首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkaline phosphatase was solubilized from plasma membrane of rat liver with butanol-ol, bile acids or sodium deoxycholate, and electrophoretically compared with a soluble form in serum which was derived from the liver. The three enzyme preparations from the plasma membrane migrated at the same position on polyacrylamide-gel electrophoresis in the presence of either Triton X-100 or sodium dodecyl sulphate. The mobility of them, however, was distinctly different from that of the serum-soluble form of the liver-derived alkaline phosphatase. On the other hand, phosphatidylinositol-specific phospholipase C isolated from Bacillus cereus was used to release alkaline phosphatase from plasma membrane. The released alkaline phosphatase was demonstrated to have the same mobility as the serum-soluble form on polyacrylamide-gel electrophoresis in the presence or absence of detergents. The phospholipase C also converted the butan-1-ol-extracted membrane form into the serum-soluble form. The results suggest that release of alkaline phosphatase from the liver into serum is not simply caused by a detergent effect of bile salts, but involves an enzymic hydrolysis of phosphatidylinositol, with which alkaline phosphatase may strongly interact in the membrane.  相似文献   

2.
Heparan sulfate proteoglycans (HSPG) of rat liver are associated with the plasma membrane in a hydrophobic intrinsic and a hydrophilic extrinsic form. We were interested in determining whether or not these two forms could be detected in the Golgi apparatus, the subcellular site of addition of oligosaccharides and sulfate to HSPG. In vivo and in vitro radiolabeled HSPG from rat liver Golgi apparatus membranes could only be solubilized with detergents that disrupt the membrane lipid bilayer, suggesting that they are solely associated via hydrophobic interactions. Both forms of HSPG were detected in plasma membranes of rat liver and isolated rat hepatocytes. The detergent-solubilized HSPG bound to octyl-Sepharose columns, whereas the hydrophilic form did not; this latter form, however, was released from the membrane by heparin. The hydrophobic anchor of HSPG in the Golgi and plasma membranes was insensitive to treatment with phosphatidylinositol-specific phospholipase C under conditions in which alkaline phosphatase was sensitive; this suggests that the hydrophobic anchor of HSPG is the core protein itself. Preliminary experiments suggest that the subcellular site of processing of the hydrophobic to the hydrophilic form of HSPG is the plasma membrane. A specific processing activity, probably a protease of the plasma membrane not present in serum or the endoplasmic reticulum membrane, converted hydrophobic HSPG of the Golgi membrane to the hydrophilic form. In addition, pulse-chase experiments with [35S]Na2SO4 in rats demonstrated that at short times, the bulk of the radiolabeled cellular HSPG was in the Golgi apparatus; later on, the bulk of the radioactivity was found in the plasma membrane, the only subcellular site where the hydrophilic form of HSPG was detected.  相似文献   

3.
Purified alkaline phosphatase and plasma membranes from human liver were shown to dephosphorylate phosphohistones and plasma membrane phosphoproteins. The protein phosphatase activity of the liver plasma membranes was inhibited by levamisole, a specific inhibitor of alkaline phosphatase, and by phenyl phosphonate and orthovanadate, but was relatively insensitive to fluoride (50 mM). Endogenous membrane protein phosphatase activity was optimal at pH 8.0, compared to pH 7.8 for purified liver alkaline phosphatase. Plasma membranes also exhibited protein kinase activity using exogenous histone or endogenous membrane proteins (autophosphorylation) as substrates; this activity was cAMP-dependent. Autophosphorylation of plasma membrane proteins was apparently enhanced by phenyl phosphonate, levamisole, or orthovanadate. The dephosphorylation of phosphohistones by protein phosphatase 1 was not inhibited by levamisole but was inhibited by fluoride. Inhibition of endogenous protein phosphatase activity by orthovanadate during autophosphorylation of plasma membranes could be reversed by complexation of the inhibitor with (R)-(-)-epinephrine, and the dephosphorylation that followed was levamisole-sensitive. Neither plasma membranes nor purified liver alkaline phosphatase dephosphorylated glycogen phosphorylase a. These results suggest that the increased [32P]phosphate incorporation by endogenous protein kinases into the membrane proteins is due to inhibition of alkaline phosphatase and that the major protein phosphatase of these plasma membranes is alkaline phosphatase.  相似文献   

4.
Rat liver plasma membranes were found to have a relatively high ratio of acid to alkaline phosphatase activity when compared to rabbit liver and human placental membranes, respectively. The rat liver plasma membranes contained PPTl phosphatase activity against the soluble autophosphorylated insulin receptor beta-subunit. The PPT phosphatase activity of the membranes, using 32P-histone 2b as a substrate, was inhibited by 100 microM Zn+2, insensitive to 10 mM EDTA, and displayed maximal activity at neutral pH. Dephosphorylation of the insulin receptor beta-subunit by rat liver membranes was inhibited by Zn+2, and stimulated by EDTA. These results prove that the plasma membrane of a physiologically relevant insulin target tissue contains a PPT phosphatase, distinct from alkaline phosphatase, which catalyzes the dephosphorylation of the insulin receptor beta-subunit.  相似文献   

5.
F R Simon  E Sutherland 《Enzyme》1977,22(2):80-90
Although it is generally believed that hepatic alkaline phosphatase is localized to liver plasma membranes, 63% is present in the cytosol fraction after ultracentrifugation of rat liver homogenates. Divalent cation requirements, heat inactivation, pH optima, Km and chemical inhibition characteristics of partially purified alkaline phosphatase enzymes prepared from membrane and cytosol fractions suggested different structural forms. Furthermore, bile duct obstruction and ethinyl estradiol administration preferentially increased membrane-bound alkaline phosphatase activity, while cytosol activity was unaltered. In contrast, phenobarbital treatment decreased membrane-bound alkaline phosphatase and increased cytosol activity. These studies support the presence of two forms of hepatic alkaline phosphatase in rat liver which are regulated by different control mechanisms.  相似文献   

6.
1. Plasma membranes were isolated from ascites hepatoma AH-130 and rat livers with or without partial hepatectomy or bile duct ligation. Reciprocal manifestations of two marker enzymes for plasma membranes were observed in these membrane preparations; alkaline phosphatase activity was found much higher in the hepatoma membrane than in any preparations of the liver membranes, whereas 5'-nucleotidase activity was much lower in the former than in the latter. 2. Effects of lectins and anti-plasma membrane antiserum on these two marker enzymes were examined. The results showed that about 50% of apparent activity of 5'-nucleotidase found in the hepatoma membrane was exhibited by alkaline phosphatase. 3. Localizations of alkaline phosphatase and 5'-nucleotidase in polyacrylamide gels after electrophoresis were demonstrated using 5'-AMP and 5-Br, 4-Cl-indoxylphosphate as substrate. There was a difference in electrophoretic mobility between the alkaline phosphatase of the hepatoma and that of the liver.  相似文献   

7.
Simultaneous bile duct ligation and colchicine injection (2 mg/kg body weight) in rats caused a remarkable induction of alkaline phosphatase in the liver. Concomitantly, a marked elevation of the enzyme activity occurred in the serum, and three activity peaks (peaks I, II, and III) were separated by Sephadex G-200 gel filtration. By several criteria for alkaline phosphatase isoenzymes it was determined that the liver-derived enzyme was distributed in peak I (30% of total serum activity) as a vesicle-bound form and in peak II (65%) as a soluble form, while the intestinal enzyme was contained in peak III (5%). The serum alkaline phosphatase in peaks I and II was compared with the liver enzyme extracted from plasma membrane with n-butanol. Under non-reducing conditions, the soluble form of peak II showed an electrophoretic mobility different from that of the liver enzyme; in the presence of sodium dodecyl sulfate the serum-soluble form migrated a little more slowly than the liver one, while in the presence of Triton X-100 the former migrated much faster than the latter. The sedimentable fraction of peak I was found to contain two forms corresponding to the serum-soluble and liver-membranous forms. Neuraminidase treatment of these two forms reduced their mobilities but did not abolish the relative difference in their mobilities on gel electrophoresis in the presence of either Triton X-100 or sodium dodecyl sulfate. Under reducing conditions, however, each form (which was dissociated into single subunits) migrated with an identical mobility on sodium dodecyl sulfate gel electrophoresis. These results suggest that the hepatic alkaline phosphatase exists as conformationally different forms in the serum and the liver membrane (even solubilized), but the difference is no longer preserved after their denaturation into subunits.  相似文献   

8.
The tissue content of pyridoxal 5'-phosphate is controlled principally by the protein binding of this coenzyme and its hydrolysis by a cellular phosphatase. The present study identifies this enzyme and its intracellular location in rat liver. Pyridoxal-P is not hydrolyzed by the acid phosphatase of intact lysosomes. At pH 7.4 and 9.0, the subcellular distribution of pyridoxal-P phosphatase activity is similar to the for p-nitrophenyl-P, and the major portion of both activities is found in the plasma membrane fraction. The ratio of specific activities for pyridoxal-P and p-nitrophenyl-P hydrolysis remains relatively constant during the isolation of plasma membranes. These activities also behave concordantly with respect to pH rate profile, pH-Km profile, and response to chelating agents, Zn2+, Mg2+, and inhibitors. Kinetic studies indicate that pyridoxal-P binds to same enzyme sites as beta-glycerophosphate and phosphorylcholine. The data strongly favor alkaline phosphatase as the enzyme which functions in the control of pyridoxal-P and pyridoxamine-P metabolism in rat liver. Alkaline phosphatase was solubilized from isolated plasma membranes. The kinetic properties of the enzyme are not markedly altered by its dissociation from the membrane matrix. However, there are significant differences in its behavior toward Mg2+ which suggest a structural role for Mg2+ in liver alkaline phosphatase.  相似文献   

9.
When membrane-bound human liver alkaline phosphatase was treated with a phosphatidylinositol (PI) phospholipase C obtained from Bacillus cereus, or with the proteases ficin and bromelain, the enzyme released was dimeric. Butanol extraction of the plasma membranes at pH 7.6 yielded a water-soluble, aggregated form that PI phospholipase C could also convert to dimers. When the membrane-bound enzyme was solubilized with a non-ionic detergent (Nonidet P-40), it had the Mr of a tetramer; this, too, was convertible to dimers with PI phospholipase C or a protease. Butanol extraction of whole liver tissue at pH 6.6 and subsequent purification yielded a dimeric enzyme on electrophoresis under nondenaturing conditions, whereas butanol extraction at pH values of 7.6 or above and subsequent purification by immunoaffinity chromatography yielded an enzyme with a native Mr twice that of the dimeric form. This high molecular weight form showed a single Coomassie-stained band (Mr = 83,000) on electrophoresis under denaturing conditions in sodium dodecyl sulfate, as did its PI phospholipase C cleaved product; this Mr was the same as that obtained with the enzyme purified from whole liver using butanol extraction at pH 6.6. These results are highly suggestive of the presence of a butanol-activated endogenous enzyme activity (possibly a phospholipase) that is optimally active at an acidic pH. Inhibition of this activity by maintaining an alkaline pH during extraction and purification results in a tetrameric enzyme. Alkaline phosphatase, whether released by phosphatidylinositol (PI) phospholipase C or protease treatment of intact plasma membranes, or purified in a dimeric form, would not adsorb to a hydrophobic medium. PI phospholipase C treatment of alkaline phosphatase solubilized from plasma membranes by either detergent or butanol at pH 7.6 yielded a dimeric enzyme that did not absorb to the hydrophobic medium, whereas the untreated preparations did. This adsorbed activity was readily released by detergent. Likewise, alkaline phosphatase solubilized from plasma membranes by butanol extraction at pH 7.6 would incorporate into phosphatidylcholine liposomes, whereas the enzyme released from the membranes by PI phospholipase C would not incorporate. The dimeric enzyme purified from a butanol extract of whole liver tissue carried out at pH 6.6 did not incorporate. We conclude that PI phospholipase C converts a hydrophobic tetramer of alkaline phosphatase into hydrophilic dimers through removal of the 1,2-diacylglycerol moiety of phosphatidylinositol. Based on these and others' findings, we devised a model of alkaline phosphatase's conversion into its various forms.  相似文献   

10.
When a rat hepatoma cell (R-Y121B) homogenate was incubated at 37 degrees C, 30-70% of the total alkaline phosphatase was released into the supernatant fluid from the precipitate fractions. The release reached a plateau level after 10 h of incubation at 37 degrees C. The optimum pH value for the release was 7.4. Alkaline phosphatase activity increased during the incubation of the cell homogenates, but this increase was independent of the enzyme release. Serum increased not only alkaline phosphatase activity in the cultured cells but also enzyme release in their homogenates. In addition, we examined a rat liver homogenate and the following 11 cell lines: 3 hepatoma cell lines, including the R-Y121B cell line, 4 liver cell lines, 2 human urinary bladder carcinoma cell lines, a kidney cell line, and a mouse adrenal tumor cell line. Only in the cultured liver cell line and hepatoma cell lines, 30-60% of the total enzyme was released into the soluble fraction from the precipitate fractions; the release was not observed in the other cell lines, nor in the rat liver homogenate. The release of alkaline phosphatase took place in both heat-stable and heat-labile alkaline phosphatases. Alkaline phosphatase, extracted from cell homogenates, showed two bands during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The mobilities of the two bands changed inversely with or without sodium dodecyl sulfate. In general, the alkaline phosphatase which showed slow mobility with sodium dodecyl sulfate was more readily released from the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The release of plasma-membrane-bound enzymes by phosphatidylinositol-specific phospholipase C obtained from Bacillus thuringiensis was investigated. Among the ectoenzymes of plasma membrane tested, alkaline phosphodiesterase I was released markedly from rat kidney cortex slices, in addition to alkaline phosphatase and 5'-nucleotidase. Other membrane-bound enzymes; alanine aminopeptidase, leucine aminopeptidase, dipeptidyl peptidase, leucine aminopeptidase, dipeptidyl peptidase IV, esterase and gamma-glutamyl transpeptidase could not be liberated from the treated slices. Alkaline phosphodiesterase I was released linearly from rat kidney slices with the concentration of phosphatidylinositol-specific phospholipase C, but little enzyme was released from rat liver slices. Alkaline phosphodiesterase I separated from kidney tissue with n-butanol still retained phosphatidylinositol and was transformed into a lower molecular weight form by phosphatidylinositol-specific phospholipase C. This suggests an important function for phosphatidylinositol in the binding of alkaline phosphodiesterase I to the plasma membrane of rat kidney cells. The alkaline phosphodiesterase I released from rat kidney had a molecular weight of about 240,000 and an isoelectric point (pI) of 5.4. The enzyme hydrolyzed the phosphodiester linkage of p-nitrophenyl-thymidine 5'-monophosphate at pH 8.9 and had a Km value of 0.3 mM. The enzyme was activated by Mg2+ and Ca2+, but was inhibited by EDTA. Strong inhibition took place on the addition of adenosine 5'-phosphosulfate or the nucleotide pyrophosphates, i.e., UDP-galactose and alpha, beta-methylene ATP.  相似文献   

12.
1. Rat liver nuclei were isolated from normal rats and rats fasted for 36 hours by a slight modification of the Behrens technique. 2. The nucleus of the rat liver cell contains two types of alkaline phosphatase. This confirms the previous findings on rat liver nuclei isolated in aqueous media. 3. The one type of alkaline phosphatase is not activated by magnesium ions, and this enzyme is very strongly bound to structural material of the nucleus. The other type of alkaline phosphatase is activated by magnesium ions, and this enzyme is probably free to diffuse from cytoplasm to nucleus and vice versa through the nuclear membrane. 4. Fasting caused a pronounced decrease of protein in general and of the alkaline phosphatase which is activated by magnesium ions from the nucleus of the rat liver cell, while the alkaline phosphatase that is not activated by magnesium was less affected.  相似文献   

13.
We have determined alkaline phosphatase activity in total liver plasma membrane fractions from rats subjected to a partial hepatectomy and sham operated with or without manipulation of the liver. In all these cases, an increase of the enzyme activity was observed. Kinetic studies of alkaline phosphatase activity performed on plasma membrane fractions from rats subjected to a partial hepatectomy suggest that alkaline phosphatase increase is produced by de novo biosynthesis of enzyme molecules. Determination of alkaline phosphatase activity in purified plasma membrane subfractions corresponding to each of the three functional regions of the hepatocyte surface (blood sinusoidal, lateral and bile canalicular), indicates that the increase of the enzyme activity observed after partial hepatectomy is selectively induced in the bile canalicular domain of the hepatocyte plasma membrane.  相似文献   

14.
Plasma membranes were islotaed from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5′-nucleotidase and (Na++K+)-ATPase were used. The yield of plasma membrane was 0.6–0.9 mg protein per g wet weight of liver. The recovery of 5′-nucleotidase and (Na++K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the acitvity of glucose-6 phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5′-nucleotidase, alkaline phosphatase, (Na++K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na++K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphatase was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

15.
A major glycoprotein of rat hepatoma plasma membranes was selectively released as a soluble form by incubating the membrane with phosphatidylinositol-specific phospholipase C. The soluble form corresponding to the glycoprotein was also prepared by butan-1-ol extraction of microsomal membranes at pH 5.5, whereas extraction at pH 8.5 yielded an electrophoretically different form with a hydrophobic nature. The soluble glycoprotein extracted at pH 5.5 was purified by sequential chromatography on concanavalin A-Sepharose, Sephacryl S-300 and anti-(alkaline phosphatase) IgG-Sepharose, the last step being used to remove a contaminating alkaline phosphatase. The glycoprotein thus purified was a single protein with Mr 130,000 in SDS/polyacrylamide-gel electrophoresis, although it behaved as a dimer in gel filtration on Sephacryl S-300. The glycoprotein was analysed for amino acid and carbohydrate composition. The composition of the carbohydrate moiety, which amounted to 64% by weight, suggested that the glycoprotein contained much larger numbers of N-linked oligosaccharide chains than those with O-linkage. It was confirmed that the purified glycoprotein was immunologically identical not only with that released by the phospholipase C but also with the hydrophobic form extracted with butan-1-ol at pH 8.5. The results indicate that the glycoprotein of rat hepatoma plasma membranes, which has an unusually high content of carbohydrate, is another membrane protein released by phosphatidylinositol-specific phospholipase C, as documented for alkaline phosphatase, acetylcholinesterase and Thy-1 antigen.  相似文献   

16.
Inorganic pyrophosphate is a potent inhibitor of bone mineralization by preventing the seeding of calcium-phosphate complexes. Plasma cell membrane glycoprotein-1 and tissue nonspecific alkaline phosphatase were reported to be antagonistic regulators of mineralization toward inorganic pyrophosphate formation (by plasma cell membrane glycoprotein-1) and degradation (by tissue nonspecific alkaline phosphatase) under physiological conditions. In addition, they possess broad overlapping enzymatic functions. Therefore, we examined the roles of tissue nonspecific alkaline phosphatase within matrix vesicles isolated from femurs of 17-day-old chick embryos, under conditions where these both antagonistic and overlapping functions could be evidenced. Addition of 25 microM ATP significantly increased duration of mineralization process mediated by matrix vesicles, while supplementation of mineralization medium with levamisole, an alkaline phosphatase inhibitor, reduces the ATP-induced retardation of mineral formation. Phosphodiesterase activity of tissue nonspecific alkaline phosphatase for bis-p-nitrophenyl phosphate was confirmed, the rate of this phosphodiesterase activity is in the same range as that of phosphomonoesterase activity for p-nitrophenyl phosphate under physiological pH. In addition, tissue nonspecific alkaline phosphatase at pH 7.4 can hydrolyze ADPR. On the basis of these observations, it can be concluded that tissue nonspecific alkaline phosphatase, acting as a phosphomonoesterase, could hydrolyze free phosphate esters such as pyrophosphate and ATP, while as phosphodiesterase could contribute, together with plasma cell membrane glycoprotein-1, in the production of pyrophosphate from ATP.  相似文献   

17.
A phosphatidylinositol phosphodiesterase from the culture broth of Bacillus cereus, was purified to a homogeneous state as indicated by polyacrylamide gel electrophoresis, by ammonium sulfate precipitation and chromatography with DEAE-cellulose and CM-Sephadex. The enzyme (molecular weight: 29000 +/- 1000) was maximally active at pH 7.2-7.5, AND NOT INFLUENCED BY EDTA, ophenanthroline, monoiodoacetate, p-chloromercuribenzoate or reduced glutathione. The enzyme specifically hydrolyzed phosphatidylinositol, but did not act on phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, under the conditions examined. The products from phosphatidylinositol of enzyme reaction were diacylglycerols and a mixture of myoinositol 1- and 1, 2-cyclic phosphates, suggesting that the enzyme was a phosphatidylinositol-specific phospholipase C. The enzyme released alkaline phosphatase quantitatively from rat kidney slices. A kinetic analysis was made on the release of alkaline phosphatase. The results suggest that phosphatidylinositol-specific phospholipase C can specifically act on plasma membrane of rat kidney slices.  相似文献   

18.
Plasma membranes were isolated from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5'-nucleotidase and (Na+ + K+)-ATPase were used. The yield of plasma membrane was 0.6-0.9 mg protein per g wet weight of liver. The recovery of 5'-nucleotidase and (Na+ +K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the activity of glucose-6-phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5'-nucleotidase, alkaline phosphatase, (Na+ +K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na2+ +K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphate was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

19.
G A Goodlad  C M Clark 《Enzyme》1982,27(2):119-123
The effect of the growth of the Walker 256 carcinoma on the level of 5'-nucleotidase and alkaline phosphatase in the whole liver and in an isolated hepatocyte membrane preparation of its host was investigated. Alkaline phosphatase activities of whole liver and plasma membrane were increased approximately 5-fold by tumor growth. A 50% decrease in whole liver 5'-nucleotidase activity was observed in tumor-bearing rats while the 5'-nucleotidase activity per milligram membrane protein was unaltered. Tumor growth would therefore appear to affect a pool of 5'-nucleotidase which is not associated with the plasma membrane.  相似文献   

20.
Fractionation of rat liver by homogenization and differential centrifugation revealed that only about 83% of the transglutaminase activity in the tissue is in a soluble form, and that the remainder is associated with the particulate fraction. This latter activity remained with the membranes even after they were extensively washed to remove 99% of such soluble enzymes as lactate dehydrogenase and aldolase. Subsequent fractionation of the membranes by isopycnic density gradient centrifugation in sucrose resulted in a single band of transglutaminase activity at a density of 1.194 g/cm3. This activity was coincident with the major band of plasma membranes, which was identified by its content of 5'-nucleotidase, alkaline phosphodiesterase I, alkaline phosphatase and leucine aminopeptidase activities. After treatment with digitonin and fractionation on sucrose gradients, the transglutaminase activity and the plasma membrane marker enzyme activities were found at a new density of 1.210 g/cm3, while the enzyme markers for the other membrane fractions remained unchanged. From these data, we conclude that approximately 17% of the transglutaminase activity in rat liver is specifically associated with the plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号