首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

2.
Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness. However, the size of a habitat patch could affect how dispersal regulates the number of species able to persist. We investigated whether habitat size interacted with dispersal rate to affect the number of species present in local habitats. We hypothesized that increased dispersal rates would positively affect local species richness more in small habitats than in large habitats, because rare species would be protected from demographic extinction. To test the interaction between dispersal rate and habitat size, we factorially manipulated the size of experimental ponds and dispersal rates, using a model community of freshwater zooplankton. We found that high‐dispersal rates enhanced local species richness in small experimental ponds, but had no effect in large experimental ponds. Our results suggest that there is a trade‐off between patch connectivity (a mediator of dispersal rates) and patch size, providing context for understanding the variability observed in dispersal effects among natural communities, as well as for developing conservation and management plans in an increasingly fragmented world.  相似文献   

3.
There is an increasing awareness that not only area and isolation, but also the characteristics of the landscape surrounding habitat patches influence population persistence and species diversity in fragmented landscapes. In this study, we examine the effects of grassland fragmentation and land use in the landscape matrix (on a 2 km scale) on species richness of plants, butterflies, bees and hoverflies. These organisms were studied in replicated remnant patches of different sizes and isolation, embedded in landscapes dominated either by forest, arable land or a mix of these. We found positive effects of patch area on species richness of the three insect taxa, but not of plants. Isolation had a negative effect only on hoverflies. Matrix type had contrasting effects on the studied taxa. Species richness of plants and butterflies was lowest in patches in landscapes dominated by arable land and highest in forest‐dominated landscapes. For hoverflies, the negative effect of small patch area was strongest in forest‐dominated landscapes, and there was a similar non‐significant trend for bees. Our study shows the importance of considering matrix characteristics when studying responses to habitat fragmentation. Differences in matrix response among organism groups probably impinge on differing mechanisms. A forest matrix is likely to provide additional resources for butterflies but either constitute a barrier to dispersal or deprive resources as compared to an arable matrix for hoverflies. Enhanced plant diversity in grassland patches embedded in forested landscapes can be explained by habitat generalists more easily invading these patches, or by an unpaid extinction debt in these landscapes.  相似文献   

4.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

5.
Aim To determine whether the effect of habitat fragmentation and habitat heterogeneity on species richness at different spatial scales depends on the dispersal ability of the species assemblages and if this results in nested species assemblages. Location Agricultural landscapes distributed over seven temperate Europe countries covering a range from France to Estonia. Methods We sampled 16 local communities in each of 24 agricultural landscapes (16 km2) that differ in the amount and heterogeneity of semi‐natural habitat patches. Carabid beetles were used as model organisms as dispersal ability can easily be assessed on morphological traits. The proximity and heterogeneity of semi‐natural patches within the landscape were related to average local (alpha), between local (beta) and landscape (gamma) species richness and compared among four guilds that differ in dispersal ability. Results For species assemblages with low dispersal ability, local diversity increased as the proximity of semi‐natural habitat increased, while mobile species showed an opposite trend. Beta diversity decreased equally for all dispersal classes in relation to proximity, suggesting a homogenizing effect of increased patch isolation. In contrast, habitat diversity of the semi‐natural patches affected beta diversity positively only for less mobile species, probably due to the low dispersal ability of specialist species. Species with low mobility that persisted in highly fragmented landscapes were consistently present in less fragmented ones, resulting in nested assemblages for this mobility class only. Main conclusions The incorporation of dispersal ability reveals that only local species assemblages with low dispersal ability show a decrease of richness as a result of fragmentation. This local species loss is compensated at least in part by an increase in species with high dispersal ability, which obscures the effect of fragmentation when investigated across dispersal groups. Conversely, fragmentation homogenizes the landscape fauna for all dispersal groups, which indicates the invasion of non‐crop habitats by similar good dispersers across the whole landscape. Given that recolonization of low dispersers is unlikely, depletion of these species in modern agricultural landscapes appears temporally pervasive.  相似文献   

6.
Abstract The reduction and fragmentation of forest habitats is expected to have profound effects on plant species diversity as a consequence of the decreased area and increased isolation of the remnant patches. To stop the ongoing process of forest fragmentation, much attention has been given recently to the restoration of forest habitat. The present study investigates restoration possibilities of recently established patches with respect to their geographical isolation. Because seed dispersal events over 100 m are considered to be of long distance, a threshold value of 100 m between recent and old woodland was chosen to define isolation. Total species richness, individual patch species richness, frequency distributions in species occurrences, and patch occupancy patterns of individual species were significantly different among isolated and nonisolated stands. In the short term no high species richness is to be expected in isolated stands. Establishing new forests adjacent to existing woodland ensures higher survival probabilities of existing populations. In the long term, however, the importance of long‐distance seed dispersal should not be underestimated because most species showed occasional long‐distance seed dispersal. A clear distinction should be made between populations colonizing adjacent patches and patches isolated from old woodland. The colonization of isolated stands may have important effects on the dynamics and diversity of forest networks, and more attention should be directed toward the genetic traits and viability of founding populations in isolated stands.  相似文献   

7.
Although anthropogenic landscape fragmentation is often considered as the primary threat to biodiversity, other factors such as immediate human disturbances may also simultaneously threaten species persistence in various ways. In this paper, we introduce a conceptual framework applied to recreation landscapes (RLs), with an aim to provide insight into the composite influences of landscape alteration accompanying immediate human disturbances on plant richness dynamics. These impacts largely occur at patch-edges. They can not only alter patch-edge structure and environment, but also permeate into surrounding natural matrices/patches affecting species persistence–here we term these “Halo disturbance effects” (HDEs). We categorized species into groups based on seed or pollen dispersal mode (animal- vs. wind-dispersed) as they can be associated with species richness dynamics. We evaluated the richness of the two groups and total species in our experimental landscapes by considering the distance from patch-edge, the size of RLs and the intensity of human use over a six-year period. Our results show that animal-dispersed species decreased considerably, whereas wind-dispersed species increased while their richness presented diverse dynamics at different distances from patch-edges. Our findings clearly demonstrate that anthropogenic HDEs produce ripple effects on plant, providing an experimental interpretation for the diverse responses of species to anthropogenic disturbances. This study highlights the importance of incorporating these composite threats into conservation and management strategies.  相似文献   

8.
Demographic and genetic replenishment of populations through the exchange of individuals is essential for their persistence. Habitat loss and fragmentation can reduce the permeability of landscapes, hinder dispersal and compromise the genetic integrity of populations over time. We examined ecological connectivity in an arboreal marsupial, the common ringtail possum (Pseudocheirus peregrinus) in fragmented forests of southeastern Australia. This species is potentially robust to fragmentation based on its presence in degraded landscapes and known use of plantations for foraging and nesting. Using 312 individuals screened at 15 microsatellites, we measured dispersal and gene flow across seven native Eucalyptus forest remnants surrounded by exotic Pinus radiata plantations and three sites within a large continuous forest. The permeability of the pine matrix to dispersing possums was significantly lower than that of the native forest. Small, isolated patches exhibited signatures of genetic drift, having lower heterozygosity and allelic richness than possums in large patches. Most (87%) possums were born in their sampled patch or dispersed only short distances into neighbouring remnants. The continuous forest was identified as an important source of immigrants only for proximate patches (within 2.5 km), thus emphasizing for the common ringtail possum and more specialized arboreal mammals the need to conserve large, proximate forest remnants. Our findings highlight the importance of using genetic tools to understand the long-term biological consequences of fragmentation for effective management.  相似文献   

9.
Natal dispersal has profound consequences for populations through the movement of individuals and genes. Habitat fragmentation reduces structural connectivity by decreasing patch size and increasing isolation, but understanding of how this impacts dispersal and the functional connectivity of landscapes is limited because many studies are constrained by the size of the study areas or sample sizes to accurately capture natal dispersal. We quantified natal dispersal probability and natal dispersal distances in a small migratory shorebird, the Southern Dunlin Calidris alpina schinzii, with data from two extensively monitored endangered metapopulations breeding in Sweden and Finland. In both metapopulations philopatry was strong, with individuals returning to or close to their natal patches more often than expected by chance, consistent with the patchy distribution of their breeding habitat. Dispersal probabilities were lower and dispersal distances were shorter in Sweden. These results provide a plausible explanation for the observed inbreeding and population decline of the Swedish population. The differences between Sweden and Finland were explained by patch‐specific differences. Between‐patch dispersal decreased with increasing natal patch size and distance to other patches. Our results suggest that reduced connectivity reduces movements of the philopatric Dunlin, making it vulnerable to the effects of inbreeding. Increasing connectivity between patches should thus be one of the main goals when planning future management. This may be facilitated by creating a network of suitably sized patches (20–100 ha), no more than 20 km apart from each other, from existing active patches that may work as stepping stones for movement, and by increasing nest success and pre‐fledging survival in small patches.  相似文献   

10.
Forests are naturally extensive tracts. However, in South Africa natural fires over many millennia have reduced forested areas into small remnants spread throughout a grassland matrix. Small patches, especially distant patches, are generally considered to be adverse for forest specialists, owing to decreased forest interior and increased edge. Here we test this assumption by determining the impact of forest interpatch distance and patch size on epigaeic arthropod diversity in this globally rare vegetation type. Forty patches were selected: ten large (100–435 m diameter) that are distant (500–645 m) from other patches, ten large that are close to other patches (38–97 m), ten small (30–42 m) that are distant, and ten small-close patches. Each patch had two plots: edge and interior. Arthropods were sampled using pitfall traps, Berlese-Tullgren funnels and active searches. Interiors and edges had similar species richness and composition, excluding spiders, which were richer in interiors. Patch size significantly influenced species richness of predatory beetles and arthropod assemblages, excluding spiders. Effect of the interaction between patch size and interpatch distance on species richness and composition varied among taxa. Furthermore, large patches supported similar assemblages regardless of interpatch distance. Arthropod response, particularly ants to patch size and interpatch distance, was partly shaped by the matrix type. The percentage of surrounding grassland had little effect on arthropod diversity. We can conclude that large and close patches are important for arthropod conservation. Nevertheless, it is also important to conserve a variety of patch sizes at various distances to maximize overall arthropod composition.  相似文献   

11.
1. The spatial structure of plant patches has been shown to affect host–parasitoid interactions, but its influence on parasitoid diversity remains largely ignored. Here we tested the prediction that parasitoid species richness of the specialist leafminer Liriomyza commelinae increases in larger and less isolated patches of its host plant Commelina erecta. We also explored whether parasitoid abundance and body size affected the occurrence of parasitoid species in local assemblages. 2. A total of 893 naturally established C. erecta patches were sampled on 18 sites around Córdoba city (Argentina). Also, two experiments were performed by creating patches differing in the number of plants and the distance from a parasitoid source. For these tests, plants were infected with the miner in the laboratory prior to placement in the field. 3. Plant patch size, independently of host abundance, positively affected the number of parasitoid species in both survey observations and experimental data. However, plant patch isolation did not influence parasitoid species richness. 4. The probability of finding rare parasitoid species increased with patch size, whereas occupation of isolated patches was independent of dispersal abilities (body size) of parasitoid species. 5. Overall, the results highlight the importance of considering spatial aspects such as the size of plant patches in the study of parasitoid communities.  相似文献   

12.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

13.
Patch size, isolation, and vegetation structure are expected to strongly affect species persistence in fragmented landscapes, particularly for those with <30% of native habitat remaining. Those influences should be modulated by species characteristics, resulting in complex relationships. In order to investigate how species, habitat structure and landscape factors are related and how they affected species persistence, we studied bird communities in a fragmented Atlantic Forest region. Patch size strongly affected species richness and population abundances. However, some functional groups were more affected than others, particularly endemic and understory insectivores, species that are near the limits of their geographical distribution, those using few forest types, and those with their center of abundance in high altitude tropical forests. The effect of vegetation structure was mainly at the species level, reflecting specific responses to habitat quality. The importance of landscape variables varies according to the species group. For the most affected ones, which usually have low dispersal capacity, patch size and quality were the most relevant factors, whereas patch isolation was associated with the richness of groups with more generalist species. This pattern is due to the limited structural connectivity in the study region, composed of low matrix permeability (e.g. pastures and sugar cane), which isolate the most affected species, making them more dependent on local factors. In such a fragmented landscape, the largest patches should be prioritized for conservation purposes, as they aggregate the most vulnerable species and present the highest alpha diversity. Landscape management, as such, should also reconnect large fragments through corridors or matrix improvements, promoting better conditions for long-term persistence of the most affected species.  相似文献   

14.
Habitat fragmentation due to urbanization is increasing rapidly worldwide. Although patch area and edge effect are both important determinants of species diversity and the number of individuals in fragmented landscapes, studies that tested interaction between two effects were limited. Here we examined the interaction between area and edge effects on species richness and the number of individuals of carabids in highly fragmented forests in Tokyo, central Japan. We surveyed carabids in each of 26 forest patches (1.1–121.6 ha) using pitfall traps set in both edge and interior zones. First, we correlated the edge-to-interior differences of both species richness and the number of individuals with patch area. Second, we examined the interaction between patch area and distance to the edge on species richness and the number of individuals using generalized linear models. We found a significant decrease in carabid species richness and the number of individuals in edge zones. The edge-to-interior differences in both species richness and the number of individuals were positively correlated with patch area. Model selection revealed the evident interaction effects between patch area and distance to the edge: higher number of individuals was predicted in only large interior zones. Our results indicated that carabid beetle assemblages were influenced by the interaction between area and edge effects. Thus, in urban areas where small forest remnants dominate, circularizing the shape of the forest patches to maximize the core areas may be the most feasible and realistic means to preserve biodiversity.  相似文献   

15.
Although human‐driven landscape modification is generally characterized by habitat destruction and fragmentation, it may also result in the creation of new habitat patches, providing conditions conducive to spontaneous colonization. In this article, we propose the concept of “colonization credit” (i.e., the number of species yet to colonize a patch, following landscape changes) as a framework to evaluate the success of colonization, in terms of species richness, in new/restored habitats, taking into account the spatial structure of landscapes. The method mirrors similar approaches used to estimate extinction debt in the context of habitat fragmentation, that is, comparisons, between old and new habitat patches, of the relationships among spatial patch metrics and patch species richness. We applied our method to the case of spontaneous colonization of newly created habitat patches suitable for wet heathland plant communities in South Belgium. Colonization credit was estimated for the total species richness, the specialist species richness, and the species richness of three emergent groups (EGs) of specialist species, delineated on the basis of dispersal traits. No significant colonization credit was identified either in patches created 25–55 years ago or in those created within the past 25 years, with the exception of species from our first EG (mostly anemochorous species with long‐term persistent seed bank). However, the differential response of species in that first EG could not be explained through their characteristic life history traits. The results of this study are encouraging and suggest that deliberate, directed restoration activities could yield positive developments in a relatively short period of time.  相似文献   

16.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

17.
Uncontrolled urban development is threatening the survival of many terrestrial species worldwide, especially those with limited dispersal capabilities. Soil invertebrates account for a high proportion of the global biodiversity but there are few studies on how soil biodiversity varies with different parameters of landscape structure, especially in fragmented tropical habitats. Millipedes are among the most abundant detritivore invertebrates in the soil-litter macrofauna. We examined the relationships between soil millipede diversity and landscape structure in 12 forest patches of approximately 30 years of age, in northeastern Puerto Rico. Spatial characteristics of the landscape were determined from aerial color photographs and were digitized into a GIS package for analysis. Millipede species diversity and composition in these forest patches showed correlations with their surroundings (e.g. amount of forest in the matrix) and with the presence of vegetation corridors that connected to other forest patches, rather than forest patch attributes such as patch area and shape. Millipede species richness correlated negatively with the degree of isolation of forest patch (within 600 m radius), while species evenness correlated positively to the amount of forest within a 50 m buffer. Millipede species composition was related with the presence of vegetation corridors and the distance to the Luquillo Experimental Forest reserve. These findings show that a low degree of patch isolation, forested buffers, and presence of vegetation corridors need to be considered for the conservation and management of forest patches surrounded by urban developments, especially to protect terrestrial invertebrate species that require forested habitats for their dispersal.  相似文献   

18.
黄宝强  罗毅波  安德军  寇勇 《生态学报》2011,31(4):1124-1129
黄龙沟钙化滩流地由于溪流的作用,在滩流地之间形成面积大小不一的植物群落斑块。这些小尺度斑块面积的大小对植物物种数量的影响尚不清楚。应用回归分析法和幂函数方程对黄龙沟钙化滩流地内的物种-面积关系进行了研究。结果表明黄龙沟钙化滩流地中斑块的大小对物种数(含兰科植物)具有强烈的影响,而调查的其他因子对总的植物物种数量的影响不显著。在所调查的环境因子中,斑块面积对物种数量的影响达到79.5%,即斑块越大,所包含的物种数量越多。兰科植物种类数量除了受斑块面积的影响外,还与距离林缘的距离有关(负相关)。物种-面积关系符合幂函数方程S=cAZ的规律。不同的尺度下,z值略有差异,在中等尺度下 (1-10 m2)最大,为0.2616,较大尺度下(10-100 m2)的最小,z值为0.2050,小尺度下(<1 m2),z值为0.2382。表明中等尺度的斑块(1-10 m2)包含的物种数(含兰科植物)的增长速度最快,而在斑块面积大于10 m2时,物种数增长速度最小。  相似文献   

19.
Diana E. Bowler  Tim G. Benton 《Oikos》2009,118(3):403-412
Dispersal can play a key role in the dynamics of patchy populations through patch colonization, and generally this leads to distance-dependent colonization. Less recognised are the roles of dispersal and inter-patch distance on the growth of a population after colonization. We use a laboratory mite model system in which both juveniles and adults can disperse to explore the impact of dispersal, and particularly inter-patch distance, on population dynamics. We examine the dynamics of patches after colonization by manipulating the presence of a dispersal corridor to a source patch at two inter-patch distances. Consistent with many field studies, the results show colonization was slower in more distant patches. Following colonization, the effect of the dispersal corridor on dynamics was dependent on inter-patch distance. In patches near the source, the number of adults tended to increase at a faster rate, and juveniles at a slower rate when connected with a dispersal corridor. In contrast, adult numbers grew slower and juveniles tended to grow faster when connected with a corridor in more distant patches. In the long-term, equilibrium adult numbers were lower in patches connected to the source patch at both distances. These results are likely to be driven by the effects of inter-patch distance on dispersal mortality, and the effects of dispersal on patch abundance and within-patch competition. These results confirm that distance is important for patch colonization and also show that distance can affect population density after colonization. The effects of dispersal and distance on local dynamics could be important in the dynamics of patchy populations in increasingly fragmented landscapes.  相似文献   

20.
Rethinking patch size and isolation effects: the habitat amount hypothesis   总被引:4,自引:0,他引:4  
I challenge (1) the assumption that habitat patches are natural units of measurement for species richness, and (2) the assumption of distinct effects of habitat patch size and isolation on species richness. I propose a simpler view of the relationship between habitat distribution and species richness, the ‘habitat amount hypothesis’, and I suggest ways of testing it. The habitat amount hypothesis posits that, for habitat patches in a matrix of non‐habitat, the patch size effect and the patch isolation effect are driven mainly by a single underlying process, the sample area effect. The hypothesis predicts that species richness in equal‐sized sample sites should increase with the total amount of habitat in the ‘local landscape’ of the sample site, where the local landscape is the area within an appropriate distance of the sample site. It also predicts that species richness in a sample site is independent of the area of the particular patch in which the sample site is located (its ‘local patch’), except insofar as the area of that patch contributes to the amount of habitat in the local landscape of the sample site. The habitat amount hypothesis replaces two predictor variables, patch size and isolation, with a single predictor variable, habitat amount, when species richness is analysed for equal‐sized sample sites rather than for unequal‐sized habitat patches. Studies to test the hypothesis should ensure that ‘habitat’ is correctly defined, and the spatial extent of the local landscape is appropriate, for the species group under consideration. If supported, the habitat amount hypothesis would mean that to predict the relationship between habitat distribution and species richness: (1) distinguishing between patch‐scale and landscape‐scale habitat effects is unnecessary; (2) distinguishing between patch size effects and patch isolation effects is unnecessary; (3) considering habitat configuration independent of habitat amount is unnecessary; and (4) delineating discrete habitat patches is unnecessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号