首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA lesions induced by active oxygen species generated from N-hydroxy-2-naphthylamine were quantitated by the alkaline elution technique as single-strand breaks using cultured human-skin fibroblasts. When cells were treated at 20 degrees C for 2 h with 0-25 microM carcinogen, the lesions increased biphasically with the concentration; the increase was slight below 10 microM while it was much larger and dose-dependent above this concentration. The dose response was similar for normal and xeroderma pigmentosum fibroblasts of complementation group A. There was no difference in the repair rate of single-strand breaks formed in these fibroblasts. The rates of repair of single strand breaks induced by N-hydroxy-2-naphthylamine and hydrogen peroxide were similar but slower than that of the repair of gamma-ray-induced single-strand breaks.  相似文献   

2.
We have examined the possibility that paraquat (PQ) may exert its toxicity by inducing DNA damage. Mouse lymphoblasts in culture exhibited inhibition of colony forming ability and DNA single strand breaks following a 2 hour exposure to PQ. These phenomenon are dose dependent and increase when a rat liver S9 fraction is included in the incubation mixture. The presence of superoxide dismutase and catalase did not prevent the effects of PQ. Our data indicate that DNA should be considered as a possibile macromolecular target for the lethal effects of paraquat.  相似文献   

3.
4.
Ionizing radiation damage to a mammalian genome is modeled using continuous time Markov chains. Models are given for the initial infliction of DNA double strand breaks by radiation and for the enzymatic processing of this initial damage. Damage processing pathways include DNA double strand break repair and chromosome exchanges. Linear, saturable, or inducible repair is considered, competing kinetically with pairwise interactions of the DNA double strand breaks. As endpoints, both chromosome aberrations and the inability of cells to form clones are analyzed. For the post-irradiation behavior, using the discrete time Markov chain embedded at transitions gives the ultimate distribution of damage more simply than does integrating the Kolmogorov forward equations. In a representative special case explicit expressions for the probability distribution of damage at large times are given in the form used for numerical computations and comparisons with experiments on human lymphocytes. A principle of branching ratios, that late assays can only measure appropriate ratios of repair and interaction functions, not the functions themselves, is derived and discussed.This work was supported in # DMS-9025103  相似文献   

5.
DNA damage activates checkpoint controls in eukaryotic cells. It is not clear, however, whether a certain level of DNA damage is required for the activation of DNA damage checkpoints. We show here that low levels of DNA damage in Chinese hamster ovary (CHO) cells induced by short exposure to hydroxyurea (HU) did not trigger checkpoints, whereas higher levels of DNA damage caused by longer exposure to HU resulted in a cell cycle arrest. Our results argue that a threshold of DNA damage is necessary for activation of DNA damage checkpoints.  相似文献   

6.
7.
In order to recover without any apparent damage, tardigrades have evolved effective adaptations to preserve the integrity of cells and tissues in the anhydrobiotic state. Despite those adaptations and the fact that the process of biological ageing comes to a stop during anhydrobiosis, the time animals can persist in this state is limited; after exceedingly long anhydrobiotic periods tardigrades fail to recover. Using the single cell gel electrophoresis (comet assay) technique to study the effect of anhydrobiosis on the integrity of deoxyribonucleic acid, we showed that the DNA in storage cells of the tardigrade Milnesium tardigradum was well protected during transition from the active into the anhydrobiotic state. Specimens of M. tardigradum that had been desiccated for two days had only accumulated minor DNA damage (2.09 ± 1.98% DNA in tail, compared to 0.44 ± 0.74% DNA in tail for the negative control with active, hydrated animals). Yet the longer the anhydrobiotic phase lasted, the more damage was inflicted on the DNA. After six weeks in anhydrobiosis, 13.63 ± 6.41% of DNA was found in the comet tail. After ten months, 23.66 ± 7.56% of DNA was detected in the comet tail. The cause for this deterioration is unknown, but oxidative processes mediated by reactive oxygen species are a possible explanation.  相似文献   

8.
Arsenic induces oxidative DNA damage in mammalian cells   总被引:3,自引:0,他引:3  
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (A(L)) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2-3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2'-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in A(L) cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells.  相似文献   

9.
Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.  相似文献   

10.
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (AL) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2–3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in AL cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells.  相似文献   

11.
Ionizing radiation induces variety of structural lesions in DNA of irradiated organisms. Their formation depends largely on the degree of cell oxygenation, the level of endogenous antioxidants, on DNA-protein complexes and compactization of DNA in the chromatin and activity of DNA repair systems. All ionizing radiation-induced DNA lesions can arbitrarily be divided into two groups. Group 1 includes singly damaged sites (single-sites): base modification, single-strand breaks, alkaline-labile sites (including a basic sites). Group 2 contains: locally multiply damaged sites (clustered lesions), double-strand breaks, intermolecular cross-links. The yields of lesions of group 2 increases with high linear energy transfer of radiation and these lesions play a dominant role in the radiation death, formation of chromosome and gene mutations, cell transformation.  相似文献   

12.
In vivo DNA damage in gastric epithelial cells   总被引:6,自引:0,他引:6  
A number of risk factors have been linked epidemiologically with gastric cancer, but studies of DNA damage in gastric epithelial cells are limited. The comet assay is a simple technique for determining levels of DNA damage in individual cells. In this study, we have validated the comet assay for use in epithelial cells derived directly from human gastric biopsies, determined optimal conditions for biopsy digestion and investigated the effects of oxidative stress and digestion time on DNA damage. Biopsies taken at endoscopy were digested using combinations of pronase and collagenase, ethylenediaminetetra-acetic acid (EDTA) and vigorous shaking. The resultant cell suspension was assessed for cell concentration and epithelial cell and leukocyte content. A score for DNA damage, the comet %, was derived from the cell suspension, and the effect of various digestion conditions was studied. Cells were incubated with H(2)O(2) and DNA damage was assessed. Pronase and collagenase provided optimum digestion conditions, releasing 1. 12x10(5) cells per biopsy, predominantly epithelial. Of the 23 suspensions examined, all but three had leukocyte concentrations of less than 20%. The comet assay had high inter-observer (6.1%) and inter-assay (4.5%) reproducibility. Overnight storage of the biopsy at 4 degrees C had no significant effect on DNA migration. Comet % increased from a median of 46% in untreated cells to 88% in cells incubated for 45 min in H(2)O(2) (p=0.005). Serial 25-min digestions were performed on biopsies from 13 patients to release cells from successively deeper levels in the crypt. Levels of DNA migration were significantly lower with each digestion (r=-0.94, p<0.001), suggesting that DNA damage is lower in younger cells released from low in the gastric crypt. The comet assay is a reproducible measure of DNA damage in gastric epithelial cells. Damage accumulates in older, more superficial cells, and can be induced by oxidative stress.  相似文献   

13.
We report detection and quantification of ultraviolet (UV) damage in DNA at a single molecule level by atomic force microscopy (AFM). By combining the supercoiled plasmid relaxation assay with AFM imaging, we find that high doses of medium wave ultraviolet (UVB) and short wave ultraviolet (UVC) light not only produce cyclobutane pyrimidine dimers (CPDs) as reported but also cause significant DNA degradation. Specifically, 12.5 kJ/m(2) of UVC and 165 kJ/m(2) of UVB directly relax 95% and 78% of pUC18 supercoiled plasmids, respectively. We also use a novel combination of the supercoiled plasmid assay with T4 Endonuclease V treatment of irradiated plasmids and AFM imaging of their relaxation to detect damage caused by low UVB doses, which on average produced approximately 0.5 CPD per single plasmid. We find that at very low UVB doses, the relationship between the number of CPDs and UVB dose is almost linear, with 4.4 CPDs produced per Mbp per J/m(2) of UVB radiation. We verified these AFM results by agarose gel electrophoresis separation of UV-irradiated and T4 Endonuclease V treated plasmids. Our AFM and gel electrophoresis results are consistent with the previous result obtained using other traditional DNA damage detection methods. We also show that damage detection assay sensitivity increases with plasmid size. In addition, we used photolyase to mark the sites of UV lesions in supercoiled plasmids for detection and quantification by AFM, and these results were found to be consistent with the results obtained by the plasmid relaxation assay. Our results suggest that AFM can supplement traditional methods for high resolution measurements of UV damage to DNA.  相似文献   

14.
Three PCR-based methods are described that allow covalent drug-DNA adducts, and their repair, to be studied at various levels of resolution from gene regions to the individual nucleotide level in single copy genes. A quantitative PCR (QPCR) method measures the total damage on both DNA strands in a gene region, usually between 300 and 3000 base pairs in length. Strand-specific QPCR incorporates adaptations that allow damage to be measured in the same region as QPCR but in a strand-specific manner. Single-strand ligation PCR allows the detection of adduct formation at the level of single nucleotides, on individual strands, in a single copy gene in mammalian cells. If antibodies to the DNA adducts of interest are available, these can be used to capture and isolate adducted DNA for use in single-strand ligation PCR increasing the sensitivity of the assay.  相似文献   

15.
It is well accepted that oxidative DNA repair capacity, oxidative damage to DNA and oxidative stress play central roles in aging and disease development. However, the correlation between oxidative damage to DNA, markers of oxidant stress and DNA repair capacity is unclear. In addition, there is no universally accepted panel of markers to assess oxidative stress in humans. Our interest is oxidative damage to DNA and its correlation with DNA repair capacity and other markers of oxidative stress. We present preliminary data from a small comet study that attempts to correlate single strand break (SSB) level with single strand break repair capacity (SSB-RC) and markers of oxidant stress and inflammation. In this limited study of four very small age-matched 24-individual groups of male and female whites and African-Americans aged 30-64 years, we found that females have higher single strand break (SSB) levels than males (p=0.013). There was a significant negative correlation between SSB-RC and SSB level (p=0.041). There was a positive correlation between SSBs in African American males with both heme degradation products (p=0.008) and high-sensitivity C-reactive protein (hs-CRP) (p=0.022). We found a significant interaction between hs-CRP and sex in their effect on residual DNA damage (p=0.002). Red blood cell reduced glutathione concentration was positively correlated with the levels of oxidized bases detected by endonuclease III (p=0.047), heme degradation products (p=0.015) and hs-CRP (p=0.020). However, plasma carbonyl levels showed no significant correlation with other markers. The data from the literature and from our very limited study suggest a complex relationship between measures of oxidative stress and frequently used clinical parameters believed to reflect inflammation or oxidative stress.  相似文献   

16.
This personal account traces a series of studies that led from DNA physical chemistry to anticancer drug mechanisms. Chemical crosslinking as a basis for anticancer drug actions had been suspected since the time of the first clinical reports of the effectiveness of nitrogen mustard in 1946. After the elucidation of the DNA helix-coil transition, several nearly concurrent findings in the early 1960s established the paradigm of DNA interstrand crosslinking. The DNA filter elution phenomenon was discovered in the early 1970s, and lent itself to the development of practical assays for DNA crosslinks and other DNA lesions in mammalian cells. The assays allowed studies of the effects of DNA damaging agents at pharmacologically or toxicologically relevant doses, and have been widely applied in studies of mutagenic and chemotherapeutic agents. During the period 1979–1986, DNA filter elution studies led to the paradigm of DNA topoisomerases as targets of anticancer drug action, and this has become one of the most active areas of anticancer drug development.  相似文献   

17.
DNA damage and DNA repair in cultured human cells exposed to chromate   总被引:1,自引:0,他引:1  
DNA damage and DNA repair have been observed in cultured human skin fibroblasts exposed to potassium chromate but not to a chromic glycine complex. DNA repair synthesis (unscheduled incorporation of [3H]thymidine (TdR)) was measured in cells during or following exposure to chromate and was significant for chromate concentrations above 10(-6) M. Maximal DNA repair was observed at about 10(-4) M chromate. DNA repair capacity was found to be saturated at this concentration. Chromate was stable for at least 8 h in culture medium and produced approximately a linear increase in repair with duration of exposure. DNA damage as determined by alkaline sucrose gradient sedimentation was detected after treatment for 1.5 h with 5 . 10(-4) M chromate. Exposure to 10(-7) M chromate solution for 7 days inhibited colony formation while acute (1 h) treatment was toxic at 5 . 10(-6) M. The chromic glycine complex was toxic above 10(-3) M for a 1-week exposure but was not observably toxic after a 1-h treatment. These results indicate that chromate and not chromic compounds may be the carcinogenic form for man. The nature of the ultimate carcinogen is discussed. These findings illustrate the utility of the DNA repair technique to study the effects on human cells of inorganic carcinogens and mutagens.  相似文献   

18.
Hydrogen peroxide-induced DNA damage in bovine lens epithelial cells   总被引:3,自引:0,他引:3  
The present investigation was undertaken to determine the types and extent of DNA damage resulting from incubation of primary cultures of bovine lens epithelial cells with hydrogen peroxide. Significant numbers of DNA single-strand breaks were detected by alkaline elution after exposure to as little as 25 microM H2O2 for 5 min at 37 degrees C. The extent of single-strand breakage was concentration dependent and linear from 25 to 200 microM H2O2. The observed single-strand breaks appear primarily due to the action of the hydroxyl radical via a Fenton reaction as both an iron chelator, 1,10-phenanthroline and OH. scavengers, including DMSO, KI and glycerol, significantly inhibited the DNA-damaging effect of H2O2. Diethyldithiocarbamate, an inhibitor of superoxide dismutase, further potentiated the DNA-damaging effects of H2O2, presumably by increasing the steady-state concentration of Fe2+. DNA-protein cross-linking was not observed. In addition, significant levels of 5,6-saturated thymine residues or pyrimidine dimers were not detected after modification of the alkaline elution methodology to allow the use of either E. coli endonuclease III or bacteriophage T4 endonuclease V, respectively. No double-strand breaks were detected after incubation of epithelial cell cultures with H2O2 concentrations of up to 400 microM for 10 min and subsequent neutral filter elution. Since, in vivo, the lens epithelium contains populations of both quiescent and dividing cells, the degree of susceptibility to oxidative damage was also studied in actively growing and plateau-phase cultures. Reduced levels of single-strand breakage were observed when plateau-phase cultures were compared to actively growing cells. In contrast, essentially no differences in repair rates were noted at equitoxic doses of H2O2. The above results suggest that lens epithelial cells may be particularly sensitive to oxidative damage and thus are a good model system in which to study the effects of oxidative stress.  相似文献   

19.
Induction of DNA lesions in the nucleus of Chinese hamster ovary (CHO) cells was observed at hyperthermic temperatures using the alkaline filter elution and the alkaline sucrose gradient sedimentation methods. These lesions were observed principally at temperatures greater than 45 degrees C with an activation energy of 140 kcal/mole. On alkaline sucrose gradients the cell genome was reduced to a 140 S or 2 X 10(8) dalton subunit of DNA independent of increasing exposure time at temperatures above 45 degrees C. The large thermal activation energy and the limited DNA size reduction suggest the possible involvement of thermal denaturation of a nuclear polypeptide in the production of these nuclear lesions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号