首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Estoup  L. Garnery  M. Solignac    J. M. Cornuet 《Genetics》1995,140(2):679-695
Samples from nine populations belonging to three African (intermissa, scutellata and capensis) and four European (mellifera, ligustica, carnica and cecropia) Apis mellifera subspecies were scored for seven microsatellite loci. A large amount of genetic variation (between seven and 30 alleles per locus) was detected. Average heterozygosity and average number of alleles were significantly higher in African than in European subspecies, in agreement with larger effective population sizes in Africa. Microsatellite analyses confirmed that A. mellifera evolved in three distinct and deeply differentiated lineages previously detected by morphological and mitochondrial DNA studies. Dendrogram analysis of workers from a given population indicated that super-sisters cluster together when using a sufficient number of microsatellite data whereas half-sisters do not. An index of classification was derived to summarize the clustering of different taxonomic levels in large phylogenetic trees based on individual genotypes. Finally, individual population X loci data were used to test the adequacy of the two alternative mutation models, the infinite allele model (IAM) and the stepwise mutation models. The better fit overall of the IAM probably results from the majority of the microsatellites used including repeats of two or three different length motifs (compound microsatellites).  相似文献   

2.
Microsatellites (simple sequence repeats, SSRs) still remain popular molecular markers for studying neutral genetic variation. Two alternative models outline how new microsatellite alleles evolve. Infinite alleles model (IAM) assumes that all possible alleles are equally likely to result from a mutation, while stepwise mutation model (SMM) describes microsatellite evolution as stepwise adding or subtracting single repeat units. Genetic relationships between individuals can be analyzed in higher precision when assuming the SMM scenario with allele size differences as a proxy of genetic distance. If population structure is not predetermined in advance, an empirical data analysis usually includes (a) estimating proximity between individual SSR profiles with a selected dissimilarity measure and (b) determining putative genetic structure of a given set of individuals using methods of clustering and/or ordination for the obtained dissimilarity matrix. We developed new dissimilarity indices between SSR profiles of haploid, diploid, or polyploid organisms assuming different mutation models and compared the performance of these indices for determining genetic structure with population data and with simulations. More specifically, we compared SMM with a constant or variable mutation rate at different SSR loci to IAM using data from natural populations of a freshwater bryozoan Cristatella mucedo (diploid), wheat leaf rust Puccinia triticina (dikaryon), and wheat powdery mildew Blumeria graminis (monokaryon). We show that inferences about population genetic structure are sensitive to the assumed mutation model. With simulations, we found that Bruvo's distance performs generally poorly, while the new metrics are capturing the differences in the genetic structure of the populations.  相似文献   

3.
An expression is derived and values tabulated for the expected allele frequencies and their variances, arranged in decreasing order in a population, from the finite and infinite alleles diffusion model in Watterson (1976). The neutral model and also a model with heterozygote selection are considered. Some observed ABO blood group allele frequencies are compared with the tabulated expected frequencies in the neutral three allele model. This extends the results of Watterson and Guess (1977) who tabulate the expected value of the most common allele. One test of neutrality previously advocated is to consider the distribution of F, the population homozygosity, conditional on G, the product of allele frequencies. However it is shown here that for a large number of alleles, F and G are asymptotically independent, the test would not be a good one in this case. A limit theorem is derived for the distribution of allele frequencies in the neutral model when the mutation rate is large. In this case F is shown to be asymptotically normal. An inequality is derived for the probability that the oldest allele in a population is amongst the r most frequent types. An inequality is also found for the probability that a sample will only contain representatives of the r most frequent allele types in the population.  相似文献   

4.
H. G. Spencer  R. W. Marks 《Genetics》1992,130(1):211-221
The ability of viability selection to maintain allelic polymorphism is investigated using a constructionist approach. In extensions to the models we have previously proposed, a population is bombarded with a series of mutations whose fitnesses in conjunction with other alleles are functions of the corresponding fitnesses with a particular allele, the parent allele, already in the population. Allele frequencies are iterated simultaneously, thus allowing alleles to be driven to extinction by selection. Such models allow very high levels of polymorphism to evolve: up to 38 alleles in one case. Alleles that are lethal as homozygotes can evolve to surprisingly high frequencies. The joint evolution of allele frequencies and viabilities highlights the necessity to consider more than the current morphology of a population. Comparisons are made with the neutral theory of evolution and it is suggested that failure to reject neutrality using the Ewens-Watterson test cannot be regarded as evidence for the neutral theory.  相似文献   

5.
Li WH 《Genetics》1978,90(2):349-382
Formulae are developed for the distribution of allele frequencies (the frequency spectrum), the mean number of alleles in a sample, and the mean and variance of heterozygosity under mutation pressure and under either genic or recessive selection. Numerical computations are carried out by using these formulae and Watterson's (1977) formula for the distribution of allele frequencies under overdominant selection. The following properties are observed: (1) The effect of selection on the distribution of allele frequencies is slight when 4Ns 相似文献   

6.
Richard R. Hudson 《Genetics》1985,109(3):611-631
The sampling distributions of several statistics that measure the association of alleles on gametes (linkage disequilibrium) are estimated under a two-locus neutral infinite allele model using an efficient Monte Carlo method. An often used approximation for the mean squared linkage disequilibrium is shown to be inaccurate unless the proper statistical conditioning is used. The joint distribution of linkage disequilibrium and the allele frequencies in the sample is studied. This estimated joint distribution is sufficient for obtaining an approximate maximum likelihood estimate of C = 4Nc, where N is the population size and c is the recombination rate. It has been suggested that observations of high linkage disequilibrium might be a good basis for rejecting a neutral model in favor of a model in which natural selection maintains genetic variation. It is found that a single sample of chromosomes, examined at two loci cannot provide sufficient information for such a test if C less than 10, because with C this small, very high levels of linkage disequilibrium are not unexpected under the neutral model. In samples of size 50, it is found that, even when C is as large as 50, the distribution of linkage disequilibrium conditional on the allele frequencies is substantially different from the distribution when there is no linkage between the loci. When conditioned on the number of alleles at each locus in the sample, all of the sample statistics examined are nearly independent of theta = 4N mu, where mu is the neutral mutation rate.  相似文献   

7.
The major histocompatibility complex (MHC) genes are extremely polymorphic and this variation is assumed to be maintained by balancing selection. Cyclic interactions between pathogens and their hosts could generate such selection, and specific MHC alleles or heterozygosity at certain MHC loci have been shown to confer resistance against particular pathogens. Here we compare the temporal variation in allele frequencies of 23 MHC class I alleles with that of 23 neutral microsatellite markers in adult great reed warblers (a passerine bird) in nine successive cohorts. Overall, the MHC alleles showed a significantly higher variation in allele frequencies between cohorts than the microsatellite alleles, using a multi-variate genetic analysis (amova). The frequency of two specific MHC alleles, A3e (P = 0.046) and B4b (P = 0.0018), varied more between cohorts than expected from random, whereas none of the microsatellite alleles showed fluctuations exceeding the expectation from stochastic variation. These results imply that the variation in MHC allele frequencies between cohorts is not a result of demographic events, but rather an effect of selection favouring different MHC alleles in different years.  相似文献   

8.
Genome-wide association studies (GWAS) have generated sufficient data to assess the role of selection in shaping allelic diversity of disease-associated SNPs. Negative selection against disease risk variants is expected to reduce their frequencies making them overrepresented in the group of minor (<50%) alleles. Indeed, we found that the overall proportion of risk alleles was higher among alleles with frequency <50% (minor alleles) compared to that in the group of major alleles. We hypothesized that negative selection may have different effects on environment (or lifestyle)-dependent versus environment (or lifestyle)-independent diseases. We used an environment/lifestyle index (ELI) to assess influence of environmental/lifestyle factors on disease etiology. ELI was defined as the number of publications mentioning “environment” or “lifestyle” AND disease per 1,000 disease-mentioning publications. We found that the frequency distributions of the risk alleles for the diseases with strong environmental/lifestyle components follow the distribution expected under a selectively neutral model, while frequency distributions of the risk alleles for the diseases with weak environmental/lifestyle influences is shifted to the lower values indicating effects of negative selection. We hypothesized that previously selectively neutral variants become risk alleles when environment changes. The hypothesis of ancestrally neutral, currently disadvantageous risk-associated alleles predicts that the distribution of risk alleles for the environment/lifestyle dependent diseases will follow a neutral model since natural selection has not had enough time to influence allele frequencies. The results of our analysis suggest that prediction of SNP functionality based on the level of evolutionary conservation may not be useful for SNPs associated with environment/lifestyle dependent diseases.  相似文献   

9.
Linkage analyses of simulated quantitative trait data were performed using the Haseman-Elston (H-E) sib pair regression test to investigate the effects of inaccurate allele frequency estimates on the type I error rates of this test. Computer simulations generating a quantitative trait in nuclear families were performed using GASP [1]. Assuming no linkage, several data sets were simulated; they differed in marker allele numbers and frequencies, number of sib pairs and number of sibships. Each set of simulated data was analyzed using (1) all parental marker data, (2) half of the parental marker data, and (3) no parental marker data, using both correct and incorrect allele frequencies in the latter 2 cases. The H-E sib pair linkage method was found to be robust to misspecification of marker allele frequencies regardless of the number of alleles.  相似文献   

10.
The structure of the limit point process of the ordered allele frequencies in the stationary distribution of a K-allele diffusion model with mutation and genic selection is studied. This leads to a formula for expectations of functions of the allele frequencies in terms of expectations in the neutral infinite alleles model.  相似文献   

11.
Kim Y 《Genetics》2006,172(3):1967-1978
The allele frequency of a neutral variant in a population is pushed either upward or downward by directional selection on a linked beneficial mutation ("selective sweeps"). DNA sequences sampled after the fixation of the beneficial allele thus contain an excess of rare neutral alleles. This study investigates the allele frequency distribution under selective sweep models using analytic approximation and simulation. First, given a single selective sweep at a fixed time, I derive an expression for the sampling probabilities of neutral mutants. This solution can be used to estimate the time of the fixation of a beneficial allele from sequence data. Next, I obtain an approximation to mean allele frequencies under recurrent selective sweeps. Under recurrent sweeps, the frequency spectrum is skewed toward rare alleles. However, the excess of high-frequency derived alleles, previously shown to be a signature of single selective sweeps, disappears with recurrent sweeps. It is shown that, using this approximation and multilocus polymorphism data, genomewide parameters of directional selection can be estimated.  相似文献   

12.
Coop G  Ralph P 《Genetics》2012,192(1):205-224
Two major sources of stochasticity in the dynamics of neutral alleles result from resampling of finite populations (genetic drift) and the random genetic background of nearby selected alleles on which the neutral alleles are found (linked selection). There is now good evidence that linked selection plays an important role in shaping polymorphism levels in a number of species. One of the best-investigated models of linked selection is the recurrent full-sweep model, in which newly arisen selected alleles fix rapidly. However, the bulk of selected alleles that sweep into the population may not be destined for rapid fixation. Here we develop a general model of recurrent selective sweeps in a coalescent framework, one that generalizes the recurrent full-sweep model to the case where selected alleles do not sweep to fixation. We show that in a large population, only the initial rapid increase of a selected allele affects the genealogy at partially linked sites, which under fairly general assumptions are unaffected by the subsequent fate of the selected allele. We also apply the theory to a simple model to investigate the impact of recurrent partial sweeps on levels of neutral diversity and find that for a given reduction in diversity, the impact of recurrent partial sweeps on the frequency spectrum at neutral sites is determined primarily by the frequencies rapidly achieved by the selected alleles. Consequently, recurrent sweeps of selected alleles to low frequencies can have a profound effect on levels of diversity but can leave the frequency spectrum relatively unperturbed. In fact, the limiting coalescent model under a high rate of sweeps to low frequency is identical to the standard neutral model. The general model of selective sweeps we describe goes some way toward providing a more flexible framework to describe genomic patterns of diversity than is currently available.  相似文献   

13.
Adaptation in response to selection on polygenic phenotypes may occur via subtle allele frequencies shifts at many loci. Current population genomic techniques are not well posed to identify such signals. In the past decade, detailed knowledge about the specific loci underlying polygenic traits has begun to emerge from genome-wide association studies (GWAS). Here we combine this knowledge from GWAS with robust population genetic modeling to identify traits that may have been influenced by local adaptation. We exploit the fact that GWAS provide an estimate of the additive effect size of many loci to estimate the mean additive genetic value for a given phenotype across many populations as simple weighted sums of allele frequencies. We use a general model of neutral genetic value drift for an arbitrary number of populations with an arbitrary relatedness structure. Based on this model, we develop methods for detecting unusually strong correlations between genetic values and specific environmental variables, as well as a generalization of comparisons to test for over-dispersion of genetic values among populations. Finally we lay out a framework to identify the individual populations or groups of populations that contribute to the signal of overdispersion. These tests have considerably greater power than their single locus equivalents due to the fact that they look for positive covariance between like effect alleles, and also significantly outperform methods that do not account for population structure. We apply our tests to the Human Genome Diversity Panel (HGDP) dataset using GWAS data for height, skin pigmentation, type 2 diabetes, body mass index, and two inflammatory bowel disease datasets. This analysis uncovers a number of putative signals of local adaptation, and we discuss the biological interpretation and caveats of these results.  相似文献   

14.
The statistical assessment of gene-frequency data on protein polymorphisms in natural populations remains a contentious issue. Here we formulate a test of whether polymorphisms detected by electrophoresis are in accordance with the stepwise, or charge-state, model of mutation in finite populations in the absence of selection. First, estimates of the model parameters are derived by minimizing chi-square deviations of the observed frequencies of genotypes with alleles (0,1,2...) units apart from their theoretical expected values. Then the remaining deviation is tested under the null hypothesis of neutrality. The procedure was found to be conservative for false rejections in simulation data. We applied the test to Ayala and Tracey 's data on 27 allozymic loci in six populations of Drosophila willistoni . About one-quarter of polymorphic loci showed significant departure from the neutral theory predictions in virtually all populations. A further quarter showed significant departure in some populations. The remaining data showed an acceptable fit to the charge state model. A predominating mode of selection was selection against alleles associated with extreme electrophoretic mobilities. The advantageous properties and the difficulties of the procedure are discussed.  相似文献   

15.
Comparing allele frequencies among populations that differ in environment has long been a tool for detecting loci involved in local adaptation. However, such analyses are complicated by an imperfect knowledge of population allele frequencies and neutral correlations of allele frequencies among populations due to shared population history and gene flow. Here we develop a set of methods to robustly test for unusual allele frequency patterns and correlations between environmental variables and allele frequencies while accounting for these complications based on a Bayesian model previously implemented in the software Bayenv. Using this model, we calculate a set of “standardized allele frequencies” that allows investigators to apply tests of their choice to multiple populations while accounting for sampling and covariance due to population history. We illustrate this first by showing that these standardized frequencies can be used to detect nonparametric correlations with environmental variables; these correlations are also less prone to spurious results due to outlier populations. We then demonstrate how these standardized allele frequencies can be used to construct a test to detect SNPs that deviate strongly from neutral population structure. This test is conceptually related to FST and is shown to be more powerful, as we account for population history. We also extend the model to next-generation sequencing of population pools—a cost-efficient way to estimate population allele frequencies, but one that introduces an additional level of sampling noise. The utility of these methods is demonstrated in simulations and by reanalyzing human SNP data from the Human Genome Diversity Panel populations and pooled next-generation sequencing data from Atlantic herring. An implementation of our method is available from http://gcbias.org.  相似文献   

16.
A method is developed for simulating the allele frequencies in an equilibrium or transient population under the effects of neutral mutation and random drift. The method is based on diffusion theory and is fast so that it can be used to study in detail the distribution of heterozygosity or any quantity that can be expressed as a function of allele frequencies. It has been applied to study the distribution of heterozygosity and the distributions of the frequencies of the first three most frequent alleles in a population. It also has been applied to study the distribution of the number of alleles shared by two populations that were derived from a common stock.  相似文献   

17.
Genetic profile of cosmopolitan populations: effects of hidden subdivision   总被引:1,自引:0,他引:1  
Natural populations of many organisms exhibit excess of rare alleles in comparison with the predictions of the neutral mutation hypothesis. It has been shown before that either a population bottleneck or the presence of slightly deleterious mutations can explain this phenomenon. A third explanation is presented in this work, showing that hidden subdivision within a population can also lead to an excess of rare alleles in the total population when the expectations of the neutral model are based on the allele frequency profile of the entire population data. With two examples (mitochondrial DNA-morph distribution and isozyme allele frequency distributions), it is shown that most cosmopolitan human populations exhibit excess of rare as well as total allele counts, when these are compared with the expectations of the neutral mutation hypothesis. The mitochondrial data demonstrate that such excesses can be detected from genetic variation at a single locus as well, and this is not due to stochastic error of allele frequency distributions. Contrast of the present observations with the allele frequency profiles in agglomerated tribal populations from South and Central America shows that even when the neutral expectations hold for individual subpopulations, if all subpopulations are grouped into a single population, the pooled data exhibit an excess of total number of alleles that is mainly due to the excess of rare alleles. Therefore, a primary cause of the excess number of rare alleles could be the hidden subdivision, and the magnitude of the excess indicates the extent of substructuring. The two components of hidden subdivision are: 1) Number of subpopulations, and 2) the average genetic distance among them. The implications of this observation in estimating mutation rate are discussed indicating the difficulties of comparing mutation rates from different population surveys.  相似文献   

18.
We estimated the frequencies of serum butyrylcholinesterase (BChE) alleles in three tribes of Mapuche Indians from southern Chile, using enzymatic methods, and we estimated the frequency of allele BCHE*K in one tribe using primer reduced restriction analysis (PCR-PIRA). The three tribes have different degrees of European admixture, which is reflected in the observed frequencies of the atypical allele BCHE*A: 1.11% in Huilliches, 0.89% in Cuncos, and 0% in Pehuenches. This result is evidence in favor of the hypothesis that BCHE*A is absent in native Amerindians. The frequencies of BCHE*F were higher than in most reported studies (3.89%, 5.78%, and 4.41%, respectively). These results are probably due to an overestimation of the frequency of allele BCHE*F, since none of the 20 BCHE UF individuals (by the enzymatic test) individuals analyzed showed either of the two DNA base substitutions associated with this allele. Although enzymatic methods rarely detect the presence of allele BCHE*K, PCR-PIRA found the allele in an appreciable frequency (5.76%), although lower than that found in other ethnic groups. Since observed frequencies of unusual alleles correspond to estimated percentages of European admixture, it is likely that none of these unusual alleles were present in Mapuche Indians before the arrival of Europeans.  相似文献   

19.
Genotype calling procedures vary from laboratory to laboratory for many microsatellite markers. Even within the same laboratory, application of different experimental protocols often leads to ambiguities. The impact of these ambiguities ranges from irksome to devastating. Resolving the ambiguities can increase effective sample size and preserve evidence in favor of disease-marker associations. Because different data sets may contain different numbers of alleles, merging is unfortunately not a simple process of matching alleles one to one. Merging data sets manually is difficult, time-consuming, and error-prone due to differences in genotyping hardware, binning methods, molecular weight standards, and curve fitting algorithms. Merging is particularly difficult if few or no samples occur in common, or if samples are drawn from ethnic groups with widely varying allele frequencies. It is dangerous to align alleles simply by adding a constant number of base pairs to the alleles of one of the data sets. To address these issues, we have developed a Bayesian model and a Markov chain Monte Carlo (MCMC) algorithm for sampling the posterior distribution under the model. Our computer program, MicroMerge, implements the algorithm and almost always accurately and efficiently finds the most likely correct alignment. Common allele frequencies across laboratories in the same ethnic group are the single most important cue in the model. MicroMerge computes the allelic alignments with the greatest posterior probabilities under several merging options. It also reports when data sets cannot be confidently merged. These features are emphasized in our analysis of simulated and real data.  相似文献   

20.
An importance-sampling method is presented for computing the likelihood of the configuration of population genetic data under general assumptions about population history and transitions among states. The configuration of the data is the number of chromosomes sampled that are in each of a finite set of states. Transitions among states are governed by a Markov chain with transition probabilities dependent on one or more parameters. The method assumes that the joint distribution of coalescence times of the underlying gene genealogy is independent of the genetic state of each lineage. Given a set of coalescence times, the probability that a pair of lineages is chosen to coalesce in each replicate is proportional to the contribution that the coalescence event makes to the probability of the data. This method can be applied to gene genealogies generated by the neutral coalescent process and to genealogies generated by other processes, such as a linear birth-death process which provides a good approximation to the dynamics of low-frequency alleles. Two applications are described. In the first, the fit of allele frequencies at two microsatellite loci sampled in a Sardinian population to the one-step mutation model is tested. The one-step model is rejected for one locus but not for the other. The second application is to low-frequency alleles in a geographically subdivided population. The geographic location is the allelic state, and the alleles are assumed to be sufficiently rare that their dynamics can be approximated by a linear birth-death process in which the birth and death rates are independent of geographic location. The analysis of eight low-frequency allozyme alleles found in the glaucous-winged gull, Larus glaucescens, illustrates how geographically restricted dispersal can be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号