首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maintenance of the state of differentiation in serially cultured bovine epithelial lens cells has been investigated. The radioactive labelled soluble proteins were studied by gel filtration and gel electrophoresis. 1. In the lens epithelium on its capsule, preferential synthesis of alpha B2 vs alpha A2 crystallin subunits and synthesis of beta-crystallins (mainly beta Bp) were observed. 2. Epithelial lens cells cultured on plastic Petri dishes for up to 35 divisions still synthesized alpha B2 and beta Bp, but no longer alpha A2. Conversely, the same cells injected into nude mice synthesized alpha B and alpha A, but no beta-crystallin could be detected. 3. The ratio of non-crystallin proteins to crystallin polypeptides increased drastically with the number of cell divisions. Among these proteins, both Mr 45 000 and Mr 57 000 proteins are probably constituents of the water-soluble cytoskeletal proteins, respectively actin and vimentin. A Mr 17 000 polypeptide was observed and its relationship with a metabolic product of alpha-crystallin is proposed. 4. The polymerization process of crystallin polypeptides in these cells was studied and compared with crystallin aggregates found in the lens. Newly synthesized alpha crystallins were readily involved in high molecular aggregates. This process does not seem to require alpha A, since only alpha B was detected. Interestingly, non-crystallin-soluble proteins form the bulk of proteins found in high molecular weight (HMW) polymers. The time course of crystallin aggregate formation, in long-term culture cells, seems to be different for alpha- vs beta-polypeptides. These results allowed us to conclude that bovine epithelial lens cells in vitro, although they do not undergo terminal differentiation into fibers, are not dedifferentiated, since they still express specific features of the epithelium in situ.  相似文献   

2.
In principle, ageing may be due to the interaction of several factors, including the accumulation of random changes both genomic and non-genomic, secondary changes in a tissue contingent upon the changing function of other tissues, and programmed non-random changes in the tissue-specific expression of various genes. The use of a single tissue comprising one cell type only, in which the major gene products are well defined, in which there is a well attested series of developmental and age-related changes in cell properties and gene expression and which can be studied and compared in vivo and in vitro, offers advantages for investigation of these questions. The vertebrate eye lens possesses these advantages. The crystallins (proteins expressed at super-abundant levels in the lens) are well characterised. The lens epithelial cells (LEC) grow readily and can differentiate into the lens fibre cells in vitro, and, finally, such terminally differentiated cells may also be derived, by a process of transdifferentiation, from neural retina cells (NRC) in vitro. Thus the effect on ageing changes of the tissue of origin may also be studied. This article reviews our previous studies on long-term changes in growth potential, differentiation capacity and crystallin expression of chick lens cells in ageing cultures, their overall similarity to events in vivo and the effect on ageing changes of genotypes affecting the growth rate. It presents new information on these genetic aspects, and on crystallin expression in long-term ageing cultures of transdifferentiated neural retina, and compares the behaviour of ageing chick lens cells with that reported for mammals.  相似文献   

3.
The crystallin synthesis of rat lens cells in cell culture systems was studied in relevance to their terminal differentiation into lens fibers. SDS-gel electrophoresis combined with several immunological techniques showed that γ-crystallin is a fiber-specific lens protein and is not localized in the epithelium of either newborn or adult lenses. When lens epithelial cells of newborn rats were cultured in vitro , α-crystaIlin was detected in many, but not all, of cells cultured for 10 days. Cells with α-crystallin gradually changed their shape into a flattened filmy form and finally differentiated into lentoid bodies. The differentiation of lentoid bodies was also found in cultures of epithelial cells obtained from adult lenses. The molecular constitution of lentoid bodies was the same as that of lens fibers in situ . The differentiation of lentoid bodies occurred successively for 5 months in cultures of lens epithelial cells. Most of the proliferating cells, however, lost α-crystallin during the culture period. Thereafter, they did not show any sign of further differentiation into lens fibers. Four clonal lines were established from these cells. One protein which is specific to the lens epithelium and the neural retina in situ (tentatively named as βu-crystallin) was maintained in all lines, suggesting that some specific properties of ocular cells remain in the lined cells.  相似文献   

4.
The morphological and cellular changes that occur with differentiation and development of a lentoid structure from cultured mouse lens epithelial cells have been found to be dependent on the presence of lens capsule in association with the cells. The development of the 'lentoid body' is a multiphase process involving cell replication, synthesis of mucosubstances and a basement collagen membrane, cell aggregation and differentiation. Stage-specific synthesis of lens proteins confirms that the genes regulating normal differentiation in vivo are operating in the in vitro system. The hydrated collagen gel studies described in this report demonstrate that the cuboidal morphology and apical-basal polarity of the lens epithelial cells are dependent on their relationship with the lens capsule. Following a replicative phase the cells assume a mesenchyme-like morphology and migrate into the gel. Trypsinized cells freed from the lens capsule replicate but form colonies on the surface of the gel. The implications of these results are discussed with respect to previous observations made on normal lens development and the abnormalities associated with the congenital cataractous embryonic lens.  相似文献   

5.
Explanted rat lens epithelial cells differentiate synchronously in vitro to lens fiber cells in the presence of basic fibroblast growth factor (bFGF). We have monitored the expression of the three rat crystallin gene families, the alpha-, beta-, and gamma-crystallin genes, during this process. The expression of these gene families is sequentially activated, first the alpha-crystallin genes at Day 1, then the beta-crystallin genes at Day 3, and finally the gamma-crystallin genes at Day 8. The steady state levels of alpha- and beta-crystallin mRNA are not affected by incubation with actinomycin D, suggesting that these mRNAs are stable. Nevertheless, all crystallin mRNAs disappear from the differentiated explants between Days 10 and 11, a process signaled by bFGF. At this time a novel abundant mRNA appears. Cloning and sequencing showed that this mRNA encoded aldose reductase. Our results suggest a novel model for the regulation of crystallin synthesis during lens cell differentiation: a gene pulse delivers a certain amount of stable mRNA, this mRNA is removed at a later stage of differentiation by a stage-specific breakdown mechanism. Each of these regulatory steps requires a signal from bFGF.  相似文献   

6.
Secreted FGFR3, but not FGFR1, inhibits lens fiber differentiation   总被引:11,自引:0,他引:11  
The vertebrate lens has a distinct polarity with cuboidal epithelial cells on the anterior side and differentiated fiber cells on the posterior side. It has been proposed that the anterior-posterior polarity of the lens is imposed by factors present in the ocular media surrounding the lens (aqueous and vitreous humor). The differentiation factors have been hypothesized to be members of the fibroblast growth factor (FGF) family. Though FGFs have been shown to be sufficient for induction of lens differentiation both in vivo and in vitro, they have not been demonstrated to be necessary for endogenous initiation of fiber cell differentiation. To test this possibility, we have generated transgenic mice with ocular expression of secreted self-dimerizing versions of FGFR1 (FR1) and FGFR3 (FR3). Expression of FR3, but not FR1, leads to an expansion of proliferating epithelial cells from the anterior to the posterior side of the lens due to a delay in the initiation of fiber cell differentiation. This delay is most apparent postnatally and correlates with appropriate changes in expression of marker genes including p57(KIP2), Maf and Prox1. Phosphorylation of Erk1 and Erk2 was reduced in the lenses of FR3 mice compared with nontransgenic mice. Though differentiation was delayed in FR3 mice, the lens epithelial cells still retained their intrinsic ability to respond to FGF stimulation. Based on these results we propose that the initiation of lens fiber cell differentiation in mice requires FGF receptor signaling and that one of the lens differentiation signals in the vitreous humor is a ligand for FR3, and is therefore likely to be an FGF or FGF-like factor.  相似文献   

7.
We examined the crystallins present in lens-like cell aggregates produced by goldfish erythrophoroma (tumors of integumental erythrophores) cells in vitro using a combination of Sephadex-G-200 gel filtration, one- and two-dimensional sodium-dodecyl-sulfate/polyacryl-amide gel electrophoresis, immunoblotting, and indirect immunofluorescence assays. The two studied neoplastic pigment cell lines, GEM 81 and GEM 218, formed small, spherical, transparent cell aggregates, resembling lentoid bodies, within the cell mounds of monolayer cultures after treatment with dimethylsulfoxide (DMSO) and autologous serum. Partial purification of a water-soluble extract of such lens-like cell aggregates and subsequent immunoblotting using antibodies (polyclonal) against newt whole lens proteins revealed the presence of about 20 unequivocally conjugated peptides with molecular masses of 19-27 kilodaltons. From their antigenicity and their behavior during gel filtration and electrophoresis, most of these peptides were identified as either alpha- or beta-form crystallins. Immunofluorescence microscopy using antibodies to newt whole lens proteins revealed intense fluorescence in the lens-like cell aggregates formed by these erythrophoroma cells, whereas the cell mounds in cultures of the same cell lines that had not been subjected to differentiation induction were almost unlabeled. Thus, goldfish erythrophoroma cells appear to be capable of crystallin production as well as the formation of lens-like cell aggregates upon the induction of differentiation. There is little available information indicating that normal pigment cells are capable of lens formation and crystallin synthesis during vertebrate ontogeny, and thus it is possible that neoplastic transformation of pigment cells is associated with the acquisition of the ability to produce crystallins.  相似文献   

8.
The beaded-chain filament is a unique cytoskeletal structure that appears in the elongating fiber cells during the differentiation of lens epithelial cells to form the mature fiber cells. This beaded-chain structure is made up of two proteins of molecular weight 95 kDa and 49 kDa. As a prerequisite for cloning the cDNAs of these proteins, newborn chicken lens total poly(A+) mRNA was translated in vitro, using a rabbit reticulocyte lysate system and [35S]-L-methionine. The labelled translation products were analyzed by one-and two dimensional gel electrophoresis followed by autoradiography. Immunoprobing of the translation products on Western blots using specific polyclonal antibodies identified the above proteins, and demonstrated the presence and expression of specific mRNAs in the neonatal chick lens, that code for the in vitro synthesis of these two cytoskeletal proteins. These mRNAs are low abundant mRNAs as compared to the crystallin mRNAs.  相似文献   

9.
The morphology, growth and differentiation of chondrocytes cultured on the lens capsule were studied. When incubated in Eagle's MEM with fetal serum, chondrocytes on the surface of the lens capsule became flattened with extended pseudopodia, but most cell remained spherical on the surface of a plastic dish. Thus, the lens capsule promoted cellular flattening of chondrocytes. When grown in Ham's FI2 medium, flattening of cells on the lens capsule was greater and the cells developed the features of fibroblasts without any detectable characteristics of chondrocytes, although their growth rate was not enhanced. This inhibitory effect of the lens capsule on differentiation in this medium was reversed when the cells were separated from the lens capsule and grown on a plastic substrate.  相似文献   

10.
Abstract. We examined the crystallins present in lens-like cell aggregates produced by goldfish erythrophoroma (tumors of integumental erythrophores) cells in vitro using a combination of Sephadex-G-200 gel filtration, one- and two-dimensional sodium-dodecyl-sulfate/poly-acryl-amide gel electrophoresis, immunoblotting, and indirect immunofluorescence assays. The two studied neoplastic pigment cell lines, GEM 81 and GEM 218, formed small, spherical, transparent cell aggregates, resembling lentoid bodies. within the cell mounds of monolayer cultures after treatment with dimethylsulfoxide (DMSO) and autologous serum. Partial purification of a water-soluble extract of such lens-like cell aggregates and subsequent immunoblotting using antibodies (polyclonal) against newt whole lens proteins revealed the presence of about 20 unequivocally conjugated peptides with molecular masses of 19-27 kilodaltons. From their antigenicity and their behavior during gel filtration and electrophoresis, most of these peptides were identified as either α or β-form crystallins. Immunofluorescence microscopy using antibodies to newt whole lens proteins revealed intense fluorescence in the lens-like cell aggregates formed by these erythrophoroma cells, whereas the cell mounds in cultures of the same cell lines that had not been subjected to differentiation induction were almost unlabeled. Thus, goldfish erythrophoroma cells appear to be capable of crystallin production as well as the formation of lens-like cell aggregates upon the induction of differentiation. There is little available information indicating that normal pigment cells are capable of lens formation and crystallin synthesis during vertebrate ontogeny, and thus it is possible that neoplastic transformation of pigment cells is associated with the acquisition of the ability to produce crystallins.  相似文献   

11.
It is well established that normal patterns of epithelial cell proliferation and metabolism, and of fiber cell differentiation and maturation are essential for the maintenance of transparency in the ocular lens. Several factors, including exposure to high levels of sugars, have been known to result in the compromise of lens transparency. For example, initiation of lens cell damage by galactose induces lens epithelial cells to proliferate. Elevated levels of c-myc mRNA have usually been correlated with rapid cell growth and increased entry of cells into the S phase. Therefore, changes in c-myc mRNA levels may provide an early indication of the stimulation of lens epithelial cells to proliferate and differentiate, which has been postulated to be an early and important event in response to lens cell injury by galactose. By Northern blot hybridization analysis we quantitated c-myc mRNA levels in the lens capsule epithelia of rats (1) exposed to galactose, and (2) undergoing a partial recovery from the galactose-induced cell damage. At the onset of lens cell damage, we find c-myc mRNA to elevate to 6-fold by 24 hr, and by 48 hr decreases to about 3-fold the normal levels. During recovery, c-myc mRNA continues to be expressed at high levels approaching a 10-fold increase by day 12, then decreasing to levels of about 8-fold the control by day 30. The 24 h transitory elevation in c-myc mRNA in lens epithelial cells is in accord with our previous observations on the 24 h increase in MP26, crystallin and aldose reductase mRNAs following a high influx of galactose. Therefore, the elevation in c-myc mRNA as well suggest that galactose appears to cause lens cells to undergo an early transitory period of gene induction following the exposure of lens cells to galactose.  相似文献   

12.
Lens growth involves the proliferation of epithelial cells, followed by their migration to the equator region and differentiation into secondary fiber cells. It is widely accepted that fibroblast growth factor (FGF) signaling is required for the differentiation of lens epithelial cells into crystallin-rich fibers, but this signaling is insufficient to induce full differentiation. To better understand lens development, investigatory and functional analyses of novel molecules are required. Here, we demonstrate that Equarin, which is a novel secreted molecule, was expressed exclusively in the lens equator region during chick lens development. Equarin upregulated the expression of fiber markers, as demonstrated using in ovo electroporation. In a primary lens cell culture, Equarin promoted the biochemical and morphological changes associated with the differentiation of lens epithelial cells to fibers. A loss-of-function analysis was performed using zinc-finger nucleases targeting the Equarin gene. Lens cell differentiation was markedly inhibited when endogenous Equarin was blocked, indicating that Equarin was essential for normal chick lens differentiation. Furthermore, biochemical analysis showed that Equarin directly bound to FGFs and heparan sulfate proteoglycan and thereby upregulated the expression of phospho-ERK1/2 (ERK-P) proteins, the downstream of the FGF signaling pathway, in vivo and in vitro. Conversely, the absence of endogenous Equarin clearly diminished FGF-induced fiber differentiation. Taken together, our results suggest that Equarin is involved as an FGF modulator in chick lens differentiation.  相似文献   

13.
Lens epithelial cells are the parental cells responsible for growth and development of the transparent ocular lens. Many elegant investigations into their biology have focused on the factors that initiate and regulate lens epithelial cell differentiation. Because they serve key transport and cell maintenance functions throughout life, and are the primary source of metabolic activity in the lens, mechanisms to maintain lens epithelial cell integrity and survival are critical for lens transparency. The molecular chaperones alpha-crystallins are abundant proteins synthesized in the differentiated lens fiber cell cytoplasm. However, their expression in lens epithelial cells has only been appreciated very recently. Besides their important roles in the refractive and light focusing properties of the lens, alpha-crystallins have been implicated in a number of non-refractive pathways including those involving stress response, apoptosis and cell survival. The most convincing evidence for their importance in the lens epithelium has been shown by studies on the properties of lens epithelial cells from alphaA and alphaB-crystallin gene knockout mice. Novel combination of genetics, cell and molecular biology should lead to a greater understanding of how lens epithelial cells proliferate, differentiate and survive.  相似文献   

14.
Lens development and differentiation are intricate and complex processes characterized by distinct molecular and morphological changes. The growth of a transparent lens involves proliferation of the epithelial cells and their subsequent differentiation into secondary fiber cells. Prior to differentiation, epithelial cells at the lens equator exit from the cell cycle and elongate into long, ribbon-like cells. Fiber cell elongation takes place bidirectionally as fiber tips migrate both anteriorly and posteriorly along the apical surface of the epithelium and inner surface of the capsule, respectively. The differentiating fiber cells move inward from the periphery to the center of the lens on a continuous basis as the lens grows throughout life. Finally, when fiber cells reach the center or suture line, their basal and apical tips detach from the epithelium and capsule, respectively, and interlock with cells from the opposite direction of the lens and form the suture line. Further, symmetric packing of fiber cells and degradation of most of the cellular organelle during fiber cell terminal differentiation are crucial for lens transparency. These sequential events are presumed to depend on cytoskeletal dynamics and cell adhesive interactions; however, our knowledge of regulation of lens fiber cell cytosketal reorganization, cell adhesive interactions and mechanotransduction, and their role in lens morphogenesis and function is limited at present. Recent biochemical and molecular studies have targeted cytoskeletal signaling proteins, including Rho GTPases, Abl kinase interacting proteins, cell adhesion molecules, myosin II, Src kinase and phosphoinositide 3-kinase in the developing chicken and mouse lens and characterized components of the fiber cell basal membrane complex. These studies have begun to unravel the vital role of cytoskeletal proteins and their regulatory pathways in control of lens morphogenesis, fiber cell elongation, migration, differentiation, survival and mechanical properties.  相似文献   

15.
In the calf eye lens, four morphologically distinct cell types can be detected: three in the epithelial monolayer and one in the cortical part. During differentiation, there is a quantitative change in the synthesis of crystallin subunits. A marked increase in alphaA-chains and several beta-crystallin polypeptides accompanies the transition from epithelial to fiberlike lens cells while synthesis of the non-crystallin proteins diminishes significantly.  相似文献   

16.
The lens is an avascular tissue, separated from the aqueous and vitreous humors by its own extracellular matrix, the lens capsule. Here we demonstrate that the lens capsule is a source of essential survival factors for lens epithelial cells. Primary and immortalized lens epithelial cells survive in low levels of serum and are resistant to staurosporine-induced apoptosis when they remain in contact with the lens capsule. Physical contact with the capsule is required for maximal resistance to stress. The lens capsule is also a source of soluble factors including fibroblast growth factor 2 (FGF-2) and perlecan, an extracellular matrix component that enhances FGF-2 activity. Matrix metalloproteinase 2 (MMP-2) inhibition as well as MMP-2 pretreatment of lens capsules greatly reduced the protective effect of the lens capsule, although this could be largely reversed by the addition of either conditioned medium or recombinant FGF-2. These data suggest that FGF-2 release from the lens capsule by MMP-2 is essential to lens epithelial cell viability and survival.  相似文献   

17.
Three different culture media, Ham's F-12, medium 199, and Eagle's minimal essential medium (MEM), were compared with respect to the expression of neuronal (choline acetyl transferase activity: CAT) and glial (hydrocortisone-induced glutamine synthetase activity; GSase) markers of normal differentiation in cultures of 9-day chick embryo neuroretinal cells, and also with respect to the accumulation of a lens marker (delta crystallin) during so-called 'transdifferentiation' in these cultures. MEM allows transient expression of both CAT and GSase activities in early cultures, but also permits extensive delta crystallin accumulation at later stages. F-12 medium gives somewhat higher levels of CAT and GSase activities, the former being noticeably prolonged as compared with parallel MEM cultures; delta crystallin accumulation, however, is largely inhibited in F-12 cultures. By contrast, medium 199 permits only low levels of CAT and GSase activities, perhaps because the neuronal cells are distributed individually over the glial cell sheet in 199 cultures, rather than forming aggregates as in MEM or F-12 cultures. Medium 199 also blocks delta crystallin accumulation. The results of medium changeover between 'transdifferentiation'-permissive (MEM) and non-permissive (199, F-12) conditions suggest: (a) that potential lens precursor cells (whatever their nature) survive in F-12 medium for prolonged periods without extensive expression of the lens phenotype; (b) that such precursor cells become committed to subsequent differentiation as lens cells between 10 and 20 days of culture in permissive MEM medium (as judged by the accumulation of delta crystallin following transfer into F-12); and (c) that medium 199 can block expression of the lens phenotype even in cells already committed (by the above criteria) to lens differentiation, as for instance after 30 days of preculture in MEM.  相似文献   

18.
Abstract. Three different culture media, Ham's F-12, medium 199, and Eagle's minimal essential medium (MEM), were compared with respect to the expression of neuronal (choline acetyl transferase activity: CAT) and glial (hydrocortisone-induced glutamine synthetase activity; GSase) markers of normal differentiation in cultures of 9-day chick embryo neuroretinal cells, and also with respect to the accumulation of a lens marker (δ crystallin) during so-called 'transdifferentiation' in these cultures.
MEM allows transient expression of both CAT and GSase activities in early cultures, but also permits extensive δ crystallin accumulation at later stages. F-12 medium gives somewhat higher levels of CAT and GSase activities, the former being noticeably prolonged as compared with parallel MEM cultures; δ crystallin accumulation, however, is largely inhibited in F-12 cultures. By contrast, medium 199 permits only low levels of CAT and GSase activities, perhaps because the neuronal cells are distributed individually over the glial cell sheet in 199 cultures, rather than forming aggregates as in MEM or F–12 cultures. Medium 199 also blocks δ crystallin accumulation.
The results of medium changeover between 'transdifferentiation'-permissive (MEM) and non-permissive (199, F-12) conditions suggest: (a) that potential lens precursor cells (whatever their nature) survive in F-12 medium for prolonged periods without extensive expression of the lens phenotype; (b) that such precursor cells become committed to subsequent differentiation as lens cells between 10 and 20 days of culture in permissive MEM medium (as judged by the accumulation of δ crystallin following transfer into F-12); and (c) that medium 199 can block expression of the lens phenotype even in cells already committed (by the above criteria) to lens differentiation, as for instance after 30 days of preculture in MEM.  相似文献   

19.
Chick embryo neural retinal cells transdifferentiate extensively into lens cells when cultured in Eagle's MEM containing horse and fetal calf sera (FHMEM). Such cultures express elevated levels of pp60c-src-associated tyrosine kinase activity relative to parallel cultures prevented from transdifferentiating by the addition of supplementary glucose (FHGMEM) or replacement of MEM by medium 199 (F199). Northern blotting and in vitro translation studies suggest that c-src mRNA levels are only slightly higher in late transdifferentiating (FHMEM) cultures as compared to parallel blocked (FHGMEM or F199) cultures. By immunocytochemical staining, we show that pp60c-src protein is largely localized in cell groups undergoing conversion into lens (i.e. expressing delta crystallin) in late FHMEM cultures. Initial studies of pp60c-src in chick lens tissues during development indicate that higher kinase activity is found in the epithelial cells relative to mature lens fibres. Thus pp60c-src may be expressed both during the differentiation of lens cells in vivo and during the transdifferentiation of neural retina cells into lens in vitro.  相似文献   

20.
Although human umbilical cord mesenchymal stem cells (hUC-MSCs) have been identified as a new source of MSCs for potential application in regenerative medicine, their full potential of differentiation has not been determined. In particular, whether they have the capability to differentiate into epithelial cells of endodermal origin such as the prostate epithelial cells is unknown. Here we report that when hUC-MSCs were combined with rat urogenital sinus stromal cells (rUGSSs) and transplanted into the renal capsule in vivo, they could differentiate into prostate epithelial-like cells that could be verified by prostate epithelial cell-specific markers including the prostate specific antigen. The prostatic glandular structures formed in vivo displayed similar cellular architecture with lumens and branching features as seen for a normal prostate. In addition, the human origin of the hUC-MSCs was confirmed by immunocytochemistry for human nuclear antigen. These findings together indicate that hUC-MSCs have the capability to differentiate into epithelial-like cells that are normally derived from the endoderm, implicating their potential applications in tissue repair and regeneration of many endoderm-derived internal organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号