首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the summer of 1993, transgenic tomato plants expressing the coat protein (CP) genes of cucumber mosaic cucumovirus have been tested under field conditions to assess the level of resistance and agronomic performance. Trials were performed in different areas in Italy and the target virus in the majority of tests was spread naturally by the indigenous aphid populations. Twenty-three homozygous lines of variety UC82B, transformed to contain four different CP genes of CMV, were evaluated. The lines were preselected for CP expression, single gene copy, and virus resistance in growth chamber experiments. In general, CMV resistance was confirmed under field conditions though resistance in the field was less effective than what was observed in growth chamber experiments. The resistance observed in multi-year and multi-location experiments is of commercial value for several of the most resistant lines. Engineered resistance upon transfer to Italian varieties by breeding or direct transformation will be used in tomato production in Italy or elsewhere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Expression of a heterologous expansin in transgenic tomato plants   总被引:2,自引:0,他引:2  
Rochange SF  McQueen-Mason SJ 《Planta》2000,211(4):583-586
  相似文献   

3.
The commercial use of genetically modified (GM) crops requires prior assessment of the risks to the environment when these crops are grown in the field or distributed. Assessments protocols vary across countries and GM crop events, but there is a common need to assess environmental biosafety. In this study, we conducted an environmental risk assessment in a confined field of GM tomato plants that can produce miraculin, a taste-altering protein that causes sour tastes to be perceived as sweet, for practical use in Japan. The evaluation was conducted for 1) competitiveness (the ability to compete with wild plants for nutrients, sunlight, and growing areas and prevent their growth) and 2) the production of toxic substances (the ability to produce substances that interfere with the habitat and growth of wild plants, animals, and microorganisms). Investigations of plant morphology and growth characteristics as well as tolerance to low temperature during early growth and overwintering for assessment endpoints related to competitiveness showed no biologically meaningful difference between GM tomato and non-GM tomato. In addition, harmful substances in plant residues and root secretions were assessed by the plow-in method, succeeding crop test and soil microflora tests, and it was determined that GM tomato does not exhibit an increase in harmful substances. Based on these results, it was concluded that GM miraculin-accumulating tomato is comparable to conventional tomato and is unlikely to have unintended adverse effects in the natural environment of Japan.  相似文献   

4.
Enzyme therapy for the prevention and treatment of organophosphate poisoning depends on the availability of large amounts of cholinesterases. Transgenic plants are being evaluated for their efficiency and cost-effectiveness as a system for the bioproduction of therapeutically valuable proteins. Here we report production of a recombinant isoform of human acetylcholinesterase in transgenic tomato plants. Active and stable acetylcholinesterase, which retains the kinetic characteristics of the human enzyme, accumulated in tomato plants. High levels of specific activity were registered in leaves (up to 25 nmol min(-1) mg protein(-1)) and fruits (up to 250 nmol min(-1) mg protein(-1)).  相似文献   

5.
6.
Abstract

A cDNA encoding thaumatin-like protein (TLP) from rice was cloned into the binary vector pMON410 under the control of the CaMV 35S promoter for Agrobacterium-mediated transformation of tomato. All putative transformants were tested for the integration and expression of the chimeric gene by polymerase chain reaction (PCR) for hygromycin resistance gene (hph) and enzyme-linked immunosorbent assay (ELISA) for TLP respectively. Constitutive, high-level expression of TLP was observed in transgenic plants. The transgenic lines exhibited increased resistance to Alternaria solani, the early blight pathogen compared to non-transgenic tomato plants.  相似文献   

7.
Three synthetic genes for the production of anti-sense RNA to different regions of the cucumber mosaic virus (CMV) genome were constructed using virus-derived double-stranded cDNA coupled to a promoter sequence from cauliflower mosaic virus. The genes were used to transform tobacco plants by a Ti plasmid vector. Transgenic plants obtained with the three constructs produced anti-sense RNA at different levels. Plants expressing each of the three anti-sense RNAs were inoculated with CMV and their sensitivity to the virus infection was compared with the non-transformed plants. Only one plant line which expressed relatively low levels of one of the anti-sense RNAs showed resistance to CMV but other plants expressing the same or the other two antisense RNAs had similar sensitivity to CMV infection as the non-transformed plants.  相似文献   

8.
Plant mitochondria contain alternative external NAD(P)H dehydrogenases,which oxidize cytosolic NADH or NADPH and reduce ubiquinonewithout inherent linkage to proton pumping and ATP production.In potato, St-NDB1 is an external Ca2+-dependent NADPH dehydrogenase.The physiological function of this enzyme was investigated inhomozygous Nicotiana sylvestris lines overexpressing St-ndb1and co-suppressing St-ndb1 and an N. sylvestris ndb1. In leafmitochondria isolated from the overexpressor lines, higher activityof alternative oxidase (AOX) was detected. However, the AOXinduction was substantially weaker than in the complex I-deficientCMSII mutant, previously shown to contain elevated amounts ofNAD(P)H dehydrogenases and AOX. An aox1b and an aox2 gene wereup-regulated in CMSII, but only aox1b showed a response, albeitsmaller, in the transgenic lines, indicating differences inAOX activation between the genotypes. As in CMSII, the increaseof AOX in the overexpressing lines was not due to a generaloxidative stress. The lines overexpressing St-ndb1 had consistentlylowered leaf NADPH/NADP+ ratios in the light and variably decreasedlevels in darkness, but unchanged NADH/NAD+ ratios. CMSII insteadhad similar NADPH/NADP+ and lower NADH/NAD+ ratios than thewild type. These results demonstrate that St-NDB1 is able tomodulate the cellular balance of NADPH and NADP+ at least inthe day and that reduction of NADP(H) and NAD(H) is independentlycontrolled. Similar growth rates, chloroplast malate dehydrogenaseactivation and xanthophyll ratios indicate that the change inreduction does not communicate to the chloroplast, and thatthe cell tolerates significant changes in NADP(H) reductionwithout deleterious effects.  相似文献   

9.
Green algae and land plants trace their evolutionary history to a unique common ancestor. This ``green lineage' is phylogenetically subdivided into two distinct assemblages, the Chlorophyta and the Streptophyta. The Chlorophyta includes the Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Prasinopohyceae, whereas the Streptophyta includes the Charophyceae plus the bryophytes, ferns, and all other multicellular land plants (Embryophyta). The Prasinophyceae is believed to contain the earliest divergences within the green lineage. Phylogenetic analyses using rDNA sequences identify the prasinophytes as a paraphyletic taxon that diverges at the base of the Chlorophyta. rDNA analyses, however, provide ambiguous results regarding the identity of the flagellate ancestor of the Streptophyta. We have sequenced the actin-encoding cDNAs from Scherffelia dubia (Prasinophyceae), Coleochaete scutata, Spirogyra sp. (Charophyceae), and the single-copy actin gene from Mesostigma viride (Prasinophyceae). Phylogenetic analyses show Mesostigma to be the earliest divergence within the Streptophyta and provide direct evidence for a scaly, biflagellate, unicellular ancestor for this lineage. This result is supported by the existence of two conserved actin-coding region introns (positions 20-3, 152-1), and one intron in the 5′-untranslated region of the actin gene shared by Mesostigma and the embryophytes. Received: 10 July 1997 / Accepted: 9 April 1998  相似文献   

10.
Transgenic plants that are being developed for commercial cultivation must be tested under field conditions to monitor their effects on surrounding wildlife and conventional crops. Developers also use this opportunity to evaluate the performance of transgenic crops in a typical environment, although this is a matter of commercial necessity rather than regulatory compliance. Most countries have adapted existing regulations or developed new ones to deal specifically with transgenic crops and their commodities. The European Union (EU) is renowned, or perhaps notorious, for having the broadest and most stringent regulations governing such field trials in the world. This reflects its nominal adherence to the precautionary approach, which assumes all transgenic crops carry an inherent risk. Therefore, field trials in the EU need to demonstrate that the risk associated with deploying a transgenic crop has been reduced to the level where it is regarded as acceptable within the narrowly defined limits of the regulations developed and enforced (albeit inconsistently) by national and regional governments, that is, that there is no greater risk than growing an equivalent conventional crop. The involvement of national and regional competent authorities in the decision-making process can add multiple layers of bureaucracy to an already-intricate process. In this review, we use country-based case studies to show how the EU, national and regional regulations are implemented, and we propose strategies that could increase the efficiency of regulation without burdening developers with further unnecessary bureaucracy.  相似文献   

11.
Jo J  Won SH  Son D  Lee BH 《Biotechnology letters》2004,26(18):1391-1396
Transgenic tobacco plants over-expressing the Ochrobactrum anthropi pqrA gene, which encodes a membrane transporter mediating resistance to paraquat, were generated. Transgenic plants displayed higher resistance against paraquat than wild-type plants, as estimated by plant viability, ion leakage and chlorophyll loss, but no resistance against other active oxygen generators, such as H2O2 and menadione. Moreover, lower levels of paraquat accumulated in transgenic plants, compared to wild-type plants, indicating that the PqrA protein detoxifies paraquat either via increased efflux or decreased uptake of the herbicide, but not by removing active oxygen species. The results collectively demonstrate that the bacterial paraquat resistance gene, pqrA, can be functionally expressed in plant cells, and utilized for the development of paraquat-resistant crop plants.  相似文献   

12.
Transgenic Nicotiana benthamiana plants expressing the coat protein gene of cymbidium ringspot virus (CyRSV) were tested for resistance against infection with CyRSV. Transgenic plants showed resistance to infection only when the purified virions concentration in the inoculum was as low as 0.05 g/ml. No protection was observed in transgenic plants inoculated with virion concentrations of 0.5 and 5.0 g/ml or when the inoculum was in vitro synthesized genomic RNA.  相似文献   

13.
Tobacco plants were genetically engineered to express a detoxifying pathway for the herbicide phenmedipham. A gene fromArthrobacter oxidans strain P52 that encodes an enzyme catalysing the hydrolytic cleavage of the carbamate compound phenmedipham has recently been cloned and sequenced. The coding sequence was fused with a cauliflower mosaic virus 35S promoter and introduced into tobacco plants byAgrobacterium-mediated gene transfer. Transgenic plants expressing high levels of phenmedipham hydrolase exhibited resistance when sprayed with the herbicide at up to ten times the usual field application rate.  相似文献   

14.
We examined the resistance phenotype of a large number of transgenic tobacco plants originating from 12 commercial (Nicotiana tabacum) cultivars expressing the sense form of the nucleoprotein (N) gene of L3, a Bulgarian isolate of tomato spotted wilt virus (TSWV). The analysis revealed that transgenic plants are completely protected against the homologous L3 isolate of TSWV irrespective of whether or not they contain detectable levels of translational product. The effectiveness of protection against the virus was investigated upon mechanical inoculation under greenhouse conditions and in field trials. Non-segregating resistant lines were selected and the inheritance of the resistance to TSWV was analysed in successive generations (R3–R6). Extensive tests under controlled conditions and two-year field trials proved that the resistance to TSWV is stable in different environments and is a stably inherited trait.  相似文献   

15.
 Streptothricins are known as antimicrobial agents produced by Streptomyces spp. Bacterial resistance to streptothricin is mediated by specific enzymes exhibiting an acetyltransferase activity which renders the drug non-toxic for bacteria. The nucleotide sequence of several streptothricin resistance genes from bacteria have been described. Certain cells of eukaryotic parasites (such as Ustilago maydis or Leishmania spp.) are sensitive to streptothricin and the introduction of the bacterial resistance gene sat2 renders them resistant. We show that numerous species of plants are sensitive to low concentrations of streptothricin. Moreover, introduction of the bacterial resistance gene sat3 under the control of the 35S cauliflower mosaic virus promoter protects these cells from the toxic action of streptothricin. Therefore, sat3-mediated streptothricin resistance appears to be a promising selective marker for genetic manipulation of plant cells. Received: 6 November 1996 / Revision received: 9 January 1997 / Accepted: 22 March 1999  相似文献   

16.
The coat protein (CP) gene of the potato virus Y (PVY) strain N605 has been cloned into a plant binary expression vector and introduced into the potato variety Bintje. The transformed lines, Bt6, that contained two copies of the CP gene showed complete resistance to the homologous strain PVY-N605 and a good resistance to the related strain PVY-O803 in the greenhouse. The good resistance of Bt6 to primary and secondary infections by PVY was confirmed in two successive field tests where the virus was transmitted by its natural aphid vector.  相似文献   

17.
Phosphoimidazolide-activated ribomononucleotides (*pN; see Scheme I) are useful substrates for the nonenzymatic synthesis of oligonucleotides. In the presence of metal ions dilute neutral aqueous solutions of *pN (0.01 M) typically yield only small amounts of dimers and traces of oligomers; most of *pN hydrolyzes to yield nucleoside 5′-monophosphate (5′NMP). An earlier investigation of *pN reactions in highly concentrated aqueous solutions (up to 1.4 M) showed, as expected, that the percentage yield of the condensation products increases and the yield of the hydrolysis product correspondingly decreases with *pN concentration (Kanavarioti 1997). Here we report product distributions in reactions with one, two, or three reactive components at the same total nucleotide concentration. *pN used as substrates were the nucleoside 5′-phosphate 2-methylimidazolides, 2-MeImpN, with N= cytidine (C), uridine (U), or guanosine (G). Reactions were conducted as self-condensations, i.e., one nucleotide only, with two components in the three binary U,C, U,G, and C,G mixtures, and with three components in the ternary U,C,G mixture. The products are 5′NMP, 5′,5′-pyrophosphate-, 2′,5′-, 3′,5′-linked dimers, cyclic dimers, and a small percentage of longer oligomers. The surprising finding was that, under identical conditions, including the same total monomer concentration, the product distribution differs substantially from one reaction to another, most likely due to changing intermolecular interactions depending on the constituents. Even more unexpected was the observed trend according to which reactions of the U,C,G mixture produce the highest yield of internucleotide-linked dimers, whereas the self-condensations produce the least and the reactions with the binary mixtures produce yields that fall in between. What is remarkable is that the approximately two-fold increase in the percentage yield of internucleotide-linked dimers is not due to a concentration effect or a catalyst, but to the increased complexity of the system from a single to two and three components. These observations, perhaps, provide an example of how increased complexity in relatively simple chemical systems leads to organization of the material and consequently to chemical evolution. A possible link between prebiotic chemistry and the postulated RNA world is discussed. Received: 12 September 1997 / Accepted: 24 November 1997  相似文献   

18.
The field performance of a viral gene in two Swiss wheat ( Triticum aestivum ) varieties showed 10% increased fungal resistance against Tilletia caries (stinking smut). To the best of our knowledge, this is the first report of improved resistance against any fungus in the field achieved by genetic engineering in wheat. The genetically modified wheat lines previously showed a c . 30% decrease in symptoms of T. caries in the glasshouse (Clausen, M., Kräuter, R., Schachermayr, G., Potrykus, I. and Sautter, C. (2000) Antifungal activity of a virally encoded gene in transgenic wheat. Nat. Biotechnol . 18 , 446–449), depending on the fungal strain inoculated. A glasshouse experiment run in parallel to the field test, and using the same collection of T. caries , gave the same results. In a dose–response experiment with isolated fungal strains, in which the infection pressure was varied via the spore concentration, the transgene behaved as a quantitative resistance gene and shifted the S-shaped dose–response curve towards higher resistance. The transgene was shown to be highly specific for fungi of the order Ustilaginales. Tests of the transgene using cell cultures of eukaryotes, including hamster and human, showed no significant side-effects with respect to biosafety. Endogenous pathogen-related genes were also activated on fungal infection in the presence of the kp4 transgene.  相似文献   

19.
Sol3 transposons are mobile elements defined by long terminal inverted repeats which are found in tomato and potato. Members of the Sol3 family have been isolated from a variety of solanaceous species including Solanum tuberosum (potato), S. demissum, S. chacoense, Lycopersicon esculentum (tomato), and L. hirsutum. While highly conserved elements are found within different species, Sol3 terminal inverted repeats can also flank unrelated sequences. Southern blot analysis indicates that Sol3 elements are less prevalent in the potato (approximately 50 copies) than in the tomato (>100 copies) genome. No Sol3-hybridizing sequences were observed in tobacco. While a number of Sol3 elements ranging in size from 500 bp to 2 kbp were sequenced, no transposase coding domains could be identified within the internal regions of the elements. The data suggest that the Sol3 represent a heterogeneous family of nonautonomous transposable elements associated with an as-yet-unidentified autonomous transposon. Received: 18 September 1996 / Accepted: 11 March 1997  相似文献   

20.
Developments in plant tissue culture, plant transformation and regeneration, and improvements in techniques to isolate and manipulate viral genes have led to the exploitation of the concept of cross protection: turning the virus onto itself and controlling it with its own genes. By introducing and expressing genes of viral origin in crop plants, scientists have engineered resistance to several plant viruses. Some of the approaches, used singly or in combination, include expression of viral-coat protein, untranslatable sense or antisense RNA, satellite RNA, virusspecific neutralizing antibody genes, plant viral replicase, protease or movement proteins and defective, interfering RNA. All of these approaches have resulted in manifestation of virus resistance to varying degrees in several commercially important crop plants. This review summarizes the recent advances in engineering virus resistance using the above approaches, and lists specific examples of their use in cultivated crop plants of economic importance.H.R. Pappu and C.L. Niblett are with the Plant Pathology Department, University of Florida. Gainesville, FL 32611-0680, USA; R.F. Lee is with the Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA. Florida Agricultural Experiment Station Journal Series No. R-04558.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号