The results of this work demonstrate that PEG can be used as the backbone for gene delivery vehicles. 相似文献