首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
In the present study we aim to dissect the basis of the polyamine mode of action in the structure and function of the photosynthetic apparatus. Although the modulating effects of polyamines in photosynthesis have been reported since long [K. Kotzabasis, A role for chloroplast-associated polyamines? Bot. Acta 109 (1996) 5-7], the underlying mechanisms remained until today largely unknown. The diamine putrescine was employed in this study, by being externally added to Scenedesmus obliquus cultures acclimated to either low or high light conditions. The results revealed the high efficiency by which putrescine can alter the levels of the major photosynthetic complexes in a concerted manner inducing an overall structure and function of the photosynthetic apparatus similar to that under higher light conditions. The revealed mechanism for this phenomenon involves alterations in the level of the polyamines putrescine and spermine which are bound to the photosynthetic complexes, mainly to the LHCII oligomeric and monomeric forms. In vitro studies point out to a direct impact of the polyamines on the autoproteolytic degradation of LHCII. Concomitantly to the reduction of the LHCII size, exogenously supplied putrescine, induces the reaction centers' density and thus the photosynthetic apparatus is adjusted as if it was adapted to higher light conditions. Thus polyamines, through LHCII, play a crucial role in the regulation of the photosynthetic apparatus' photoadaptation. The protective role of polyamines on the photosynthetic apparatus under various environmental stresses is also discussed in correlation to this phenomenon.  相似文献   

2.
In the present study we aim to dissect the basis of the polyamine mode of action in the structure and function of the photosynthetic apparatus. Although the modulating effects of polyamines in photosynthesis have been reported since long [K. Kotzabasis, A role for chloroplast-associated polyamines? Bot. Acta 109 (1996) 5-7], the underlying mechanisms remained until today largely unknown. The diamine putrescine was employed in this study, by being externally added to Scenedesmus obliquus cultures acclimated to either low or high light conditions. The results revealed the high efficiency by which putrescine can alter the levels of the major photosynthetic complexes in a concerted manner inducing an overall structure and function of the photosynthetic apparatus similar to that under higher light conditions. The revealed mechanism for this phenomenon involves alterations in the level of the polyamines putrescine and spermine which are bound to the photosynthetic complexes, mainly to the LHCII oligomeric and monomeric forms. In vitro studies point out to a direct impact of the polyamines on the autoproteolytic degradation of LHCII. Concomitantly to the reduction of the LHCII size, exogenously supplied putrescine, induces the reaction centers' density and thus the photosynthetic apparatus is adjusted as if it was adapted to higher light conditions. Thus polyamines, through LHCII, play a crucial role in the regulation of the photosynthetic apparatus' photoadaptation. The protective role of polyamines on the photosynthetic apparatus under various environmental stresses is also discussed in correlation to this phenomenon.  相似文献   

3.
Tissue culture of Dianthus caryophyllus L. (cv. William Sim.) obligatory requiring N6-benzyladenine for greening provides a good system to study the interactions between cytokinins and polyamines. Polyamines were analyzed as dansyl derivatives which are separated by thin layer chromatography and detected by fluorescence spectrophotometry. Green callus growing on benzyladenine — containing medium showed decrease in the contents of free, conjugated and bound putrescine and spermidine in comparison to chlorophyll-less callus (control callus) growing on cytokinin-free medium. The level of spermine free, conjugated and bound forms increased about 6 %, 77 % and 28 % respectively in tissue culture growing in the presence of cytokinin. Spermidine was dominant polyamine bound to chromatin isolated from control callus. Chromatin isolated from green callus was characterized by a lower level of each polyamine in comparison to chlorophyll-less callus. Polyamines were found in plastid membrane fraction isolated from chlorophyll-less and green callus. A significant increase the levels of polyamines (putrescine, spermidine and spermine) bound to plastid membranes in green callus (+ benzyladenine) in comparison to chlorophyll-less callus (− benzyladenine) was observed. Additionaly, methylglyoxal-bis(guanylhydrazone) an inhibitor of S-adenosylmethionine decarboxylase depressed the greening process. Our results suggest that cytokinin-induced chloroplast differentiation in carnation tissue culture may be partly mediated through the polyamines bound to thylakoid membranes. A possible role of polyamines during cytokinin-induced formation of photosynthetic apparatus is discussed.  相似文献   

4.
One of the primary plant mechanisms protecting leaf cells against enhanced atmospheric ozone is the accumulation of polyamines, generally observed as an increase in putrescine level, and in particular its bound form to thylakoid membranes. Ozone-sensitive plants of tobacco (cultivar Bel W3) in contrast to ozone-tolerant Bel B, are not able to increase their endogenous thylakoid membrane-bound putrescine when they are exposed to an atmosphere with enhanced ozone concentration, resulting in reduction of their photosynthetic rates and consequently reduction in plant biomass formation. In comparison to the tolerant cultivar Bel B, a prolongation of ozone exposure thus can lead to typical visible symptoms (necrotic spots) in leaves of the sensitive plant. Exogenously manipulated increase of the cellular putrescine levels of the ozone-sensitive Bel W3 is sufficient to revert these effects, whereas a reduction in endogenous putrescine levels of the tolerant cultivar Bel B renders them sensitive to ozone treatment. The results of this work reveal a regulator role for polyamines in adaptation of the photosynthetic apparatus and consequently to its protection in an environment polluted by ozone.  相似文献   

5.
The possible involvement of polyamines in the chilling tolerance of spinach (Spinacia oleracea L.) was investigated focusing on photosynthesis. During chilling at 8/5C (day/night) for 6 d, S-adenosylmethionine decarboxylase (SAMDC) activity increased significantly in leaves in parallel with the increase in putrescine and spermidine (Spd) content in leaves and chloroplasts. Treatment of leaves with methylglyoxal-bis(guanylhydrazone) (MGBG), an SAMDC inhibitor, resulted in the deterioration of plant growth and photosynthesis under chilling conditions, which was reversed by the concomitant treatment with Spd through the roots. Plants treated with MGBG showed lower photochemical efficiency of PSII than either the control or plants treated with MGBG plus Spd during chilling and even after transfer to warm conditions, suggesting an increase of photoinhibition due to low Spd in chloroplasts. Indeed, MGBG-treated plants had much lower activities of thylakoid electron transport and enzymes in carbon metabolism as well as higher degrees of lipid peroxidation of thylakoid membranes compared to the control. These results indicate that the enhanced activity of SAMDC with a consequential rise of Spd in chloroplasts is crucial for the cold acclimation of the photosynthetic apparatus in spinach leaves.  相似文献   

6.
Changes in the concentrations of endogenous free, conjugated and bound polyamine were determined in petals of two different species of rose, viz. Rosa damascena and Rosa bourboniana, from small bud (stage 1) till full bloom (stage 8). High free putrescine and spermidine concentrations were associated with early stages of flower development and then decreased in R. damascena. At full bloom, the concentration of free putrescine was higher than rest of the polyamines measured. A steady increase in conjugated putrescine, spermidine and spermine was observed during entire period of flower development with predominance of conjugated putrescine at full bloom. In R. damascena the bound spermine was higher than rest of the polyamines during full bloom. In R. bourboniana, during the early stages of flower development, similar situation was observed, however, at full bloom, free spermidine concentration was higher than rest of the polyamines. In this species, the concentration of conjugated and bound spermine was higher than rest of the polyamines during full bloom. Polyamine concentrations were generally lower in the petals of R. bourboniana than R. damascena which may be due to genotypic differences. The possible roles of the observed polyamines are discussed in relation to flower development.IHBT Communication no, 0345.  相似文献   

7.
Nikolaos E. Ioannidis 《BBA》2007,1767(12):1372-1382
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 μM increase FV as efficiently as 100 μM of spermidine or 1000 μM of putrescine or 1000 μM of Mg2+. It is also demonstrated that the increase in FV derives mainly from the contribution of PSIIα centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.  相似文献   

8.
Shu S  Guo SR  Sun J  Yuan LY 《Physiologia plantarum》2012,146(3):285-296
With the objective to clarify the physiological significance of polyamines (PAs) in the photosynthetic apparatus, the present study investigated the effects of salt stress with and without foliar application of putrescine (Put) on the structure and function of the photosynthetic apparatus in cucumber. Salt stress at 75 mM NaCl for 7 days resulted in a severe reduction of photosynthesis. The fast chlorophyll afluorescence transient analysis showed that salt stress inhibited the maximum quantum yield of PSII photochemistry (F(v) /F(m) ), mainly due to damage at the receptor side of PSII. In addition, salt stress decreased the density of active reaction centers and the structure performance. The microscopic analysis revealed that salt stress-induced destruction of the chloroplast envelope and increased the number of plastoglobuli along with aberrations in thylakoid membranes. Besides, salt stress caused a decrease in the content of endogenous PAs, conjugated and bound forms of spermidine and spermine in particular, in thylakoid membranes. However, applications of 8 mM Put alleviated the salt stress-mediated decrease in net photosynthetic rates (Pn) and actual efficiency of PSII (Φ(PSII) ). Put increased PAs in thylakoid membranes and overcame the damaging effects of salt stress on the structure and function of the photosynthetic apparatus in salt-stressed plant leaves. Put application to control plants neither increased PAs in thylakoid membranes nor affected photosynthesis. These results indicate that PAs in chloroplasts play crucial roles in protecting the thylakoid membranes against the deleterious influences of salt stress. In addition, the present results point to the probability that the salt-induced dysfunction of photosynthesis is largely attributable to the loss of PAs in the photosynthetic apparatus.  相似文献   

9.
Kurasová  I.  Kalina  J.  Štroch  M.  Urban  O.  Špunda  V. 《Photosynthetica》2003,41(2):209-219
The response of barley (Hordeum vulgare L. cv. Akcent) to various photosynthetic photon flux densities (PPFDs) and elevated [CO2] [700 μmol (CO2) mol−1; EC] was studied by gas exchange, chlorophyll (Chl) a fluorescence, and pigment analysis. In comparison with barley grown under ambient [CO2] [350 μmol (CO2) mol−1; AC] the EC acclimation resulted in a decrease in photosynthetic capacity, reduced stomatal conductance, and decreased total Chl content. The extent of acclimation depression of photosynthesis, the most pronounced for the plants grown at 730 μmol m−2 s−1 (PPFD730), may be related to the degree of sink-limitation. The increased non-radiative dissipation of absorbed photon energy for all EC plants corresponded to the higher de-epoxidation state of xanthophylls only for PPFD730 barley. Further, a pronounced decrease in photosystem 2 (PS2) photochemical efficiency (given as FV/FM) for EC plants grown at 730 and 1 200 μmol m−2 s−1 in comparison with AC barley was related to the reduced epoxidation of antheraxanthin and zeaxanthin back to violaxanthin in darkness. Thus the EC conditions sensitise the photosynthetic apparatus of high-irradiance acclimated barley plants (particularly PPFD730) to the photoinactivation of PS2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
In the present study the green alga Scenedesmus obliquus was used to assess the effects of high salinity (high NaCl-concentration) on the structure and function of the photosynthetic apparatus and the possibility for alleviation by exogenous putrescine (Put). Chlorophyll fluorescence data revealed the range of the changes induced in the photosynthetic apparatus by different NaCl concentrations, which altogether pointed towards an increased excitation pressure. At the same time, changes in the levels of endogenous polyamine concentrations, both in cell and in isolated thylakoid preparations were also evidenced. Certain polyamine changes (Put reduction) were correlated with changes in the structure and function of the photosynthetic apparatus, such as the increase in the functional size of the antenna and the reduction in the density of active photosystem II reaction centers. Thus, exogenously added Put was used to compensate for this stress condition and to adjust the above mentioned changes, so that to confer some kind of tolerance to the photosynthetic apparatus against enhanced NaCl-salinity and permit cell growth even in NaCl concentrations that under natural conditions would be toxic.  相似文献   

11.
Putrescine and spermidine were the only polyamines found inParacoccidioides brasiliensis, a dimorphic fungus pathogenic for humans. Free polyamines (putrescine>spermidine) increased during the first 24 h of yeast growth, with a second peak at 42 h, and also during the first 12 h of mycelium-to-yeast transition (spermidine>putrescine). Conjugated and bound polyamines were also quantified. 1,4-Diamino-2-butanone decreased free putrescine and spermidine accumulation by inhibiting the activity of ornithine decarboxylase. The increase in free polyamines corresponds to bud emergence in yeast growth and to the mycelium-to-yeast transition ofP. brasiliensis.Abbreviations DAB 1,4-Diamino-2-butanone - Y Yeasts - M Mycelia - ODC Ornithine decarboxylase  相似文献   

12.
In the present study the green alga Scenedesmus obliquus was used to assess the effects of high salinity (high NaCl-concentration) on the structure and function of the photosynthetic apparatus and the possibility for alleviation by exogenous putrescine (Put). Chlorophyll fluorescence data revealed the range of the changes induced in the photosynthetic apparatus by different NaCl concentrations, which altogether pointed towards an increased excitation pressure. At the same time, changes in the levels of endogenous polyamine concentrations, both in cell and in isolated thylakoid preparations were also evidenced. Certain polyamine changes (Put reduction) were correlated with changes in the structure and function of the photosynthetic apparatus, such as the increase in the functional size of the antenna and the reduction in the density of active photosystem II reaction centers. Thus, exogenously added Put was used to compensate for this stress condition and to adjust the above mentioned changes, so that to confer some kind of tolerance to the photosynthetic apparatus against enhanced NaCl-salinity and permit cell growth even in NaCl concentrations that under natural conditions would be toxic.  相似文献   

13.
Serret  M.D.  Trillas  M.I.  Araus  J.L. 《Photosynthetica》2001,39(1):67-73
We tested the effect of growing conditions during micropropagation on the fast kinetics of chlorophyll (Chl) fluorescence of Gardenia jasminoides Ellis plantlets during a 4-week acclimation to ex vitro. We studied whether photoautotrophic growing in vitro produced plantlets with less photoinhibition impairment during acclimation. Of the growing conditions stimulating photoautotrophy in vitro, only loose tube caps had a positive effect, whereas low sucrose or sucrose-free content in the medium and high PPFD showed a negative effect. Thus, plantlets cultured with 3 % (m/v) of sucrose were subsequently less photoinhibited throughout acclimation than those cultured with low sucrose (0.5 %) or sucrose-free media. Moreover, at the end of acclimation the former plantlets showed Fv/Fm and Fv/F0 ratios typical of unstressed ex vitro plants as well as a higher Chl content and ratio of Chls to carotenoids. Plantlets cultured at a photosynthetic photon fluence density (PPFD) of 50 µmol m–2 s–1 also showed a better performance at the end of acclimation than those cultured at a higher (110 µmol m–2 s–1) PPFD. Thus except in the case of loose-tube closure, gardenia plantlets cultured in vitro under conventional sucrose concentration and PPFD are the least photoinhibited during acclimation. Nevertheless, significant interactions between the in vitro growing factors were observed at the end of acclimation.  相似文献   

14.
15.
Changes in various components of photosynthetic apparatus during the 4 d dark incubation at 25°C of detached control and ultraviolet-B (UV-B) treatedVigna unguiculata L. leaves were examined. The photosynthetic apparatus was more degraded in younger control seedlings and for a longer time UV-B treated seedlings than in the older or for a shorter time UV-B treated seedlings. This was shown by determining the losses in chlorophyll (Chl) and protein contents, variable fluorescence yield, photosystem (PS) 2, PS1 and ribulose-1,5-bisphosphate carboxylase (RuBPC) activities, and photosynthetic14CO2 fixation. In contrast, the Car/Chl ratio increased during the dark incubation due to less expressed degradation of Car.  相似文献   

16.
The primary free polyamines identified during growth and development of strawberry (Fragaria × ananassa Duch.) microcuttings cultivated in vitro were putrescine, spermidine and spermine. Polyamine composition differed according to tissue and stages of development; putrescine was predominant in aerial green tissues and roots. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), strongly inhibited growth and development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition, indicating that polyamines are involved in regulating the growth and development of strawberry microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis by ornithine decarboxylase, promoted growth and development. We propose that ADC regulates putrescine biosynthesis during microcutting development. The application of exogenous polyamines (agmatine, putrescine, spermidine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these polyamines can be growth limiting.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -difluoromethylarginine - DFMO -difluoromethylornithine - Put putrescine - Spd spermidine - Sp spermine - DW dry weight - PA polyamine - PPF photosynthetic photon flux  相似文献   

17.
Early investigations on the productivity of intertidal seaweeds found that, unlike some seaweeds, members of the genus Porphyra, a Rhodophyte, could tolerate physical stressors such as ultraviolet-B radiation (UV-B) both during immersion and when exposed to air. Increased stress tolerance was thought to be due to an unknown mechanism that operated at the thylakoid level. As recent research has shown that polyamines (PAs), bound to the thylakoid membranes of chloroplasts, play a critical role in protecting the photosynthetic apparatus from high-light and UV damage in both higher plants and in unicellular algae, we investigated PA metabolism in Porphyra cinnamomea exposed to UV-B. Our results show that PA biosynthesis was significantly upregulated in P. cinnamomea in response to UV-B, with the greatest proportional increases being in bound soluble putrescine (PUT), which increased by over 200%, in bound soluble spermidine (SPD) and spermine (SPM) which both increased by more than 150% and in bound insoluble SPM which increased by more than 120%. As PAs can be synthesised from ornithine via ornithine decarboxylase (ODC) or from arginine via arginine decarboxylase (ADC) we investigated the pathway via which polyamines were synthesised in P. cinnamomea. While exposure to UV-B caused increases in the activities of both ADC and ODC, the increase in ADC activity was 10 fold greater than that of ODC, suggesting that the ADC pathway was the principle route by which PA levels increased in response to UV-B. Mechanisms of PA mediated UV-B protection are discussed.  相似文献   

18.
The effects of the positive charges of amines such as spermine (SPM), putrescine (PUT) and methylamine (MET) on the protection of PSII against excessive illumination were investigated in isolated thylakoid membranes. Under photoinhibition conditions, water oxidation, the kinetics of the Chl fluorescence rise and charge recombination in PSII were affected. A low concentration of SPM (1 mM) added before photoinhibition produced a significant improvement of F(v)/F(0), the oxygen yield and the amplitude of the B-band of thermoluminescence compared with the other amines. Amongst the amines studied, only SPM could protect the photosynthetic apparatus under photoinhibition conditions. This protection was probably provided by the polycationic nature of SPM (four positive charges at physiological pH), which can stabilize surface-exposed proteins of PSII through electrostatic interaction.  相似文献   

19.
During cold acclimation by higher plants, temperature perception via changes in redox state of Photosystem II (PSII) and subsequent acclimation of the photosynthetic apparatus to cold is very important for achieving freezing tolerance. These properties were studied in two groups (A and B) of the same backcross 3 (BC3) progeny derived from a triploid hybrid of Festuca pratensis (2×) × Lolium multiflorum (4×) backcrossed three times onto diploid L. multiflorum cultivars. Leaves of Group A plants formed at 20°C at medium-low light were unable to acclimate their photosynthetic apparatus to cold. Compared to Group B, the Group A plants were also more frost sensitive. This acclimation ability correlated with the freezing tolerance of the plants. However, leaves of the same Group A plants developed at 20°C, but under higher-light conditions had increased ability to acclimate their photosynthetic apparatus to cold. It was concluded that Group A plants may have impaired PSII temperature perception, and this then resulted in their poor capability to cold acclimate.  相似文献   

20.
M. -L. Botha  C. S. Whitehead 《Planta》1992,188(4):478-483
Senescence of Petunia hybrida L. flowers is accompanied by a climacteric pattern in ethylene production and a rapid decline in the levels of putrescine and spermidine during the preclimacteric phase. The decrease in spermidine is caused by the decline in the availability of putrescine which is initially synthesized from L-arginine via agmatine and N-carbamoylputrescine. Inhibition of putrescine and polyamine synthesis resulted in a rapid drop in the levels of putrescine and spermidine without resulting in a concomitant increase in ethylene production. These results indicate that polyamine synthesis is not involved in the control of ethylene synthesis through its effect on the availability of S-adenosylmethionine, and is confirmed by the results obtained with pollinated flowers. Treatment with polyamines may stimulate or suppress ethylene production in the corolla, depending on the concentrations applied. In unpollinated flowers the onset of the climacteric rise in ethylene production was accelerated after treatment with polyamines. However, in pollinated flowers this process was delayed as a result of treatment with low concentrations of polyamines. The effects of exogenous polyamines on ethylene production in both pollinated and unpollinated flowers indicate that ethylene synthesis in these flowers is not regulated by a feedback control mechanism. Although polyamines do not play a key role in the control of ethylene production during the early stages of senescence through their effect on the availability of S-adenosylmethionine, it appears that they play an important role in some of the other processes involved in senescence.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MGBG methylglyoxal bis-(guanylhydrazone) - SAM S-adenosylmethionine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号