首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
BACKGROUND: Achieving specificity of delivery represents a major problem limiting the clinical application of retroviral vectors for gene therapy, whilst lack of efficiency and longevity of gene expression limit non-viral techniques. Ultrasound and microbubble contrast agents can be used to effect plasmid DNA delivery. We therefore sought to evaluate the potential for ultrasound/microbubble-mediated retroviral gene delivery. METHODS: An envelope-deficient retroviral vector, inherently incapable of target cell entry, was combined with cationic microbubbles and added to target cells. The cells were exposed to pulsed 1 MHz ultrasound for 5 s and subsequently analysed for marker gene expression. The acoustic pressure profile of the ultrasound field, to which transduction efficiency was related, was determined using a needle hydrophone. RESULTS: Ultrasound-targeted gene delivery to a restricted area of cells was achieved using virus-loaded microbubbles. Gene delivery efficiency was up to 2% near the beam focus. Significant transduction was restricted to areas exposed to > or = 0.4 MPa peak-negative acoustic pressure, despite uniform application of the vector. An acoustic pressure-dependence was demonstrated that can be exploited for targeted retroviral transduction. The mechanism of entry likely involves membrane perturbation in the vicinity of oscillating microbubbles, facilitating fusion of the viral and cell membranes. CONCLUSIONS: We have established the basis of a novel retroviral vector technology incorporating favourable aspects of existing viral and non-viral gene delivery vectors. In particular, transduction can be controlled by means of ultrasound exposure. The technology is ideally suited to targeted delivery following systemic vector administration.  相似文献   

2.
Qiu Y  Zhang C  Tu J  Zhang D 《Journal of biomechanics》2012,45(8):1339-1345
In the present work, human breast cancer cells MCF-7 mixed with polyethylenimine: deoxyribonucleic acid complex and microbubbles were exposed to 1-MHz ultrasound at low acoustic driving pressures ranging from 0.05 to 0.3 MPa. The sonoporation pores generated on the cell membrane were examined with scanning electron microscopy. The transfection efficiency and cell viability were evaluated with flow cytometry. The results showed that ultrasound sonication under the current exposure condition could generate cell pores with mean size ranging from about 100 nm to 1.25 μm, and that larger sonoporation pores would be generated with the increasing acoustic pressure or longer treatment time, leading to the enhancement of transfection efficiency and the reduction of cell viability. The simulations based on the Marmottant model were performed to test the hypothesis that the microstreaming-induced shear stress might be involved in the mechanisms of the low-intensity ultrasound induced sonoporation. The calculated shear stress resulting from the micro-streaming ranged from 15 to 680 Pa corresponding to the applied acoustic pressures 0.05-0.3 MPa, which is sufficient to induce reversible sonoporation. This study indicates that the shear stress related bio-effects may provide a base for strategies aimed at targeted drug delivery.  相似文献   

3.
The blood-retinal barrier (BRB) prevents most systemically-administered drugs from reaching the retina. This study investigated whether burst ultrasound applied with a circulating microbubble agent can disrupt the BRB, providing a noninvasive method for the targeted delivery of systemically administered drugs to the retina. To demonstrate the efficacy and reversibility of such a procedure, five overlapping targets around the optic nerve head were sonicated through the cornea and lens in 20 healthy male Sprague-Dawley rats using a 690 kHz focused ultrasound transducer. For BRB disruption, 10 ms bursts were applied at 1 Hz for 60 s with different peak rarefactional pressure amplitudes (0.81, 0.88 and 1.1 MPa). Each sonication was combined with an IV injection of a microbubble ultrasound contrast agent (Definity). To evaluate BRB disruption, an MRI contrast agent (Magnevist) was injected IV immediately after the last sonication, and serial T1-weighted MR images were acquired up to 30 minutes. MRI contrast enhancement into the vitreous humor near targeted area was observed for all tested pressure amplitudes, with more signal enhancement evident at the highest pressure amplitude. At 0.81 MPa, BRB disruption was not detected 3 h post sonication, after an additional MRI contrast injection. A day after sonication, the eyes were processed for histology of the retina. At the two lower exposure levels (0.81 and 0.88 MPa), most of the sonicated regions were indistinguishable from the control eyes, although a few tiny clusters of extravasated erythrocytes (petechaie) were observed. More severe retinal damage was observed at 1.1 MPa. These results demonstrate that focused ultrasound and microbubbles can offer a noninvasive and targeted means to transiently disrupt the BRB for ocular drug delivery.  相似文献   

4.
Liu J  Zhang P  Liu P  Zhao Y  Gao S  Tan K  Liu Z 《Molecular imaging》2012,11(1):58-66
The effectiveness of microbubble-mediated ultrasound molecular imaging and drug delivery has been significantly affected by the axial laminar flow of vessels which prevents ultrasound contrast agents (UCAs) from targeting vascular endothelium. Studies show that acoustic manipulation could increase targeted UCA adhesion in microcirculation and some small vessels. In this study we demonstrate that ultrasound radiation force (USRF) can also significantly enhance the targeted adhesion of microbubbles in both small and great vessels. Our results indicate that the UCA adhesion targeted to ICAM-1 expressed on mouse cremaster microvascular endothelial cells increase about 9-fold when USRF is applied at 1 MHz and 73.9 kPa. The adhesion of anti-CD34 microbubbles to the endothelia of rat abdominal aorta was visually analyzed using scanning electron microscopy for the first time and thousands of microbubbles were found attached to the aortic endothelia after USRF application at the same acoustic parameters. Our data illustrate that targeted adhesion of anti-CD34 microbubbles is possible in normal abdominal aorta and we demonstrate the potential of using USRF in molecular imaging of a vascular target.  相似文献   

5.
Microbubbles first developed as ultrasound contrast agents have been used to assist ultrasound for cellular drug and gene delivery. Their oscillation behavior during ultrasound exposure leads to transient membrane permeability of surrounding cells, facilitating targeted local delivery. The increased cell uptake of extracellular compounds by ultrasound in the presence of microbubbles is attributed to a phenomenon called sonoporation. In this review, we summarize current state of the art concerning microbubble–cell interactions and cellular effects leading to sonoporation and its application for gene delivery. Optimization of sonoporation protocol and composition of microbubbles for gene delivery are discussed.  相似文献   

6.
Zhou Y  Cui J  Deng CX 《Biophysical journal》2008,94(7):L51-L53
Sonoporation has been exploited as a promising nonviral strategy for intracellular delivery of drugs and genes. The technique utilizes ultrasound application, often facilitated by the presence of microbubbles, to generate transient, nonspecific pores on the cell membrane. However, due to the complexity and transient nature of ultrasound-mediated bubble interaction with cells, no direct correlation of sonoporation with bubble activities such as acoustic cavitation, i.e., the ultrasound-driven growth and violent collapse of bubbles, has been obtained. Using Xenopus oocytes as a model system, this study investigated sonoporation in a single cell affected by colocalized cavitation in real time. A confocally and collinearly-aligned dual-frequency ultrasound transducer assembly was used to generate focused ultrasound pulses (1.5 MHz) to induce focal sonoporation while detecting the broadband cavitation acoustic emission within the same focal zone. Dynamic sonoporation of the single cell was monitored via the transmembrane current of the cell under voltage-clamp. Our results demonstrate for the first time, to our knowledge, the spatiotemporal correlation of sonoporation with cavitation at the single-cell level.  相似文献   

7.
We have evaluated if ultrasound imaging (US) and various commercially available contrast microbubbles can serve as a non-invasive systemically administered delivery vehicle for site-specific adenoviral-mediated gene transfer in vitro and in vivo. The contrast agents were tested for their ability to enclose and to protect an adenoviral vector carrying the GFP marker gene (Ad-GFP) into the microbubbles. We have also evaluated the ability of the innate immune system to inactivate free adenoviruses as well as unenclosed viruses adsorbed on the surface of the contrast agents and in turn the ability of the microbubbles to enclose and to protect the viral vectors from such agents. In vitro as well as in vivo, innate components of the immune system were able to serve as inactivating agents to clear free viral particles and unenclosed adenoviruses adsorbed on the microbubbles' surface. Systemic delivery of Ad-GFP enclosed into microbubbles in the tail vein of nude mice resulted in specific targeting of the GFP transgene. Both fluorescence microscopy and GFP immunohistochemistry demonstrated US guided specific transduction in the targeted cells only, with no uptake in either heart, lungs or liver using complement-pretreated Ad-GFP microbubbles. This approach enhances target specificity of US microbubble destruction as a delivery vehicle for viral-mediated gene transfer.  相似文献   

8.
Molecular imaging with targeted contrast ultrasound   总被引:22,自引:0,他引:22  
Molecular imaging with contrast ultrasound relies on the detection of targeted microbubbles or other acoustically active nanoparticles. These microbubbles are retained in diseased tissue where they produce an acoustic signal because of their resonant properties in the ultrasound field. Targeting is accomplished either through manipulating the chemical properties of the microbubble shell or through conjugation of disease-specific ligands for the targeted molecule to the microbubble surface. As microbubbles cannot leave the intravascular space, the disease process must be characterized by molecular changes in the vascular compartment to be imaged. Inflammation, angiogenesis and thrombus formation are central pathophysiologic processes in many disease states and produce phenotypic changes in the vascular compartment. Thus, targeted contrast ultrasound in the future could aid in the diagnosis of such diverse diseases as atherosclerosis, transplant rejection and tumor-related angiogenesis.  相似文献   

9.
Although gene therapy has great potential as a treatment for diseases, clinical trials are slowed down by the development of a safe and efficient gene delivery system. In this review, we will give an overview of the viral and nonviral vehicles used for drug and gene delivery, and the different nonviral delivery techniques, thereby focusing on delivery through ultrasound contrast agents.The development of ultrasound contrast agents containing encapsulated microbubbles has increased the possibilities not only for diagnostic imaging, but for therapy as well. Microbubbles have been shown to be able to carry drugs and genes, and destruction of the bubbles by ultrasound will result in local release of their contents. Furthermore, ligands can be attached so that they can be targeted to a specific target tissue. The recent advances of microbubbles as vehicles for delivery of drugs and genes will be highlighted.  相似文献   

10.
Gene therapy has great potential for human diseases. Development of efficient delivery systems is critical to its clinical translation. Recent studies have shown that microbubbles in combination with ultrasound (US) can be used to facilitate gene delivery. An aim of this study is to investigate whether the combination of US-targeted microbubble destruction (UTMD) and polyethylenimine (PEI) (UTMD/PEI) can mediate even greater gene transfection efficiency than UTMD alone and to optimize ultrasonic irradiation parameters. Another aim of this study is to investigate the biological effects of PHD2-shRNA after its transfection into H9C2 cells. pEGFP-N1 or eukaryotic shPHD2-EGFP plasmid was mixed with albumin-coated microbubbles and PEI to form complexes for transfection. After these were added into H9C2 cells, the cells were exposed to US with various sets of parameters. The cells were then harvested and analyzed for gene expression. UTMD/PEI was shown to be highly efficient in gene transfection. An US intensity of 1.5 W/cm2, a microbubble concentration of 300μl/ml, an exposure time of 45s, and a plasmid concentration of 15μg/ml were found to be optimal for transfection. UTMD/PEI-mediated PHD2-shRNA transfection in H9C2 cells significantly down regulated the expression of PHD2 and increased expression of HIF-1α and downstream angiogenesis factors VEGF, TGF-β and bFGF. UTMD/PEI, combined with albumin-coated microbubbles, warrants further investigation for therapeutic gene delivery.  相似文献   

11.
Gas-filled microbubbles attached to cell surfaces can interact with focused ultrasound to create microstreaming of nearby fluid. We directly observed the ultrasound/microbubble interaction and documented that under certain conditions fluorescent particles that were attached to the surface of live cells could be removed. Fluorescently labeled liposomes that were larger than 500 nm in diameter were attached to the surface of endothelial cells using cRGD targeting to αvβ3 integrin. Microbubbles were attached to the surface of the cells through electrostatic interactions. Images taken before and after the ultrasound exposure were compared to document the effects on the liposomes. When exposed to ultrasound with peak negative pressure of 0.8 MPa, single microbubbles and groups of isolated microbubbles were observed to remove targeted liposomes from the cell surface. Liposomes were removed from a region on the cell surface that averaged 33.1 μm in diameter. The maximum distance between a single microbubble and a detached liposome was 34.5 μm. Single microbubbles were shown to be able to remove liposomes from over half the surface of a cell. The distance over which liposomes were removed was significantly dependent on the resting diameter of the microbubble. Clusters of adjoining microbubbles were not seen to remove liposomes. These observations demonstrate that the fluid shear forces generated by the ultrasound/microbubble interaction can remove liposomes from the surfaces of cells over distances that are greater than the diameter of the microbubble.  相似文献   

12.
BACKGROUND: Gene delivery by the use of magnetic forces, so-called magnetofection, has been shown to enhance transfection efficiency of viral and non-viral systems up to several-hundred-fold. For this purpose gene carriers, such as polyethylenimine (PEI), are associated with superparamagnetic nanoparticles and complexed with plasmid DNA. Gene delivery is targeted by the application of a magnetic field. METHODS: To investigate the underlying mechanism, we studied the impact of the applied magnetic field on the transfection process of PEI-coated superparamagnetic iron oxide gene vectors (magnetofectins) using various cell lines. In particular, we addressed the question whether accelerated sedimentation of magnetofectins is the driving force or if the magnetic field itself directly influences the endocytic processing of the magnetofectins. The cellular uptake mechanism of magnetofectins was studied by electron microscopy and transfection experiments in the presence of various inhibitors that operate at different steps of endocytosis. RESULTS: In this study we could show that cellular uptake of magnetofectins proceeds obviously by endocytosis. Cellular uptake of magnetofectins behaves almost analogously as compared with PEI polyplexes. Besides unspecific endocytosis, apparently clathrin-dependent as well as caveolae-mediated endocytic uptake is involved. CONCLUSIONS: The magnetic field itself does not alter the uptake mechanism of magnetofectins. Obviously, the magnetic forces lead to an accelerated sedimentation of magnetofectins on the cell surface and do not directly affect the endocytic uptake mechanism. So further improvement of magnetic field application could lead to efficient targeting of gene expression into the desired organ and tissue in vivo.  相似文献   

13.
As gene delivery reagents, microbubbles have been successfully used in combination with ultrasound. Shock wave exposure has been shown to transfect cells with naked DNA in vitro, but it has not been tested whether the addition of microbubbles would enhance DNA uptake with adenovirus vector. Therefore, the aim of this study was to study the efficacy and safety of multidrug resistance 1 (MDR1) gene transfer into the bone marrow mononuclear cells of rabbits using adenovirus vector enhanced by ultrasound with microbubbles in vitro. The transfection rate of the MDR1 gene was significantly increased by ultrasound microbubbles with adenovirus. After ultrasonic irradiation, there were transient holes in the cell membrane, which disappeared after irradiation by ultrasound for 24 h. The temporary swelling of the organelles was reversible. Our in vitro findings conclusively demonstrate that the exogenous MDR1 gene transfer into the mononuclear cells of rabbits with adenovirus vector was enhanced by the ultrasonic microbubbles and this transfection technique is safe.  相似文献   

14.
15.
Development of nonviral gene transfer methods would be a valuable alternative of gene therapy or transformation. Ultrasound can produce a variety of nonthermal bioeffects via acoustic cavitation. Cavitation bubbles can induce cell death or transient membrane permeabilization (sonoporation) on cells. Application of sonoporation for gene transfer into cells or tissues develops quickly in recent years. Many studies have been performed in vitro exposure systems to a variety of cell lines transfected successfully. In vivo, cavitation initiation and control are more difficult, but can be enhanced by ultrasound contrast agents (microbubbles). The use of ultrasound for nonviral gene delivery has been applied for mammalian systems, which provides a fundamental basis and strong promise for development of new gene therapy methods for clinical medicine. In this paper, ultrasound applied to plant cell transformation or gene transfer is reviewed. Recently, most researches are focused on sonication-assisted Agrobacterium-mediated transformation (SAAT) in plant cells or tissues. Microbubbles are also proposed to apply to gene transfer in plant cells and tissues.  相似文献   

16.
Radiation-force assisted targeting facilitates ultrasonic molecular imaging   总被引:5,自引:0,他引:5  
Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to alpha(v)beta3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.  相似文献   

17.
ABSTRACT: BACKGROUND: Gene delivery approaches serve as a platform to modify gene expression of a cell population with applications including functional genomics, tissue engineering, and gene therapy. The delivery of exogenous genetic material via nonviral vectors has proven to be less toxic and to cause less of an immune response in comparison to viral vectors, but with decreased efficiency of gene transfer. Attempts have been made to improve nonviral gene transfer efficiency by modifying physicochemical properties of gene delivery vectors as well as developing new delivery techniques. In order to further improve and understand nonviral gene delivery, our approach focuses on the cell-material interface, since materials are known to modulate cell behavior, potentially rendering cells more responsive to nonviral gene transfer. In this study, self-assembled monolayers of alkanethiols on gold were employed as model biomaterial interfaces with varying surface chemistries. NIH/3T3 mouse fibroblasts were seeded on the modified surfaces and transfected using either lipid- or polymer- based complexing agents. RESULTS: Transfection was increased in cells on charged hydrophilic surfaces presenting carboxylic acid terminal functional groups, while cells on uncharged hydrophobic surfaces presenting methyl terminations demonstrated reduced transfection for both complexing agents. Surface--induced cellular characteristics that were hypothesized to affect nonviral gene transfer were subsequently investigated. Cells on charged hydrophilic surfaces presented higher cell densities, more cell spreading, more cells with ellipsoid morphologies, and increased quantities of focal adhesions and cytoskeleton features within cells, in contrast to cell on uncharged hydrophobic surfaces, and these cell behaviors were subsequently correlated to transfection characteristics. CONCLUSIONS: Extracellular influences on nonviral gene delivery were investigated by evaluating the upregulation and downregulation of transgene expression as a function of the cell behaviors induced by changes in the cells' microenvronments. This study demonstrates that simple surface modifications can lead to changes in the efficiency of nonviral gene delivery. In addition, statistically significant differences in various surface-induced cell characteristics were statistically correlated to transfection trends in fibroblasts using both lipid and polymer mediated DNA delivery approaches. The correlations between the evaluated complexing agents and cell behaviors (cell density, spreading, shape, cytoskeleton, focal adhesions, and viability) suggest that polymer-mediated transfection is correlated to cell morphological traits while lipid-mediated transfection correlates to proliferative characteristics.  相似文献   

18.
经颅聚焦超声是一种有效的神经调控技术,具有非侵入性、聚焦靶点多和焦点可调控等优势。但由于颅骨的强声衰减和非均质特性,聚焦超声经颅后存在焦点偏移、焦域能量不足以及颅骨烫伤等问题。多阵元超声相控阵可以修正超声经颅后的相位偏差和幅值衰减,实现准确、有效的颅内聚焦。本文首先介绍了换能器的阵元排布方式,进一步归纳了相控阵激励信号的调控方法,最后对其基础研究和临床应用进行了回顾与展望。  相似文献   

19.
Natural killer (NK) cells play a vital antitumor role as part of the innate immune system. Efficacy of adoptive transfer of NK cells depends on their ability to recognize and target tumors. We investigated whether low dose focused ultrasound with microbubbles (ldbFUS) could facilitate the targeting and accumulation of NK cells in a mouse xenograft of human colorectal adenocarcinoma (carcinoembryonic antigen (CEA)-expressing LS-174T implanted in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice) in the presence of an anti-CEA immunocytokine (ICK), hT84.66/M5A-IL-2 (M5A-IL-2). Human NK cells were labeled with an FDA-approved ultra-small superparamagnetic iron oxide particle, ferumoxytol. Simultaneous with the intravenous injection of microbubbles, focused ultrasound was applied to the tumor. In vivo longitudinal magnetic resonance imaging (MRI) identified enhanced accumulation of NK cells in the ensonified tumor, which was validated by endpoint histology. Significant accumulation of NK cells was observed up to 24 hrs at the tumor site when ensonified with 0.50 MPa peak acoustic pressure ldbFUS, whereas tumors treated with at 0.25 MPa showed no detectable NK cell accumulation. These clinically translatable results show that ldbFUS of the tumor mass can potentiate tumor homing of NK cells that can be evaluated non-invasively using MRI.  相似文献   

20.
The present study demonstrates the targeting of ultrasound contrast agents to human xenograft tumors by exploiting the overexpression of the glycolipid Gb3 in neovasculature. To this end, microbubbles were functionalized with a natural Gb3 ligand, the B subunit of the Shiga toxin (STxB). The targeting of Gb3-expressing tumor cells by STxB microbubbles was first shown by flow cytometry and fluorescence microscopy. A significantly higher proportion of STxB microbubbles were associated with Gb3-expressing tumor cells compared to cells in which Gb3 expression was inhibited. Moreover, ultrasonic imaging of culture plates showed a 12 dB contrast enhancement in average backscattered acoustic intensity on the surface of Gb3-expressing cells compared to Gb3-negative cells. Also, a 18 dB contrast enhancement was found in favor of STxB microbubbles compared to unspecific microbubbles. Microbubble signal intensity in subcutaneous tumors in mice was more than twice as high after the injection of STxB-functionalized microbubbles compared to the injection of unspecific microbubbles. These in vitro and in vivo experiments demonstrated that STxB-functionalized microbubbles bind specifically to cells expressing the Gb3 glycolipid. The cell-binding moieties of toxins thus appear as a new group of ligands for angiogenesis imaging with ultrasound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号