首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cells of Chondrococcus columnaris were sectioned and examined in the electron microscope after fixation by two different methods. After fixation with osmium tetroxide alone, the surface layers of the cells consisted of a plasma membrane, a dense layer (mucopeptide layer), and an outer unit membrane. The outer membrane appeared distorted and was widely separated from the rest of the cell. The intracytoplasmic membranes (mesosomes) appeared as convoluted tubules packaged up within the cytoplasm by a unit membrane. The unit membrane surrounding the tubules was continuous with the plasma membrane. When the cells were fixed with glutaraldehyde prior to fixation with osmium tetroxide, the outer membrane was not distorted and separated from the rest of the cell, structural elements (peripheral fibrils) were seen situated between the outer membrane and dense layer, and the mesosomes appeared as highly organized structures produced by the invagination and proliferation of the plasma membrane. The mesosomes were made up of a series of compound membranes bounded by unit membranes. The compound membranes were formed by the union of two unit membranes along their cytoplasmic surfaces.  相似文献   

2.
THE CELL ENVELOPES OF TWO EXTREMELY HALOPHILIC BACTERIA   总被引:4,自引:1,他引:4       下载免费PDF全文
The cell envelope of Halobacterium halobium was seen in thin sections of permanganate-fixed cells to consist of one membrane. This membrane appeared mostly as a unit membrane but in a few preparations it resembled a 5-layered compound membrane. The cell envelope of Halobacterium salinarium at high resolution was always seen as a 5-layered structure different in appearance from the apparent compound membrane of H. halobium. The "envelopes" which were isolated in 12.5 per cent NaCl from each organism were indistinguishable from each other in the electron microscope and comprised, in each case, a single unit membrane with an over-all thickness of about 110 A. Some chemical analyses were made of isolated membranes after freeing them from salt by precipitating and washing with trichloroacetic acid. Such precipitated membranes consisted predominantly of protein, with little carbohydrate and no peptido-aminopolysaccharide (mucopeptide). Sectioned whole cells of H. halobium contained intracellular electron-opaque structures of unknown function.  相似文献   

3.
Fine structure of lipid-depleted mitochondria   总被引:32,自引:12,他引:20       下载免费PDF全文
The fine structure of mitochondria and submitochondrial vesicles depleted of their lipid by extraction with aqueous acetone was studied. Thin sections of mitochondrial membranes depleted of more than 95% of their lipid retained the unit membrane structure. Densitometer tracings of the electron micrographs showed that the unit membrane of extracted mitochondria was, on the average, wider than that of unextracted controls and showed a greater variation in width. The outer membrane was lost in mitochondria from which 80–95% of the lipids was extracted. Inner membrane particles were present on submitochondrial vesicles depleted of up to 85% of their lipids. However, when more than 95% of the lipid was removed, few, if any, particles remained attached to the membranes but many particles were found unattached in the background. When lipid was restored to lipid-deficient preparations, the mitochondrial membranes were found to be devoid of inner membrane particles but were fully active with respect to succinate-cytochrome c reductase activity.  相似文献   

4.
In vitro propagated plants under conditions of low gas exchange generally show morphological and physiological anomalies that lead to high mortality rates during ex vitro acclimatization. The use of gas-permeable membranes increases natural ventilation in culture vessels, photosynthesis and growth rates. However, commercial membranes are expensive, which limits their application. In this study, low-cost, simple to manufacture, alternative membranes were developed to promote gas exchange in jars used for in vitro plant tissue culture. The membranes were developed using polytetrafluoroethylene film and two or three layers of microporous tape (Missner & Missner?), and were designed to increase the growth of nodal cultures of Pfaffia glomerata (Brazilian ginseng). Conditions that provided higher gas exchange led to an increase in plant growth and content of photosynthetic pigments compared to a closed system without a gas-permeable membrane. The alternative membranes showed similar results for water vapor loss rate and photosynthetic pigments when compared to a commercial membrane. The alternative membranes were also an efficient barrier against contamination and remained intact after being autoclaved multiple times. Among the membranes tested, the traits of the P. glomerata in vitro-derived plants were similar when propagated using the alternative membrane with three layers of microporous tape or the commercial membrane. However, the alternative membrane has a unit cost that is ten times lower than the commercial membrane.  相似文献   

5.
Saccharomyces cerevisiae nuclear membranes were prepared from isolated nuclei by digesting chromatin with deoxyribonuclease and ribonuclease, washing of residual nuclei with 0.5 M MgCl2, and discontinuous gradient centrifugation in buffered Ficoll solutions. Electron microscopic examination of the preparations showed single membrane and double membrane vesicles and membrane sheets. Pores or residual pores were often visible. In double membrane profiles the two unit membranes were often separated by the remains of the perinuclear cistern. The nuclear membrane fragments contained 58% protein, 23.8% phospholipid, 6% sterols, 7.1% neutral acylglycerols, 4.8% RNA, and 0.3% DNA. The phospholipid content of the membrane preparations was influenced by a phospholipase activity with acidic pH optimum.  相似文献   

6.
MEMBRANE FUSION IN A MODEL SYSTEM : Mucocyst Secretion in Tetrahymena   总被引:50,自引:36,他引:14       下载免费PDF全文
The freeze-fracture, freeze-etch technique can be employed to reveal new details of the process of fusion of two unit membranes For this study, mucocyst discharge in Tetrahymena pyriformis provides a model system with certain general implications The undischarged mature mucocyst is a saclike, membrane-bound, secretory vesicle containing crystalline material The organelle tip finds its way toward a special site, a rosette of 150 Å diameter particles within the plasma membrane. To match this site, the mucocyst membrane forms an annulus of 110 Å diameter particles, above whose inner edge the rosette particles sit. Discharge of some mucocysts is triggered by fixation. As discharge proceeds, the organelle becomes spherical and its content changes from crystalline to amorphous. The cytoplasm between the two matching membrane sites is squeezed away and the membranes fuse Steps in membrane reorganization can be reconstructed from changes in rosette appearance in the fracture faces. First, a depression in the rosette—the fusion pocket—forms. The rosette particles spread at the lip as the pocket deepens and enlarges from 60 to 200 nm. The annulus particles then become visible at the lip, indicating completed fusion of the A fracture faces of mucocyst and plasma membranes The remaining B faces of the two membranes have opposite polarities When the content of the mucocyst is released, the edges of these faces join so that the unit membrane runs uninterruptedly around the lip and into the pocket.  相似文献   

7.
We have used freeze fracture electron microscopy to study the distribution of membrane proteins in the cytoplasmic membrane of Escherichia coli W 3110. While these proteins were distributed randomly at the growth temperature (37 °C), there was extensive protein lipid segregation when the temperature was lowered, resulting in bare patches containing no visible particles (protein), and areas of tightly packed or aggregated particles. To understand the segregation process, we have separated the bare patches from the particle rich membrane areas. Lysis of spheroplasts at 0 °C leads to cytoplasmic membrane fragments with different amounts of membrane particles per unit area; such fragments have been separated on isopycnic sucrose gradients. The bare patches occurred as low density membranes which were completely devoid of particles. They were compared to normal density cytoplasmic membranes with respect to fatty acid composition, protein distribution as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their content of several cytoplasmic membrane marker enzymes.The phospholipid to protein ratio of low density membranes was five times greater than that of normal membranes; unsaturated fatty acids were more abundant in the low density membranes. Most proteins had disappeared from the low density membranes. One protein, which had an apparent molecular weight of 26000 on sodium dodecyl sulfate gels appeared to be concentrated in the low density membranes; it accounted for about 50% of the total protein found in this membrane fraction.Of the cytoplasmic membrane markers tested, NADH oxidase and succinate dehydrogenase were excluded, while d-lactate dehydrogenase remained, and even appeared to be concentrated in the low density membranes.These results indicate that while most membrane proteins are associated with the fluid portion of the bilayer, some proteins evidently associate preferentially with phospholipids in the gel or frozen state.  相似文献   

8.
We suggest that the basal lamina is essentially a second plasma or cell membrane appearing at the next higher level of biological organization; that together with associated cell monolayers it creates a tissue level membrane which is used to form multicellular cells and that collections of these provide the essential structure of metazoa. Thus when the histological structure of multicellular organisms is viewed in a topologically simplified form such organisms appear to be sets of multicellular cells (m-cells) formed by a unit tissue membrane built around the basal lamina. Not only are m-cells in this way structurally isomorphous (homeomorphic) to unit or classical biological cells (u-cells) but the two cellular levels are also functionally isomorphous. This suggests a “General Principle of Hierarchical Isomorphism or Iteration”, i.e. that multicellular evolution recapitulates unicellular evolution. This principle of structural and functional isomorphic mappability of unicellular onto multicellular organisms then governs the organization of matter all the way from molecules to man. Just as cytoplasm precipitates the bimolecular plasma membrane to form u-cells for the purpose of achieving reaction sequestration, in turn, these u-cells precipitate a common basal lamina to form m-cells, the histologist's acini, to produce sequestered “tissue plasms”. Thus, the “generalized acinus” with its basal laminar complex seem to constitute a second level (multicellular) cell and cell membrane, respectively.Four operators, ultimately under genetic control, can generate both u and m-cells from planar configurations of their respective unit membranes therewith providing the essential structure of all cells, tissues, organs and organisms. These are the ply, permeability vector, topological and stratificational operators. They are collected into a set of “organ formulae”. Both the plasma membrane and the basal lamina act as covering membranes and, again, as membranes for subcells so that a complete multicellular organism is a tetrahierarchical cell in which the molecule is the element of the first two cellular domains and the cell is the element of the last two. The analysis identifies a new transport organ group which together with the classical endocrine and exocrine groups comprises nearly the whole of the soft tissue organs. In a major reduction, all these organs are continuously (topologically) transformable into each and into hollow spheres, cells or acini thus greatly simplifying the histology of metazoa. Given this emphasis on cellularization it would seem that life, i.e. the autonomous chemoservo, results from the cooperation of cellularization and replication operations on the catalyzation process. Through cellularization, the lipid bilayer and basal laminar membranes provide the essential catalytic reaction sequestration demanded by chemical reaction theory while through complementary base pairing the DNA double helix provides the essential memory which stores the patterns of the variations of the sequestered reactions.  相似文献   

9.
The fine structure of the photosynthetic bacterium Rhodomicrobium vannielii was studied by the ultra thin sectioning technique. Cells were fixed in buffered osmium tetroxide and embedded in Epoxy resin. The feature most common to nearly all cells was an array of intracellular membranes situated in a concentric manner at the periphery of the cell. The membranes were mostly paired and quite often five pairs were seen aligned together. Calculations from densitometric tracings showed the average width of a "unit" membrane to be 65 A. Sections of material from disrupted cells after passage through a sucrose gradient revealed vesicular forms composed of membranes similar in width to those in the intact cell. Absorption spectra of both intact cells and isolated membranes were very similar in the bacteriochlorophyll regions. Septa and membranes were demonstrated in the filaments that join mature cells. No evidence for chromatophores was obtained although the methods used were adequate for their demonstration in Rhodospirillum rubrum.  相似文献   

10.
Summary Freeze substitution proved to be a valuable technique for studying the early stages of ascosporogenesis inAscodesmis nigricans. Our observations indicate that the ascus vesicle originated from the ascus plasma membrane. Invaginations of the plasma membrane produced ascus vesicle initials consisting of two closely spaced unit membranes. The appearance of the outer leaflet of each of these membranes was identical to that of the inner leaflet of the ascus plasma membrane. Apparent points of continuity between ascus vesicle initials and the plasma membrane were observed. Ascus vesicle initials accumulated in the ascus cytoplasm near the plasma membrane and then coalesced to form the ascus vesicle, a peripheral, cylinder-like structure consisting of two closely spaced unit membranes that extended from the ascus apex to the ascus base. The ascus vesicle then became invaginated in a number of regions and subsequently gave rise to eight sheet-like segments, or ascosporedelimiting membranes, that encircled uninucleate segments of cytoplasm forming ascospore initials. Like the ascus vesicle, each ascospore-delimiting membrane consisted of two closely spaced unit membranes, the inner of which became the ascospore plasma membrane. The ascospore wall then developed between the spore plasma membrane and the outer membrane. Many details of ascospore maturation were clearly visible in freeze substituted samples.  相似文献   

11.
Vegetative cells of Saccharomyces cerevisiae were fixed with potassium permanganate followed by uranyl nitrate, embedded in methacrylate, and studied in electron micrographs of thin sections. Details of the structure of the cell wall, cytoplasmic membrane, nucleus, vacuole, and mitochondria are described. Cell membranes, about 70 to 80 A thick, have been resolved into two dense layers, 20 to 25 A thick, separated by a light layer of the same dimensions, which correspond in thickness and appearance to the components of the "unit membrane" as described by Robertson (15). The cell wall is made up of zones of different electron opacity. Underlying the cell wall is the cytoplasmic membrane, a sinuous structure with numerous invaginations. The nucleoplasm, often of uneven electron opacity, is enclosed in a pair of unit membranes in which nuclear pores are apparent. The vacuole, limited by a single unit membrane, is usually irregular in outline and contains some dense material. Rod-shaped mitochondria, 0.4 to 0.6 µ in length and 0.2 to 0.3 µ in diameter, are smaller in size, but similar in structure to some of those described in plant and animal cells. Attempts to use osmium tetroxide as fixative were unsuccessful, a result similar to that obtained by other workers. It is suggested that yeast cells are impermeable to osmium tetroxide, except when grown under specific conditions.  相似文献   

12.
This paper presents the compression isotherms obtained by spreading membranes of intestinal brush border, human erythrocyte and Escherichia coli (cytoplasmic) at the air/water interface. Unilamellar membrane films were formed, with a good yield, at zero surface pressure, whereas multilamellar structures were formed at high surface pressure. Once formed, the films were particularly stable and could be manipulated without any detectable loss. With doubly-labelled E. coli cytoplasmic membrane, we could show that phospholipids and proteins spread, with the same yield, as a single unit. Moreover, we studied the influence of hydrolytic enzymes, chemical agents and cations on the compression isotherm of biomembranes. The resultant change sin architecture of membrane films can provide a very simple method of studying the influence of membrane packing on catalytic activity and protein conformation of membrane-bound proteins.  相似文献   

13.
A method for the determination of caffeine in coffee and tea samples based on the use of supported liquid membranes coupled to a flow system has been developed. The sample may be analysed both as solid and slurry. In the case of solid sample, this is directly placed in the membrane unit, and when the sample is slurry, this is continuously pumped to the membrane unit. In both cases, the caffeine released from the sample passes through the membrane (PTFE/n-undecane:hexyl ether) into an acidic acceptor stream. This stream flows through a spectrophotometric detector allowing the measurement of the absorbance of caffeine at 274 nm. The method shows a linear range between 0.5 and 15 g l−1, with a relative standard deviation of ±3.7% and a sample throughput of 7–8 samples h−1.  相似文献   

14.
In order to modify the surface tension of commercial available track-edged polymer membranes, a procedure of surface-initiated polymerization is presented. The polymerization from the membrane surface is induced by plasma treatment of the membrane, followed by reacting the membrane surface with a methanolic solution of 2-hydroxyethyl methacrylate (HEMA). Special attention is given to the process parameters for the plasma treatment prior to the polymerization on the surface. For example, the influence of the plasma-treatment on different types of membranes (e.g. polyester, polycarbonate, polyvinylidene fluoride) is studied. Furthermore, the time-dependent stability of the surface-grafted membranes is shown by contact angle measurements. When grafting poly(2-hydroxyethyl methacrylate) (PHEMA) in this way, the surface can be further modified by esterification of the alcohol moiety of the polymer with a carboxylic acid function of the desired substance. These reactions can therefore be used for the functionalization of the membrane surface. For example, the surface tension of the membrane can be changed or a desired functionality as the presented light-responsiveness can be inserted. This is demonstrated by reacting PHEMA with a carboxylic acid functionalized spirobenzopyran unit which leads to a light-responsive membrane. The choice of solvent plays a major role in the postmodification step and is discussed in more detail in this paper. The permeability measurements of such functionalized membranes are performed using a Franz cell with an external light source. By changing the wavelength of the light from the visible to the UV-range, a change of permeability of aqueous caffeine solutions is observed.  相似文献   

15.
Garfish Lepisosteus osseus olfactory nerve, because of its large size and the unusually high concentration of axonal membrane, is an excellent source of axonal membrane. A procedure is described for the isolation of two types of plasma membranes from the nerve which are obtained in yields of about 20 mg (fraction I) and 1.5 mg (fraction II) per g of wet nerve. Both membrane fractions consist mostly of rounded membrane vesicles, with a unit membrane thickness of ~7.5 nm. The two membrane fractions are different in their lipid to protein ratios, Na-K ATPase activities, polypeptide patterns on sodium dodecyl sulfate (SDS) gel electrophoresis, and fatty acid compositions. They have similar phospholipid composition. On the basis of the relative concentration of axonal and Schwann cell plasma membranes in the nerve, the Na-K ATPase activities of the two membrane fractions and a comparison of the properties of the membrane fractions to those of squid and lobster nerve membrane preparations, fraction I seems to be the axonal membrane and fraction II the Schwann cell plasma membrane. Fraction I has a low protein to lipid ratio. Its polypeptide pattern on SDS gel appears to be much more complex as compared to that of fraction II membrane.  相似文献   

16.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

17.
Cell-free translation of Chlamydomonas reinhardtii RNA in the presence of photosynthetic membranes resulted in association of the herbicide binding (Qb) protein with membranes. Incubation of recovered membranes with high salt did not extract the polypeptide from membranes. Tryptic digestion of in vivo labeled membranes or membranes recovered from in vitro translation mixtures showed that Qb had similar orientation. In vitro translation in the presence of chloroplast membranes from cells exposed to high light intensity restored the membrane associated kinase activity lost by photoinhibition. Thus, in vitro synthesis resulted in functional integration of the Qb protein within the photosynthetic membrane.  相似文献   

18.
Coupling factor 1 and ribulose-diphosphate carboxylase are the main peripheral proteins associated with chloroplast internal membranes. The two proteins were sequentially solubilized and purified by gel filtration and their subunit structure was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The differences between the polypeptide profiles of the insoluble membrane fraction, before and after extraction of these oligomeric proteins, allowed identification of original membrane peptides with specific protein subunits. The 52,000 and 14,000 molecular weight peaks are identical to the large and small subunits, respectively, of ribulose-diphosphate carboxylase; the 56,000 and 53,000 peaks are identified with the α and β subunits, respectively, of the coupling factor protein. These identifications, together with earlier studies on the 25,000 Mr band, assign a physiological role to the most prominent peptides of chloroplast internal membranes. Now it becomes apparent that the major membrane polypeptides do not directly relate to photosynthetic electron transport components, but rather to enzymatic capacities associated with this process and to the light-gathering antenna of the photosynthetic unit. The observation that chloroplast coupling factor 1 dissociates during gel filtration, with preferential loss of the smaller subunits (Mr < 50,000) is discussed in relation to the possible function of these subunits in situ in the thylakoid membrane.  相似文献   

19.
The peripheral membrane protein fraction released by washing Acholeplasma laidlawii membranes with low-ionic strength buffers contained about 50 % of the total membrane-bound ribonuclease and deoxyribonuclease activities. The ATPase, NADH oxidase and p-nitrophenylphosphatase activities remained bound to the membrane even when EDTA was added to the wash fluids, and thus appear to belong to the integral membrane protein group.Serving as a marker for peripheral membrane proteins, the membrane-bound ribonuclease activity was solubilized by bile salts much more effectively than the integral membrane-bound enzymes. On the other hand, the solubilized ribonuclease showed a much lower capacity to reaggregate with other solubilized membrane components to membranous structures. Yet, most of the ribonuclease molecules which were bound to the reaggregated membranes could not be released by low-ionic strength buffer. The reaggregated membranes differed from the native membranes in the absence of particles on their fracture faces obtained by freeze cleaving, and by their much higher labeling by the [125I]lactoperoxidase iodination system. These results suggest that most of the proteins are exposed on the reaggregated membrane surfaces, with very little, if any, protein embedded in its lipid bilayer core.Enzyme disposition in the A. laidlawii membrane was studied by comparing the activity of isolated membranes with that of membranes of intact cells after treatment with pronase or with an antiserum to membranes. The data indicate the asymmetrical disposition of these activities, the ATPase and NADH oxidase being localized on the inner membrane surface, while the nucleases are exposed on the external membrane surface.  相似文献   

20.
In the yeast Saccharomyces cerevisiae, cells undergoing sporulation form prospore membranes to surround their meiotic nuclei. The prospore membranes ultimately become the plasma membranes of the new cells. The putative phospholipase Spo1 and the tandem Pleckstrin Homology domain protein Spo71 have previously been shown to be required for prospore membrane development, along with the constitutively expressed Vps13 involved in vacuolar sorting. Here, we utilize genetic analysis, and find that SPO73 is required for proper prospore membrane shape and, like SPO71, is necessary for prospore membrane elongation. Additionally, similar to SPO71, loss of SPO73 partially suppresses spo1Δ. Spo73 localizes to prospore membranes and complexes with Spo71. We also find that phosphatidylserine localizes to the prospore membrane. Our results suggest a model where SPO71 and SPO73 act in opposition to SPO1 to form and elongate prospore membranes, while VPS13 plays a distinct role in prospore membrane development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号