首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A technique for the detection of DNA damage induced by radiation insult has been developed. Cells were lysed with a buffer containing 2 M sodium chloride to release the DNA in a supercoiled form, the nucleoid. These were stained with the DNA intercalating dye, ethidium bromide, and exposed to laser light within a flow cytometer. Scattered and fluorescent light was analyzed from the laser/nucleoid interaction following irradiation of viable cells with gamma rays. The addition of ethidium bromide to prepared nucleoids caused a reduction in scattered light due to condensation of the nucleoid. Irradiation of cells prior to nucleoid production and ethidium bromide treatment restricted this condensation and produced a dose-dependent increase in laser scatter. Nucleoids derived from human lymphocytes showed enhanced light scatter from 5 Gy, compared to Chinese hamster ovary (CHO) fibroblasts where doses above 10 Gy were required. Up to 30 Gy CHO nucleoids showed a dose-dependent reduction in the ethidium bromide fluorescence. This technique allows detection of altered light scattering and fluorescent behavior of nucleoids after cellular irradiation; these may be related to structural changes within the nucleus induced by the radiation. The use of flow cytometry compared to other methods allows a rapid analysis of nuclear damage within individual cells.  相似文献   

2.
Structures retaining many of the morphological features of nuclei may be released by lysing HeLa cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids contain few chromatin proteins. We have shown that the DNA of nucleoids is quasicircular and supercoiled by measure spectrofluorometrically the amount of the intercalating dye, ethidium, bound to unirradiated and gamma-irradiated nucleoids. Ethidium binds to nucleoids in the manner characteristic of the binding to superhelical DNA: at low concentrations more ethidium binds to unirradiated nucleoids than to their gamma-irradiated counterparts with broken DNA, and at higher concentrations less ethidium binds to the unirradiated nucleoids. The quasi-circles in nucleoids are 22 times less sensitive to gamma-irradiation than are circles of pure PM2 DNA: they must contain about 2.2 X 10(5) base pairs. The constraints that maintain the quasi-circularity of nucleoid DNA are very resistant to extremes of temperature and alkali; some remain under conditions in which the duplex is denatured. The constraints are destabilised by ethidium suggesting that they are stabilised by free energy of supercoiling. Proteolytic enzymes, but not ribonucleases, remove the constraints. Possible structures for the constraining mechanism are discussed.  相似文献   

3.
Methods for visualizing DNA damage at the microscopic level are based on treatment of cell nuclei with saline or alkaline solutions. These procedures for achieving chromatin dispersion produce halos that surround the nuclear remnants. We improved the fast halo assay for visualizing DNA breakage in cultured cells to create a simplified method for detection and quantitative evaluation of DNA breakage. Nucleated erythrocytes from chicken blood were selected as a model test system to analyze the production of nuclear halos after treatment with X-rays or H(2)O(2). After staining with ethidium bromide or Wright's methylene blue-eosin solution, nuclear halos were easily observed by fluorescence or bright-field microscopy, respectively, which permits rapid visualization of DNA breakage in damaged cells. By using image processing and analysis with the public domain ImageJ software, X-ray dose and H(2)O(2) concentration could be correlated well with the size of nuclear halos and the halo:nucleus ratio. Our results indicate that this simplified nuclear halo assay can be used as a rapid, reliable and inexpensive procedure to detect and quantify DNA breakage induced by ionizing radiation and chemical agents. A mechanistic model to explain the differences between the formation of saline or alkaline halos also is suggested.  相似文献   

4.
Cellular location of Mu DNA replicas.   总被引:4,自引:2,他引:2       下载免费PDF全文
To ascertain the form and cellular location of the copies of bacteriophage Mu DNA synthesized during lytic development, DNA from an Escherichia coli lysogen was isolated at intervals after induction of the Mu prophage. Host chromosomes were isolated as intact, folded nucleoids, which could be digested with ribonuclease or heated in the presence of sodium dodecyl sulfate to yield intact, unfolded nucleoid DNA. Almost all of the Mu DNA in induced cells was associated with the nucleoids until shortly before cell lysis, even after unfolding of the nucleoid structure. We suggest that the replicas of Mu DNA are integrated into the host chromosomes, possibly by concerted replication-integration events, and are accumulated there until packaged shortly before cell lysis. Nucleoids also were isolated from induced lambda lysogens and from cells containing plasmid DNA. Most of the plasmid DNA sedimented independently of the unfolded nucleoid DNA, whereas 50% or more of the lambda DNA from induced lysogens cosedimented with unfolded nucleoid DNA. Possible explanations for the association of extrachromosomal DNA with nucleoid DNA are discussed.  相似文献   

5.
Summary The location of DNA containing nucleoids has been studied in greening bean (Phaseolus vulgaris L.) etioplasts using electron microscopy of thin sections and the staining of whole leaf cells with the fluorochrome DAPI. At 0 hours illumination a diffuse sphere of cpDNA surrounds most of the prolamellar body. It appears to be made up of a number of smaller nucleoids and can be asymmetric in location. The DNA appears to be attached to the outside of the prolamellar body and to prothylakoids on its periphery. With illumination the nucleoid takes on a clear ring-like shape around the prolamellar body. The maximum development of the ring-like nucleoid at 5 hours illumination is associated with the outward expansion of the prolamellar body and the outward growth of the prothylakoids. At 5 hours the electron transparent areas lie in between the prothylakoids radiating out from the prolamellar body. Between 5 hours and 15 hours observations are consistent with the growing thylakoids separating the nucleoids as the prolamellar body disappears and the chloroplast becomes more elongate. At 15 hours the fully differentiated chloroplast has discrete nucleoids distributed throughout the chloroplast with evidence of thylakoid attachment. This is the SN (scattered nucleoid) distribution ofKuroiwa et al. (1981) and is also evident in 24 hours and 48 hours chloroplasts which have more thylakoids per granum. The changes in nucleoid location occur without significant changes in DNA levels per plastid, and there is no evidence of DNA or plastid replication.The observations indicate that cpDNA partitioning in dividing SN-type chloroplasts could be achieved by thylakoid growth and effectively accomplish DNA segregation, contrasting with envelope growth segregating nucleoids in PS-type (peripheral scattered nucleoids) chloroplasts. The influence of plastid development on nucleoid location is discussed.  相似文献   

6.
Abstract

Methods for visualizing DNA damage at the microscopic level are based on treatment of cell nuclei with saline or alkaline solutions. These procedures for achieving chromatin dispersion produce halos that surround the nuclear remnants. We improved the fast halo assay for visualizing DNA breakage in cultured cells to create a simplified method for detection and quantitative evaluation of DNA breakage. Nucleated erythrocytes from chicken blood were selected as a model test system to analyze the production of nuclear halos after treatment with X-rays or H2O2. After staining with ethidium bromide or Wright's methylene blue-eosin solution, nuclear halos were easily observed by fluorescence or bright-field microscopy, respectively, which permits rapid visualization of DNA breakage in damaged cells. By using image processing and analysis with the public domain ImageJ software, X-ray dose and H2O2 concentration could be correlated well with the size of nuclear halos and the halo:nucleus ratio. Our results indicate that this simplified nuclear halo assay can be used as a rapid, reliable and inexpensive procedure to detect and quantify DNA breakage induced by ionizing radiation and chemical agents. A mechanistic model to explain the differences between the formation of saline or alkaline halos also is suggested.  相似文献   

7.
Summary We examined, by the fluorescent halo assay, alterations in the nucleoid structure (structure formed from cells under mild lysis conditions: in non-ionic detergent TritonX-100, 0.0005% and 1.5 mol/1 NaCl) of L5178Y (LY) cell sublines which had been untreated, treated with reducing/chelating agents (ß-mercaptoethanol or sodium diethyl dithiocarbamate (DDTC(Na))) or X-irradiated. These sublines differ in radiation sensitivity: LY-R is more resistant (D 0 = 1.1 Gy) and LY-S more sensitive (D 0 = 0.5 Gy). Halo diameters were measured after cell lysis in the presence of propidium iodide (PI)(0.5 to 50 µg/ml) at pH 6.9 or 9. The maximal DNA unwinding in PI was obtained at 7.5 µg/ml PI, at both pH 6.9 and 9 in both sublines; the maximal halo diameter was larger in LY-S than in LY-R cells. In nucleoids from both sublines DNA could be rewound at higher (10–50 µ/ml) PI concentrations both at pH 6.9 and 9. This ability was impaired by mercaptoethanol or DDTC(Na) (at pH 9) or by X-irradiation, indicating damage and/or alteration in the DNA superhelical structure. The susceptibility to reducing/chelating agents was greater in LY-S than in LY-R nucleoids, pointing to differences in chromatin structure between these sublines. The amount of X-ray-inflicted damage was higher, when measured at pH 9 than at pH 6.9 and was about twice larger in LY-S than in LY-R nucleoids, when the cells were irradiated with the same X-ray dose.From analogies between the behaviour of nucleoids under the above-described conditions and nucleoid type I and II sedimentation, as examined by Lebkowski and Laemmli (1982) we conclude that damage at two levels of DNA folding is measured at pH 6.9 and 9.  相似文献   

8.
The Escherichia coli nucleoid is maintained in its folded highly condensed state by constraints which involve RNA and protein. We have developed a rapid sedimentation assay to determine the state of folding of the membrane-free nucleoid. An approximate measure of the stability of the nucleoids under various conditions can then be estimated by measuring the temperature at which the nucleoids unfold. Using ethidium and gamma irradiation (which removes the negative supercoiling of the native nucleoid) as probes, it can be shown that there are two types of constraint involved in the condensation of the nucleoid. One of these constraints is destabilized by ethidium but stabilized by negative supercoiling; the second constraint is unaffected by both ethidium and negative supercoiling. Several models can be proposed: (i) a DNA . RNA duplex, (ii) a double-strand DNA (dsDNA) . RNA triplex, (iii) DNA-protein interactions, (iv) a topological knot with RNA, and (v) a DNA tetraplex. The topological knot model is not consistent with the data and many combinations of the others can be excluded. If RNA is involved in both constraints then RNA . DNA duplexes and dsDNA . RNA triplexes are involved in stabilizing the nucleoid.  相似文献   

9.
Nucleoids were isolated by osmotic shock from Escherichia coli spheroplasts at relatively low salt concentrations and in the absence of detergents. Sucrose-protected cells, made osmotically sensitive by growth in the presence of ampicillin or by digestion with low lysozyme concentrations (50-5 μg/ml), were shocked by 100-fold dilution of the sucrose buffer. Liberated nucleoids stained with 4',6-diamidino-2-phenylindole dihydrochloride hydrate (DAPI), the dimeric cyanine dye TOTO-1, or fluorescent DNA-binding protein appeared as cloud-like structures, in the absence of phase contrast. Because UV-irradiation disrupted the DAPI-stained nucleoids within 5-10 s, they were imaged by time-lapse microscopy with exposure times less than 2 s. The volume of nucleoids isolated from ampicillin- or low-lysozyme spheroplasts and minimally exposed to UV (<2 s) was on average ~42 μm(3). Lysozyme at concentrations above 1 μg/ml in the lysate compacted the nucleoids. Treatment with protease E or K (20-200 μg/ml) and sodium dodecyl sulfate (SDS; 0.001-0.01%) caused a twofold volume increase and showed a granular nucleoid at the earliest UV-exposure; the expansion could be reversed with 50 μM ethidium bromide, but not with chloroquine. While DNase (1 μg/ml) caused a rapid disruption of the nucleoids, RNase (0.1-400 μg/ml) had no effect. DAPI-stained nucleoids treated with protease, SDS or DNase consisted of granular substructures at the earliest exposure similar to UV-disrupted nucleoids obtained after prolonged (>4 s) UV irradiation. We interpret the measured volume in terms of a physical model of the nucleoid viewed as a branched DNA supercoil crosslinked by adhering proteins into a homogeneous network.  相似文献   

10.
The genomic DNA of Escherichia coli is contained in one or two compact bodies known as nucleoids. Isolation of typically shaped nucleoids requires control of DNA expansion, accomplished here by a modification of the polylysine-spermidine procedure. The ability to control expansion of in vitro nucleoids has application in nucleoid purification and in preparation of samples for high-resolution imaging, and may allow an increased resolution in gene localization studies. Polylysine of relatively low average molecular weight (approximately 3 kDa) is used to produce lysates containing nucleoids that are several-fold expanded relative to the sizes of in vivo nucleoids. These expanded forms can be converted to compact forms similar in dimensions to the cellular nucleoids by either a further addition of polylysine or by incubation of diluted lysates at 37 degrees C. The incubation at 37 degrees C is accompanied by autolytic degradation of most ribosomal RNA. Hyperchromism and circular dichroism spectra indicate that polylysine-DNA complexes are modified during the incubation. Compact forms of the nucleoid can be progressively reexpanded by exposure to salt solutions. Nucleoid compaction was similar in lysates made from rapidly or slowly growing cells or from cells that had been briefly treated with chloramphenicol to reduce linkages between DNA and cell envelope.  相似文献   

11.
In the preceding paper we described the properties of nucleoids analyzed with the fluorescent halo assay at pH 6.9 and 9, as well as in the presence of reducing and chelating agents and after X-irradiation. We found analogies between the properties of type I and II nucleoids, as examined by Lebkowski and Laemmli (1982), and nucleoids analyzed with the fluorescent halo assay. We concluded that radiation-inflicted damage at two levels of DNA folding is measured at pH 6.9 and 9. In this paper we examined repair of damage to the nucleoid structure as assayed by the fluorescent halo method in X-irradiated L5178Y (LY) sublines; R (radiation resistant,D 0=1.4 Gy) and S (radiation sensitive,D 0=0.5 Gy). Halo diameters were measured after cell lysis in the presence of propidium iodide (PI; 0.5 to 50 µg/ml) at pH 6.9 and 9. The ability of DNA to be rewound at 10–50 µg/ml of PI was impaired by X-irradiation and partly restored during 90-min post-irradiation incubation, indicating damage to the superhelical structure and its partial restoration. The exponential time constants for repair were 10.1 min (LY-S, 6 Gy), 11.2 min (LY-R, 12 Gy), and 20.3 min (LY-s, 12 Gy) when measured at pH 9. In X-irradiated (12 Gy) LY-S cells, slower restoration of DNA supercoiling was observed at pH 9 than at pH 6.9. The presence of labile lesions at pH 9 did not prevent restoration of the higher-order DNA structure, as estimated from DNA rewinding at pH 6.9 in LY-S cells.Work performed at SUNY-Health Science Center at Brooklyn  相似文献   

12.
Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome.  相似文献   

13.
DNA topology in histone- and protamine-depleted nuclei (nucleoids) from somatic cells, sperm, and spermatogenic cells was studied to determine if the superhelical configuration of DNA looped domains is altered during spermatogenesis. The expansion and contraction of nucleoid DNA was measured with a fluorescence microscope following exposure of nucleoids to different concentrations of ethidium bromide (EB). Nucleoids from Xenopus laevis erythrocytes, primary spermatocytes, and round spermatids, and from Rana catesbeiana sperm all exhibited a biphasic change (condensed-relaxed-condensed) in size as a function of exposure to increasing concentrations (0.5–100 g/ml) of EB, indicating that they contain negatively supercoiled DNA. In contrast, DNA in sperm nucleoids from Xenopus laevis and Bufo fowleri was relaxed and expanded at low (0.5–6 g/ml) EB concentrations, but became gradually condensed as the EB concentration was increased (6–100 g/ml). Nucleoids prepared from all cell types retained the general shape of the nucleus regardless of the superhelical configuration of the nucleoid DNA. Sperm nucleoid DNA condensed by 100 g/ml EB was relaxed by exposure to UV light, DNase I, proteinase K, or 4 M urea, but not by RNase A or 10 mM dithiothreitol. These results demonstrate that the DNA in sperm nucleoids is constrained in domains of supercoiling by nonbasic nuclear proteins. Negatively supercoiled DNA is present in nucleoids from cells with a full complement of histones, including Rana sperm, but not in nucleoids from Xenopus and Bufo sperm in which histones are replaced by intermediate-type protamines. Histone replacement in these species, therefore, is accompanied by unfolding of nucleosomal DNA and active removal of the negative supercoils. Results presented also suggest an important role for the nonbasic nuclear proteins of sperm in the morphogenesis of the nucleus and the arrangement of DNA.  相似文献   

14.
The morphology and dynamics of DNA in a bacterial nucleoid affects the kinetics of such major processes as DNA replication, gene expression. and chromosome segregation. In this work, we have applied fluorescence correlation spectroscopy to assess the structure and internal dynamics of isolated Escherichia coli nucleoids. We show that structural information can be extracted from the amplitude of fluorescence correlation spectroscopy correlation functions of randomly labeled nucleoids. Based on the developed formalism we estimate the characteristic size of nucleoid structural units for native, relaxed, and positively supercoiled nucleoids. The degree of supercoiling was varied using the intercalating agent chloroquine and evaluated from fluorescence microscopy images. The relaxation of superhelicity was accompanied by 15-fold decrease in the length of nucleoid units (from approximately 50 kbp to approximately 3 kbp).  相似文献   

15.
The authors compared sedimentation rates of nucleoids from mouse embryo 3T3 fibroblasts cultured in the presence or absence of different cell growth factors. The results clearly showed that rapidly sedimenting nucleoids are obtained only when cells are supplied with any of the following competence growth factors: platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or the product of the oncogene v-sis (a peptide homologous to PDGF). The tumor promoter phorbol 12-myristate 13-acetate, an activator of protein kinase C and a partial mitogen, shares this property with the competence growth factors. Removal of these factors from the medium causes cells to enter Go and nucleoids to sediment at a slower rate. Protein synthesis is required for growth factor induction of change in nucleoid sedimentation, but inhibition of either DNA synthesis or DNA repair does not antagonize the effect of growth factors. Titration of nucleoids with ethidium bromide indicates that one possible mechanism for the nucleoid change is the unwinding of DNA in supercoiled loops. The results indicated that the nucleoid change constitutes a cell response to competence factors that might have an important role in cell proliferation.  相似文献   

16.
The sedimentation of DNA-nuclear protein complexes in 1.9 M salt-neutral sucrose gradients (nucleoid sedimentation) was used to examine the effects of the DNA intercalator 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) on mouse leukemia cell DNA. Mild detergent cell lysis and neutral pH make nucleoid sedimentation an extremely gentle, but sensitive, method to detect DNA scission. DNA breaks reduce the compaction of nucleoids and slow their sedimentation. Nucleoids from m-AMSA-treated cells sedimented as did those from untreated cells, indicating no detectable m-AMSA-dependent alterations in compaction despite an apparent underlying DNA break frequency of approximately 3 per 10(6) nucleotides, as measured by alkaline elution with proteinase. Mild proteinase digestion of cell lysates prior to nucleoid sedimentation unmasked some, but not all, of the underlying breaks. The frequency of DNA-protein cross-links in nucleoids from cells treated with m-AMSA was comparable to the single-strand break frequency produced by m-AMSA in whole cells. These results indicate that m-AMSA-induced DNA-protein cross-links conceal DNA breaks so as to prevent swiveling around the breaks within the nucleoids. This unique sort of DNA scission is consistent with the involvement of topoisomerases in the DNA breaks elicited by intercalators in mammalian cells.  相似文献   

17.
Investigations over many decades have revealed that nucleoids of higher plant plastids are highly dynamic with regard to their number, their structural organization and protein composition. Membrane attachment and environmental cues seem to determine the activity and functionality of the nucleoids and point to a highly regulated structure–function relationship. The heterogeneous composition and the many functions that are seemingly associated with the plastid nucleoids could be related to the high number of chromosomes per plastid. Recent proteomic studies have brought novel nucleoid-associated proteins into the spotlight and indicated that plastid nucleoids are an evolutionary hybrid possessing prokaryotic nucleoid features and eukaryotic (nuclear) chromatin components, several of which are dually targeted to the nucleus and chloroplasts. Future studies need to unravel if and how plastid–nucleus communication depends on nucleoid structure and plastid gene expression.  相似文献   

18.
Bacterial DNA is largely localized in compact bodies known as nucleoids. The structure of the bacterial nucleoid and the forces that maintain its DNA in a highly compact yet accessible form are largely unknown. In the present study, we used urea to cause controlled unfolding of spermidine nucleoids isolated from Escherichia coli to determine factors that are involved in nucleoid compaction. Isolated nucleoids unfolded at approximately 3.2 M urea. Addition of pancreatic RNase reduced the urea concentration for unfolding to approximately 1.8 M urea, indicating a role of RNA in nucleoid compaction. The transitions at approximately 3.2 and approximately 1.8 M urea reflected a RNase-sensitive and a RNase-resistant restraint to unfolding, respectively. Removal of the RNase-sensitive restraint allowed us to test for roles of proteins and supercoiling in nucleoid compaction and structure. The remaining (RNase-resistant) restraints were removed by low NaCl concentrations as well as by urea. To determine if stability would be altered by treatments that caused morphological changes in the nucleoids, transitions were also measured on nucleoids from cells exposed to chloramphenicol; the RNase-sensitive restraint in such nucleoids was stabilized to much higher urea concentrations than that in nucleoids from untreated cells, whereas the RNase-resistant transition appeared unchanged.  相似文献   

19.
Nucleoid partitioning and the division plane in Escherichia coli.   总被引:4,自引:1,他引:3       下载免费PDF全文
Escherichia coli nucleoids were visualized after the DNA of OsO4-fixed but hydrated cells was stained with the fluorochrome DAPI (4',6-diamidino-2-phenylindole dihydrochloride hydrate). In slowly growing cells, the nucleoids are rod shaped and seem to move along the major cell axis, whereas in rapidly growing, wider cells they consist of two- to four-lobed structures that often appear to advance along axes lying perpendicular or oblique to the major axis of the cell. To test the idea that the increase in cell diameter following nutritional shift-up is caused by the increased amount of DNA in the nucleoid, the cells were subjected to DNA synthesis inhibition. In the absence of DNA replication, the nucleoids continued to move in the growing filaments and were pulled apart into small domains along the length of the cell. When these cells were then transferred to a richer medium, their diameters increased, especially in the region enclosing the nucleoid. It thus appears that the nucleoid motive force does not depend on DNA synthesis and that cell diameter is determined not by the amount of DNA per chromosome but rather by the synthetic activity surrounding the nucleoid. Under the non-steady-state but balanced growth conditions induced by thymine limitation, nucleoids become separated into small lobules, often lying in asymmetric configurations along the cell periphery, and oblique and asymmetric division planes occur in more than half of the constricting cells. We suggest that such irregular DNA movement affects both the angle of the division plane and its position.  相似文献   

20.
Intact and fast-sedimenting nucleoids of Bacillus licheniformis were isolated under low-salt conditions and without addition of detergents, polyamines or Mg2+. These nucleoids were partially unfolded by treatment with RNase and completely unfolded by treatments that disrupt protein-DNA interactions, like incubation with proteinase K, 0.1% sodium dodecyl sulphate and high ionic strength. Ethidium bromide intercalation studies on RNase-treated, proteinase-K-treated and non-treated nucleoids in combination with sedimentation analysis of DNase-I-treated nucleoids revealed that DNA is organized in independent, negatively supertwisted domains. In contrast to the DNA organization in bacterial nucleoids, isolated under high-salt conditions and in the presence of detergents (Stonington & Pettijohn, 1971; Worcel & Burgi, 1972), the domains of supertwisted DNA in the low-salt-isolated nucleoids studied here are restrained by protein-DNA interactions. A major role for nascent RNA in restraining supertwisted DNA was not observed. The superhelix density of B. licheniformis nucleoids calculated from the change of the sedimentation coefficient upon ethidium bromide intercalation, was of the same order of magnitude as that of other bacterial nucleoids and eukaryotic chromosomes, isolated under high-salt conditions: namely, -0.150 (corrected to standard conditions: 0.2 M-NaCl, 37 degrees C; Bauer, 1978). Electron microscopy of spread nucleoids showed relaxed DNA and regions of condensed DNA. Spreading in the presence of 100 micrograms ethidium bromide per ml revealed only condensed structures, indicating that nucleoids are intact. From spreadings of proteinase-K-treated nucleoids we infer that supertwisted DNA and the protein-DNA interactions, responsible for restraining the superhelical DNA conformation, are localized in the regions of condensed DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号